JPS6058293B2 - Wear-resistant and corrosion-resistant Ni-Co-based alloy for centrifugal coating - Google Patents

Wear-resistant and corrosion-resistant Ni-Co-based alloy for centrifugal coating

Info

Publication number
JPS6058293B2
JPS6058293B2 JP16193982A JP16193982A JPS6058293B2 JP S6058293 B2 JPS6058293 B2 JP S6058293B2 JP 16193982 A JP16193982 A JP 16193982A JP 16193982 A JP16193982 A JP 16193982A JP S6058293 B2 JPS6058293 B2 JP S6058293B2
Authority
JP
Japan
Prior art keywords
alloy
resistant
hardness
wear
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16193982A
Other languages
Japanese (ja)
Other versions
JPS5950145A (en
Inventor
重光 西脇
和彦 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP16193982A priority Critical patent/JPS6058293B2/en
Publication of JPS5950145A publication Critical patent/JPS5950145A/en
Publication of JPS6058293B2 publication Critical patent/JPS6058293B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 本発明はプラスチック成型機等の円筒状シリンダー内面
の摩耗部分に遠心被覆法により被着して用いられる耐摩
耗、耐食性合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wear-resistant and corrosion-resistant alloy that is used by being applied to worn parts of the inner surface of a cylindrical cylinder of a plastic molding machine or the like by a centrifugal coating method.

プラスチック成型機用シリンダー内面層には、成形中の
樹脂または樹脂に加えた難燃剤等による腐食を防止する
ため、耐摩耗性と耐食性を兼ね備えた合金材料が要求さ
れる。
The inner layer of a cylinder for a plastic molding machine requires an alloy material that has both abrasion resistance and corrosion resistance to prevent corrosion caused by the resin during molding or the flame retardant added to the resin.

従来から知られている耐摩耗合金、例えば鉄系合金は安
価ではあるが、近年著しく増大している耐摩耗、耐食性
が要求されるようなプラスチックの成形には使用に耐え
ない。
Although conventionally known wear-resistant alloys, such as iron-based alloys, are inexpensive, they cannot be used in the molding of plastics, which require wear resistance and corrosion resistance, which have increased significantly in recent years.

この難点を解決するため、遠心被覆法による被着材合金
として種々の合金が開発されている。
In order to solve this difficulty, various alloys have been developed as adherend alloys for centrifugal coating.

しカルこれらの中でCo基合金は耐摩耗性、耐食性は優
れているが、高価な金属であるCoの含有量が85重量
%以上であるため、シリンダーの製造原価が非常に高く
なり、Ni基合金は耐食性には優れているがSi及びB
を多量に添加し硬度を向上させて耐摩耗性を得ているた
め非常に脆くなり、遠心被覆後の仕上げ加工が困難であ
る。従来のNi−Co基合金は耐食性に優れ、価格もC
o基合金に比べて安価ではあるが、耐摩耗性が劣るため
B、Siの量を増し硬度向上を計つているがこれらの元
素を多く添加すると合金の凝固区間温度が増大しデンド
ライト状初晶が成長するため湯流れが悪くなり内層の健
全性が損なわれるので、材料の歩留りが低下する。ここ
で凝固区間温度とは合金を示差熱分析により測定した液
相線温度と固相線温度との差を云う。
Among these, Co-based alloys have excellent wear resistance and corrosion resistance, but because the content of Co, an expensive metal, is 85% by weight or more, the manufacturing cost of the cylinder is extremely high. Although the base alloy has excellent corrosion resistance, Si and B
Since a large amount of is added to improve hardness and wear resistance, it becomes extremely brittle and difficult to finish after centrifugal coating. Conventional Ni-Co-based alloys have excellent corrosion resistance and are inexpensive
Although it is cheaper than o-based alloys, its wear resistance is inferior, so attempts are made to increase the amount of B and Si to improve hardness, but adding a large amount of these elements increases the solidification zone temperature of the alloy and causes dendrite-like primary crystals. This growth impedes the flow of the metal and impairs the integrity of the inner layer, resulting in a decrease in material yield. Here, the solidification zone temperature refers to the difference between the liquidus temperature and solidus temperature of the alloy measured by differential thermal analysis.

本発明の目的は前記Ni−Co基合金について耐摩耗性
と耐食性を劣化させすに同等もしくはそれ以上の性能を
有し、且つ凝固持性を劣化させないより安価な遠心被覆
用合金を提供することにある。
An object of the present invention is to provide an alloy for centrifugal coating that has performance equivalent to or better than that of the Ni-Co-based alloy without deteriorating wear resistance and corrosion resistance, and is less expensive and does not deteriorate solidification retention. It is in.

本発明者は、Ni−Co基合金にCuを添加することに
より、51との相乗効果によつて硬度を向上させること
ができ、且つCuの作用により凝固区間を30℃以下に
減少させることにより材料の歩留りJを大きく向上でき
ることを見出した。
The present inventor has discovered that by adding Cu to a Ni-Co-based alloy, it is possible to improve the hardness due to the synergistic effect with 51, and by reducing the solidification zone to 30°C or less due to the action of Cu. It has been found that the material yield J can be greatly improved.

すなわち本発明合金は重量%で、Ni38.0〜44.
0%、Cr6.0〜11.0%、B2.0〜4.0%、
5i0.8〜3.0%、Mn0.5〜1.2%、Cu0
.5〜2.0%、C0.1〜0.4%、Fel、O%以
下、残部Coおよび不可避的不純物;よりなる組成とし
たものである。
That is, the alloy of the present invention has Ni of 38.0 to 44.0% by weight.
0%, Cr6.0-11.0%, B2.0-4.0%,
5i0.8-3.0%, Mn0.5-1.2%, Cu0
.. 5 to 2.0%, C 0.1 to 0.4%, Fel, 0% or less, the balance Co and inevitable impurities.

本発明合金の成分限定理由を以下に述べる。The reasons for limiting the components of the alloy of the present invention will be described below.

以下%は重量%を表わすものとする。CrはCoおよび
Bと化合して合金に高硬度と耐食性を与えるが、6%未
満ではその効果が充分でなく、11%を超えると脆性を
増すので、その範囲を6〜11%とした。
Hereinafter, % represents weight %. Cr combines with Co and B to give the alloy high hardness and corrosion resistance, but if it is less than 6%, the effect is not sufficient, and if it exceeds 11%, brittleness increases, so the range is set to 6 to 11%.

Bは組織中に高硬度の硼化物を析出させ合金の硬度を向
上させるのに効果があるが、B2.O%未満では硬さが
不十分であり、4%を超えると硬さは向上するが脆性が
増大し、凝固区間が30℃を超えるのでその範囲を2.
0〜4.0%とした。
B is effective in precipitating high hardness borides in the structure and improving the hardness of the alloy, but B2. If it is less than 0%, the hardness is insufficient, and if it exceeds 4%, the hardness improves but the brittleness increases and the solidification zone exceeds 30°C, so the range is set to 2.
The content was set at 0 to 4.0%.

SiはNlおよびCuと化合して合金の硬度を向上させ
るが0.8%未満ではその効果は充分ではなく3%を超
えて含有すると脆性が増大し凝固区間が30℃を超える
のでその範囲を0.8〜3.0%とした。Mnは脱酸剤
として必要であるが0.5%未満ではその効果は充分で
はなく1.2%を超えて含有すると合金の耐食性を劣化
させるのでその範囲を0.5〜1.2%とした。Cuは
凝固区間を減少させ、また高硬度化に有効であるが、S
iの含有量によつてその作用が異なる。
Si combines with Nl and Cu to improve the hardness of the alloy, but if it is less than 0.8%, the effect is not sufficient, and if it is more than 3%, brittleness increases and the solidification period exceeds 30°C, so the range is limited. The content was set at 0.8 to 3.0%. Mn is necessary as a deoxidizing agent, but its effect is not sufficient if it is less than 0.5%, and if it is contained in more than 1.2%, it deteriorates the corrosion resistance of the alloy, so the range is set to 0.5 to 1.2%. did. Cu reduces the solidification zone and is effective in increasing hardness, but S
The effect differs depending on the content of i.

下記第1表Cの組成において、Siを2.5%、1.0
%として、Cu含有量を種々変化させSi及びCuの変
化に対応してCO量を増減した実験から、合金の硬度に
及ぼすSi,Cuの影響として第1図のような結果を得
た。
In the composition shown in Table 1 C below, Si is 2.5% and 1.0
In experiments in which the Cu content was varied in terms of % and the amount of CO was increased or decreased in response to changes in Si and Cu, results as shown in Figure 1 were obtained regarding the effects of Si and Cu on the hardness of the alloy.

第1図における実線はSI含有量が1.0%、点線はS
i2.5%の場合である。第1図より合金の硬さに及ぼ
すS1とCuの相乗作用が存在することが明らかである
。また下記第1表Cの組成において、Si含有量を2.
5%とし、Cu含有量を変化させ、これに応じてCO量
を変化させた実験から合金の凝固区間に及ぼすCuの影
響として第2図のような結果を得た。第2図よりCuは
合金の凝固区間を減少させる効果の大きいことが明らか
である。従つてCu含有量は0.5〜2.0%の範囲と
した。Feは1%を超えて含有すると硬度を低下させL
耐食性を劣化させる。
In Figure 1, the solid line indicates SI content of 1.0%, and the dotted line indicates S content.
This is the case when i is 2.5%. It is clear from FIG. 1 that there is a synergistic effect of S1 and Cu on the hardness of the alloy. In addition, in the composition of Table 1 C below, the Si content is 2.
From experiments in which the Cu content was changed to 5% and the amount of CO was changed accordingly, results as shown in FIG. 2 were obtained regarding the influence of Cu on the solidification zone of the alloy. It is clear from FIG. 2 that Cu has a great effect of reducing the solidification zone of the alloy. Therefore, the Cu content was set in the range of 0.5 to 2.0%. When Fe is contained in an amount exceeding 1%, the hardness decreases.
Degrades corrosion resistance.

NiはB,.Siと化合して合金の高硬度化に寄与し、
またCO基合金に比べて合金の耐食性向上に有効である
Ni is B, . It combines with Si and contributes to increasing the hardness of the alloy.
It is also effective in improving the corrosion resistance of the alloy compared to CO-based alloys.

38%以下ではその効果が充分ではなく、相対的にCO
の量が増えるので経済性の面で問題があり、44%を超
えて含有すると硬さが低下するので上記範囲とした。
If it is less than 38%, the effect is not sufficient and the CO
Since the amount of C increases, there is a problem in terms of economic efficiency, and if the content exceeds 44%, the hardness decreases, so the above range was set.

Cは合金の硬さ向上に有効であるが、0.1%未満では
その効果が充分ではなく0.4%を超えて含有すると合
金の耐食性を低下させる。
C is effective in improving the hardness of the alloy, but if it is less than 0.1%, the effect is not sufficient, and if it is contained in more than 0.4%, it reduces the corrosion resistance of the alloy.

次に本発明合金を実施例に基ずいて説明する。Next, the alloy of the present invention will be explained based on examples.

実施例本発明合金成分範囲内の合金と、従来のCuを含
まないNi−CO基合金のそれぞれを高周波大気溶解炉
にて各7kg溶解し棒状の鋳造物にした。
EXAMPLE 7 kg of each of an alloy within the alloy composition range of the present invention and a conventional Cu-free Ni--CO based alloy were melted in a high-frequency atmospheric melting furnace to form rod-shaped castings.

これらの合金の成分を第1表に示す。次に第1表の各合
金の一部から直径4Trr1n長さ5,顛の試験片を採
取したのち、示差熱分析計を用い示差熱分析を行なつた
The components of these alloys are shown in Table 1. Next, a test piece with a diameter of 4Trr1n and a length of 5cm was taken from a portion of each alloy shown in Table 1, and differential thermal analysis was performed using a differential thermal analyzer.

試験条件は、試料をアルミナ製のるつぼに入れ窒素雰囲
気中で900℃まで毎分10℃の速度で昇温し、900
℃から1150℃まで毎分2℃の速度で更に昇温し、固
相線温度を決定した。
The test conditions were to place the sample in an alumina crucible and raise the temperature to 900°C at a rate of 10°C per minute in a nitrogen atmosphere.
The temperature was further increased from 0.degree. C. to 1150.degree. C. at a rate of 2.degree. C./min, and the solidus temperature was determined.

次に1150℃から毎分2℃の速度で900℃まで降温
し液相線温度を決定した。各試料のビッカース硬度なら
びに凝固持性の結果を第2表に示す。本発明合金Aの顕
微鏡写真(400倍)を第3図に、同じく本発明合金C
の顕微鏡写真を第4図に示す。
Next, the temperature was lowered from 1150°C to 900°C at a rate of 2°C per minute, and the liquidus temperature was determined. Table 2 shows the results of Vickers hardness and coagulation retention of each sample. Figure 3 shows a micrograph (400x magnification) of the invention alloy A, and the same invention alloy C.
A microscopic photograph is shown in Fig. 4.

写真から本発明合金の組織はほとんど共晶部分より成り
、凝固区間が狭いことが判る。本発明合金は従来のN1
−CO基合金、およびCO基合金に比肩する硬さを有し
、またCO基合金に比して融点が100℃程度低いため
被着時の加熱が経済的となり且つ材料費も安価に済む。
第1表に示す本発明合金B,Cおよび従来合金Dの棒状
鋳造物を用い遠心被覆法により銅製シリンダー内面に被
着を行なつた。
It can be seen from the photograph that the structure of the alloy of the present invention consists mostly of eutectic parts, and the solidification zone is narrow. The alloy of the present invention is a conventional N1 alloy.
It has hardness comparable to -CO-based alloys and CO-based alloys, and has a melting point about 100°C lower than CO-based alloys, making heating during deposition economical and reducing material costs.
Rod-shaped castings of alloys B and C of the present invention and conventional alloy D shown in Table 1 were coated on the inner surface of a copper cylinder by a centrifugal coating method.

すなわち前記棒状鋳造物を破砕し、外径125Twt、
内径507m、長さ410鯨のS45C製シリンダー内
に厚さ4wmの被着を行なうに必要な量を入れ、シリン
ダー両端に鉄製のふたをした。本発明合金B,Cまたは
従来合金Dを約1160℃に保持された炉に入れ被着材
合金を溶かしたのち、炉から取り出し直ちに遠心機に組
込みシリンダーに1800r′Pmの回転を与えた。
That is, the rod-shaped casting was crushed to have an outer diameter of 125 Twt,
The amount necessary for coating 4wm thick was placed in an S45C cylinder with an inner diameter of 507m and a length of 410mm, and iron lids were placed on both ends of the cylinder. Alloys B and C of the present invention or conventional alloy D were placed in a furnace maintained at about 1160° C. to melt the adherend alloy, and then taken out from the furnace and immediately placed in a centrifuge and the cylinder was rotated at 1800 r'Pm.

シリンダーを850℃まで冷却させたのち回転を中止し
、800%℃に保持された炉中に入れ室温に至るまで詔
時間で徐冷した。こののち内面に仕上げ切削加工を行な
つたところ、健全な表面を得るために本発明合金B,C
はそれぞれ厚さで1.2TnIn11.0TfrInの
切削加工が必要であり、従来合金Dは2・2喘の切削加
工が必要であつた。シリンダーを切断し試験片を採取し
て検鏡したところS45C製シリンダーとの被着性に関
しては本発明合金を被着したもの及び従来合金を被着し
たものの両者共良好てあり、本発明合金は被着材として
従来のNi−CO基合金よりけずり代が少なくて済み優
れた材料であることが判明した。以上に詳述した如く、
本発明合金は優れた耐摩耗性と凝固持性を有しており、
プラスチック成形用シリンダーの内面に遠心被覆法によ
り被覆することによつて優れた性能を発揮する。また、
被覆合金として主流を占めている従来のNi−CO基合
金に比べてより安価に製造することができる。
After the cylinder was cooled to 850° C., rotation was stopped, and the cylinder was placed in a furnace maintained at 800%° C. and slowly cooled to room temperature over a period of time. After this, when finishing cutting was performed on the inner surface, in order to obtain a sound surface, alloys B and C of the present invention
requires cutting of 1.2 TnIn and 11.0 TfrIn in thickness, and conventional alloy D required cutting of 2.2 mm. When the cylinder was cut and a test piece was taken and examined under a microscope, the adhesion to the S45C cylinder was found to be good for both the inventive alloy and the conventional alloy. It was found that this material is superior to conventional Ni--CO based alloys as it has a smaller chipping amount as an adherend. As detailed above,
The alloy of the present invention has excellent wear resistance and solidification retention,
Excellent performance is achieved by coating the inner surface of plastic molding cylinders using the centrifugal coating method. Also,
It can be manufactured at a lower cost than the conventional Ni--CO based alloy, which is the mainstream coating alloy.

従つて本発明は性能および経済性の両面から工業的に寄
与すること多大である。
Therefore, the present invention makes a great contribution to industry from both the viewpoints of performance and economy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は硬度とCuの関係をSi含有量が異なる場合に
ついて示す図である。
FIG. 1 is a diagram showing the relationship between hardness and Cu for different Si contents.

Claims (1)

【特許請求の範囲】[Claims] 1 重量%で、Ni38.0〜44.0%、Cr6.0
〜11.0%、B2.0〜4.0%、Si0.8〜3.
0%、Mn0.5〜1.2%、Cu0.5〜2.0%、
C0.1〜0.4%、Fe1.0%以下、残部Coおよ
び不可避的不純物よりなる耐摩耗、耐食性遠心被覆用N
i−Co基合金。
1% by weight, Ni38.0-44.0%, Cr6.0
~11.0%, B2.0~4.0%, Si0.8~3.
0%, Mn0.5-1.2%, Cu0.5-2.0%,
A wear-resistant and corrosion-resistant N for centrifugal coating consisting of 0.1 to 0.4% C, 1.0% or less Fe, the balance Co and inevitable impurities.
i-Co based alloy.
JP16193982A 1982-09-17 1982-09-17 Wear-resistant and corrosion-resistant Ni-Co-based alloy for centrifugal coating Expired JPS6058293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16193982A JPS6058293B2 (en) 1982-09-17 1982-09-17 Wear-resistant and corrosion-resistant Ni-Co-based alloy for centrifugal coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16193982A JPS6058293B2 (en) 1982-09-17 1982-09-17 Wear-resistant and corrosion-resistant Ni-Co-based alloy for centrifugal coating

Publications (2)

Publication Number Publication Date
JPS5950145A JPS5950145A (en) 1984-03-23
JPS6058293B2 true JPS6058293B2 (en) 1985-12-19

Family

ID=15744905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16193982A Expired JPS6058293B2 (en) 1982-09-17 1982-09-17 Wear-resistant and corrosion-resistant Ni-Co-based alloy for centrifugal coating

Country Status (1)

Country Link
JP (1) JPS6058293B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118041A (en) * 1986-11-07 1988-05-23 Sankin Kogyo Kk Antibacterial alloy

Also Published As

Publication number Publication date
JPS5950145A (en) 1984-03-23

Similar Documents

Publication Publication Date Title
KR101832654B1 (en) Ni-Ir-BASED HEAT-RESISTANT ALLOY AND PROCESS FOR PRODUCING SAME
JPH0114303B2 (en)
JPS59162254A (en) Fe alloy material of superior workability
JP2725333B2 (en) Powder high speed tool steel
JPS5946300B2 (en) Steel for cold forging with excellent machinability and its manufacturing method
WO2018042929A1 (en) Roll outer layer material for rolling, and composite roll for rolling
JPH04141553A (en) Composite roll for hot rolling
JP2745646B2 (en) Method for producing high-temperature wear-resistant Co-based alloy with excellent hot workability
JPH02294449A (en) Maraging steel
JPS627257B2 (en)
US4456481A (en) Hot workability of age hardenable nickel base alloys
JPS6058293B2 (en) Wear-resistant and corrosion-resistant Ni-Co-based alloy for centrifugal coating
JPH02182867A (en) Powdered tool steel
JP2001247928A (en) Outer layer material of composite roll for rolling
JPS62222039A (en) Aluminum alloy excellent in wear resistance and extrudability
JPS62274037A (en) Precipitation curable nickel base alloy having improved stress corrosion cracking resistance
JP2745647B2 (en) Method for producing high-temperature wear-resistant Co-based alloy with excellent hot workability
KR101174534B1 (en) Improved wear resistant alloy
JPH11256277A (en) Fe-c series or fe-si-c series alloy capable of making the same amorphous, alloy powder utilizing this alloy and powder metallurgical member utilizing this alloy powder
JPS5946301B2 (en) Steel for cold forging with excellent machinability and its manufacturing method
JP3999333B2 (en) Method for preventing delayed fracture of high strength steel
JPS61257449A (en) Wear and corrosion resistant ni alloy for centrifugal coating
JPS635464B2 (en)
JPH01139737A (en) Internal hardening material for cylinder
JPS634905B2 (en)