JPS6056394B2 - Motor control device - Google Patents

Motor control device

Info

Publication number
JPS6056394B2
JPS6056394B2 JP51149173A JP14917376A JPS6056394B2 JP S6056394 B2 JPS6056394 B2 JP S6056394B2 JP 51149173 A JP51149173 A JP 51149173A JP 14917376 A JP14917376 A JP 14917376A JP S6056394 B2 JPS6056394 B2 JP S6056394B2
Authority
JP
Japan
Prior art keywords
motor
signal
rotational speed
circuit
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51149173A
Other languages
Japanese (ja)
Other versions
JPS5373315A (en
Inventor
浩幸 山内
謙吉 梅田
裕之 内田
哲夫 関谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP51149173A priority Critical patent/JPS6056394B2/en
Publication of JPS5373315A publication Critical patent/JPS5373315A/en
Publication of JPS6056394B2 publication Critical patent/JPS6056394B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はモータの回転速度に応じた周波数信号を形成し
、この周波数信号に応じて上記モータの回転速度を制御
するようにしたモータの制御装置に関するものであつて
、テープレコーダ、VTR。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a motor control device that forms a frequency signal corresponding to the rotational speed of a motor and controls the rotational speed of the motor in accordance with this frequency signal. Tape recorder, VTR.

等の記録再生装置やレコードプレーヤーに用いて最適な
ものである。従来から知られているように、例えばテー
プレコーダにおいては、磁気テープを走行させるために
ブラシレス直流モータ(以下において単にモーl夕と称
する)が多用されている。
It is most suitable for use in recording and reproducing devices such as the above, and record players. As is conventionally known, in tape recorders, for example, brushless DC motors (hereinafter simply referred to as motors) are often used to run magnetic tapes.

そしてモータの回転速度を所定の回転速度に保持するた
めに、以下に述べるように、大別して二種類の制御装置
が従来から知られている。次に従来のモータの制御装置
の第1例を第1図及び第2図にもとづき説明する。
In order to maintain the rotational speed of the motor at a predetermined rotational speed, two types of control devices are conventionally known, as described below. Next, a first example of a conventional motor control device will be explained based on FIGS. 1 and 2.

第1図はモータの制御装置のブ冶ツクダイヤグラムてあ
って、モータ1と周波数発電機(以下においてFGと称
する)2とは連動して回転するようになつている。
FIG. 1 is a block diagram of a motor control device, in which a motor 1 and a frequency generator (hereinafter referred to as FG) 2 are designed to rotate in conjunction with each other.

そしてFG2からは、第2A図・に示すようにモータ1
の回転速度に比例した周波数信号18が得られ、この周
波数信号10は次段のリミッター回路3に供給される。
次いでリミッター回路3からは、第2B図に示すような
波形整形された連続したパルス信号11が得られる。な
おこのパルス信号11の時間巾Tは、モータ1の回転速
度に比例して変化するようになつている。そしてパルス
信号11は再トリガ出来ないモノステーブル・マルチバ
イブレータ回路(以下においてモノマルチと称する)4
に供給される。このモノマルチ4から得られるパルス信
号12は、第2C図に示すようにパルス信号11の立上
り位置に同期してHレベルになり、所定の時間巾T。後
にLレベルになるようになつている。ところで、パルス
信号12のHレベルの時間巾Toはモノマルチ4の時定
数によつて決定されるが、Lレベルの時間巾を。
From FG2, motor 1 is connected as shown in Figure 2A.
A frequency signal 18 proportional to the rotation speed of is obtained, and this frequency signal 10 is supplied to the limiter circuit 3 at the next stage.
Next, from the limiter circuit 3, a continuous pulse signal 11 whose waveform has been shaped as shown in FIG. 2B is obtained. Note that the time width T of this pulse signal 11 is designed to change in proportion to the rotational speed of the motor 1. The pulse signal 11 is a monostable multivibrator circuit (hereinafter referred to as monomulti) 4 that cannot be retriggered.
supplied to The pulse signal 12 obtained from the monomulti 4 goes high in synchronization with the rising position of the pulse signal 11 for a predetermined time width T, as shown in FIG. 2C. Later on, it became L level. By the way, the time width To of the H level of the pulse signal 12 is determined by the time constant of the monomulti 4, and the time width To of the L level.

はモータ1の回転速度に応じて変化する。即ち、前述の
パルス信号11の時間Tは、モータ1が低速回転になつ
たときこれに応じて広くなり、これとは逆にモータ1が
高速回転になつたとき狭くなる。一方、モノマルチ4の
時定数は一定であり、しかもパルス信号11とパルス信
号12との立上り位置は同期しているから、パルス信号
12のLレベルの時間巾ちはモータ1の回転数に比例す
ることになる。そしてパルス信号12は次段のパルス巾
一直流電圧変換回路(以下において変換回路と称する)
5に供給される。なお変換回路5は鋸歯状波信号発生回
路(図示せず)とサンプルホールド回路(図示せず)と
を含むものてあつて、鋸歯状波信号発生回路からは、第
2D図に示すような鋸歯状波信号13が得られる。
changes depending on the rotational speed of the motor 1. That is, the time T of the pulse signal 11 described above becomes wider when the motor 1 rotates at a lower speed, and conversely becomes narrower when the motor 1 rotates at a higher speed. On the other hand, since the time constant of the monomulti 4 is constant and the rising positions of the pulse signals 11 and 12 are synchronized, the time width of the L level of the pulse signal 12 is proportional to the rotation speed of the motor 1. I will do it. Then, the pulse signal 12 is transmitted to the next stage pulse width DC voltage conversion circuit (hereinafter referred to as conversion circuit).
5. The conversion circuit 5 includes a sawtooth signal generation circuit (not shown) and a sample hold circuit (not shown), and the sawtooth signal generation circuit generates a sawtooth signal as shown in FIG. 2D. A wave signal 13 is obtained.

そして鋸歯状波信号13の波高値■は、パルス信号12
のLレベルの時間巾T。に比例して変化する。これは言
い換えれば、モータ1の回転数が低下したとき波高値■
が高くなり、これとは逆に回転数が高くなつたとき波高
値Vが低くなることを意味する。次いで鋸歯状波信号1
3はサンプルホールド回路に供給され、この回路から第
2E図に示すようにその電圧レベルが階段状に変化する
直流信号14が得られる。即ち、この直流信号14の電
圧レベルは、モータ1の回転速度が低下したとき高くな
り、これとは逆に回転速度が高くなると低下する。この
直流信号14はモータ駆動回路6の制御端子(図示せず
)に供給される。
The peak value ■ of the sawtooth wave signal 13 is the same as that of the pulse signal 12.
The time width T of the L level. changes in proportion to. In other words, when the rotation speed of motor 1 decreases, the peak value ■
conversely, as the rotational speed increases, the peak value V decreases. Then sawtooth signal 1
3 is supplied to a sample and hold circuit, from which a DC signal 14 whose voltage level changes stepwise as shown in FIG. 2E is obtained. That is, the voltage level of this DC signal 14 increases when the rotational speed of the motor 1 decreases, and conversely decreases when the rotational speed increases. This DC signal 14 is supplied to a control terminal (not shown) of the motor drive circuit 6.

そしてモータ1の回転速度が低下して直流信号14の電
圧レベルが高くなると、モータ1に供給される制御信号
が調整されて、このモータ1の回転速度が次第に高くな
る。この結果、モータ1の回転速度が所定の回転速度に
近づくにつれて、直流信号14の電圧レベルが低くなる
。そしてモータ1が所定の回転速度になると、直流信号
14も一定の電圧レベルになつて、モータ1は所定の回
転速度を保持する。しかし、上述の如く構成された第1
図に示すモータの制御装置に、例えば、第2A図に示す
周波数信号10に較べて2倍の周波数の第2N図に示す
ような周波数信号10aが供給されると、時間t1の位
置て得られるトリガー信号(図示せず)はモノマルチ4
の動作中に供給されることになる。従つてモノマルチ4
はこのトリガー信号を無視することになり、このために
直流信号14の電圧レベルも変化しない。そして時騨,
の位置で得られるトリガー信号にもとづいて、モータ1
を前述の如く制御する。このように従来のモータの制御
装置では、モータの回転速度が所定の回転速度の整数倍
になると、この回転速度をそのまま保持してしまう欠点
があつた。次に従来のモータの制御装置の第2例を第3
図及び第4図にもとづき説明する。
When the rotational speed of the motor 1 decreases and the voltage level of the DC signal 14 increases, the control signal supplied to the motor 1 is adjusted, and the rotational speed of the motor 1 gradually increases. As a result, as the rotational speed of the motor 1 approaches a predetermined rotational speed, the voltage level of the DC signal 14 becomes lower. When the motor 1 reaches a predetermined rotation speed, the DC signal 14 also becomes a constant voltage level, and the motor 1 maintains the predetermined rotation speed. However, the first
For example, when a frequency signal 10a as shown in FIG. 2N having twice the frequency as the frequency signal 10 shown in FIG. 2A is supplied to the motor control device shown in FIG. Trigger signal (not shown) is mono multi 4
will be supplied during operation. Therefore, monomulti 4
will ignore this trigger signal, and therefore the voltage level of the DC signal 14 will not change. And Tokiden,
Based on the trigger signal obtained at the position of
is controlled as described above. As described above, the conventional motor control device has a drawback that when the rotational speed of the motor becomes an integral multiple of a predetermined rotational speed, this rotational speed is maintained as it is. Next, the second example of the conventional motor control device will be explained in the third example.
The explanation will be given based on the figure and FIG.

なお第1例と同様の動作をなす回路ブロックには同一の
符号を付しその説明を省略する。第3図は回路構成を示
すブロックダイヤグラムであつて、モータ1の回転にと
もないFG2から第4A図に示すような周波数信号10
が得られ、次段のりミッター回路3に供給される。
Note that circuit blocks that operate in the same way as in the first example are given the same reference numerals and their explanations will be omitted. FIG. 3 is a block diagram showing the circuit configuration, and as the motor 1 rotates, a frequency signal 10 as shown in FIG. 4A is generated from FG2.
is obtained and supplied to the next-stage glue limiter circuit 3.

そしてりミッター回路3から第4B図に示すようなパル
ス信号11が得られ、次段の鋸歯状波信号発生回路7に
供給される。この鋸歯状波信号発生回路7は、パルス信
号11の立上り位置に同期して、所定の傾斜角度の鋸歯
状波信号13を発生する。
A pulse signal 11 as shown in FIG. 4B is obtained from the limiter circuit 3 and supplied to the sawtooth wave signal generating circuit 7 at the next stage. This sawtooth wave signal generation circuit 7 generates a sawtooth wave signal 13 having a predetermined inclination angle in synchronization with the rising position of the pulse signal 11.

この鋸歯状波信号13は次段の比較回路8の一方の入力
端子に供給されるが、他方の入力端子には基準信号発生
回路9からの電圧レベル■1の基準信号15が供給され
ている。そして比較回路8において、第4C図に示すよ
うに、鋸歯状波信号13と基準信号15との電圧比較が
行われる。この結果、基準信号15の電圧レベル■1よ
りも鋸歯状波信号13の電圧レベルが高いとき、その時
間巾T1に応じたパル・ス巾のパルス信号16が得られ
る。即ち、モータ1の回転速度が低くなつたとき、第4
D図に示すようにパルス信号16のHレベルの時間巾t
1が広くなる。またモータ1の回転速度が高くなつたと
き、第4D図に示すようにパルス信号16のHレベルの
時間巾ちが狭くなる。次いでこのパルス信号16はモー
タ駆動回路6に供給され、そのHレベルの時間巾t1に
もとづいてモータ1の回転速度を制御する。
This sawtooth wave signal 13 is supplied to one input terminal of the next-stage comparison circuit 8, while the other input terminal is supplied with the reference signal 15 at voltage level 1 from the reference signal generation circuit 9. . Then, in the comparator circuit 8, a voltage comparison is performed between the sawtooth wave signal 13 and the reference signal 15, as shown in FIG. 4C. As a result, when the voltage level of the sawtooth wave signal 13 is higher than the voltage level 1 of the reference signal 15, a pulse signal 16 having a pulse width corresponding to the time width T1 is obtained. That is, when the rotational speed of the motor 1 becomes low, the fourth
As shown in figure D, the time width t of the H level of the pulse signal 16
1 becomes wider. Further, when the rotational speed of the motor 1 increases, the time width of the H level of the pulse signal 16 becomes narrower, as shown in FIG. 4D. This pulse signal 16 is then supplied to the motor drive circuit 6, and the rotational speed of the motor 1 is controlled based on the time width t1 of the H level.

従つてモータ1の回転速度が低下して、パルス信号16
のHレ・ベルの時間巾ちが広くなると、モータ1に供給
される制御信号(図示せず)の供給時間が長くなり、モ
ータ1の回転速度が次第に高くなる。これとは逆にモー
タ1の回転速度が高くなつて、パルス信号16のHレベ
ルの時間巾ちが狭くなると、モータ1に供給される制御
信号の供給時間が短かくなり、モータ1の回転速度が次
第に低くなる。しかし、上述の如く構成された第3図に
示すモータの制御装置では、FG2から得られる周波数
信号10以外にモータ1の回転速度を決定するために基
準信号15が必要である。しかも基準信号15の電圧レ
ベルV1が変動すると、パルス信号16のHレベルの時
間巾t1が変化して、モータ1の回転速度を正確に制御
することができない。このために従来は基準信号発生回
路9に温度補償回路等を別に設けて、基準信号15の電
圧レベルV1が変動しないようにしていた。更に比較回
路8の回路動作も、周囲の温度変化や電源電圧の変動に
よる影響を受けやすいため、温度補償回路や定電圧回路
等を設けなければならなかつた。一方、モータ1の回転
速度を所望の回転速度に変化させる場合には、鋸歯状波
信号13の傾斜角度を変えてパルス信号16のHレベル
の時間巾t1を変えるようにしている。このような場合
、コンデンサ(図示せす)とこれを充電させるための定
電流電源(図示せず)とを設けて、コンデンサに供給さ
れる充電電流を制御するようにしている。従つて定電流
電源が温度変化等によつて変動すると、鋸歯状波信号1
3の傾斜角度が直線的にはならない。このため基準信号
15との電圧比較を行つて,も、比較回路8から得られ
るパルス信号16のHレベルの時間巾ちは、必らずしも
モータ1の回転速度に応じたものとはならなかつた。従
つて鋸歯状波信号発生回路7には特別の温度補償回路等
を設ける必要があり、このために生産コストが高くなつ
ていた。本発明は上述の如き欠陥を是正すべく発明され
たものであつて、モータの回転速度に応じた周波数信号
を形成し、この周波数信号に応じて上記モータの回転速
度を制御するようにしたモータの制j御装置において、
上記周波数信号が供給されるりミッター回路と、このり
ミッター回路の出力が供給されるリトリガラブル・モノ
ステイブル・マルチバイブレータと、このリトリガラブ
ル◆モノステイブル・マル芋バイブレータの時定数を可
変すクることによりモータの回転速度を設定する調整手
段と、上記リトリガラブル●モノステイブル◆マルチバ
イブレータの出力信号をそのパルス巾に応じた直流電圧
に変換する変換回路とを設け、上記変換回路の出力に応
じて上記モータを制御するようにしたものである。
Therefore, the rotational speed of the motor 1 decreases, and the pulse signal 16
As the time width of the H level becomes wider, the supply time of the control signal (not shown) supplied to the motor 1 becomes longer, and the rotational speed of the motor 1 gradually increases. On the contrary, when the rotational speed of the motor 1 increases and the time width of the H level of the pulse signal 16 becomes narrower, the supply time of the control signal supplied to the motor 1 becomes shorter, and the rotational speed of the motor 1 becomes smaller. gradually decreases. However, in the motor control device shown in FIG. 3 configured as described above, a reference signal 15 is required to determine the rotational speed of the motor 1 in addition to the frequency signal 10 obtained from the FG2. Moreover, when the voltage level V1 of the reference signal 15 fluctuates, the time width t1 of the H level of the pulse signal 16 changes, making it impossible to accurately control the rotational speed of the motor 1. For this reason, conventionally, a temperature compensation circuit or the like has been separately provided in the reference signal generation circuit 9 to prevent the voltage level V1 of the reference signal 15 from changing. Furthermore, since the circuit operation of the comparator circuit 8 is also susceptible to changes in ambient temperature and power supply voltage, it is necessary to provide a temperature compensation circuit, a constant voltage circuit, and the like. On the other hand, when changing the rotational speed of the motor 1 to a desired rotational speed, the time width t1 of the H level of the pulse signal 16 is changed by changing the inclination angle of the sawtooth wave signal 13. In such a case, a capacitor (not shown) and a constant current power supply (not shown) for charging the capacitor are provided to control the charging current supplied to the capacitor. Therefore, when the constant current power supply fluctuates due to temperature changes, etc., the sawtooth wave signal 1
The inclination angle of No. 3 is not linear. Therefore, even when the voltage is compared with the reference signal 15, the time width of the H level of the pulse signal 16 obtained from the comparison circuit 8 does not necessarily correspond to the rotational speed of the motor 1. Nakatsuta. Therefore, it is necessary to provide a special temperature compensation circuit or the like to the sawtooth wave signal generating circuit 7, which increases the production cost. The present invention was invented to correct the above-mentioned defects, and provides a motor which forms a frequency signal corresponding to the rotational speed of the motor and controls the rotational speed of the motor according to this frequency signal. In the control device of
A retriggerable monostable multivibrator to which the above frequency signal is supplied, a retriggerable monostable multivibrator to which the output of the remitter circuit is supplied, and a motor by varying the time constant of the retriggerable monostable marimo vibrator. and a conversion circuit that converts the output signal of the retriggerable monostable multivibrator into a DC voltage according to its pulse width, and the motor is controlled according to the output of the conversion circuit. It was designed to be controlled.

このように構成されたモータの制御装置によれば、モー
タの回転速度が大巾に、例えば整数倍に変化しても、こ
れを検出して所定の回転速度になるように制御すること
が可能になる。次に本発明の一実施列を第5図及び第6
図にもとづき説明する。
According to the motor control device configured in this way, even if the rotational speed of the motor changes widely, for example, by an integral multiple, it is possible to detect this and control the motor to a predetermined rotational speed. become. Next, one embodiment of the present invention is shown in FIGS. 5 and 6.
This will be explained based on the diagram.

なお第1図及び第3図に示す従来例と同様の回路動作を
なす回路ブロックには同L−の符号を付しその説明を省
略する。第5図は回路構成を示すブロックダイヤグラム
であつて、1はモータ、2はFGl3はりミッター回路
である。
Note that circuit blocks that perform the same circuit operations as those of the conventional example shown in FIGS. 1 and 3 are given the same reference numerals L-, and their explanations will be omitted. FIG. 5 is a block diagram showing the circuit configuration, where 1 is a motor and 2 is an FG13 beam transmitter circuit.

そしてりミッター回路3からは第6B図に示すようなパ
ルス信号31が得られるようになつている。20は微分
回路であつて、これに供給されるパルス信号31の立上
り位置に同期して、第6C図に示すようなトリガー信号
32が得られるようになつている。
A pulse signal 31 as shown in FIG. 6B is obtained from the limiter circuit 3. Reference numeral 20 denotes a differentiating circuit, which is designed to generate a trigger signal 32 as shown in FIG. 6C in synchronization with the rising position of a pulse signal 31 supplied thereto.

21はリトリガラブル・モノステイブル●マルチバイブ
レータ(以下において再トリガモノマルチと称する)で
あつて、トリガー信号32に同期して第6D図に示よう
なパルス信号33が得られるようになつている。
Reference numeral 21 denotes a retriggerable monostable multivibrator (hereinafter referred to as a retriggerable monostable multivibrator), which is designed to generate a pulse signal 33 as shown in FIG. 6D in synchronization with a trigger signal 32.

そして再トリガモノマルチ21の時定数、即ちパルス信
号33のHレベルの時間巾TlOは、可変抵抗21aを
調整することによつて変化するようになつている。また
再トリガモノマルチ21は、これが動作中に引きつづい
てトリガー信号32が供給されると、最後のトリガー信
号が供給された時点から時定数に対応した時間巾TlO
だけ動作時間が延長されるようになつている。従つて再
トリガモノマルチ21の時定数よりもトリガー信号32
の時間巾が短かい場合には、パルス信号33のHレベル
の時間巾が延長される。また5は変換回路、6はモータ
駆動回路であつて、それぞれの回路構成及び回路動作は
前述の従来例の場合と同様である。
The time constant of the retrigger monomulti 21, that is, the time width TlO of the H level of the pulse signal 33, is changed by adjusting the variable resistor 21a. In addition, when the re-trigger mono multi 21 is continuously supplied with the trigger signal 32 while it is in operation, the time width TlO corresponding to the time constant starts from the time when the last trigger signal is supplied.
However, the operating time has been extended. Therefore, the trigger signal 32 is smaller than the time constant of the retrigger monomulti 21.
If the time width is short, the time width of the H level of the pulse signal 33 is extended. Further, 5 is a conversion circuit, and 6 is a motor drive circuit, and the circuit configuration and circuit operation of each are the same as in the conventional example described above.

次に上述の如く構成された第5図に示すモータの制御装
置の回路動作を説明する。
Next, the circuit operation of the motor control device shown in FIG. 5 constructed as described above will be explained.

モータ1が回転すると、その回転速度に応じて、FG2
から第6A図に示すような周波数信号30が得られる。
When motor 1 rotates, FG2
From this, a frequency signal 30 as shown in FIG. 6A is obtained.

次いでりミッター回路3によつて第6B図に示すような
パルス信号31が得られ、これにもとづき微分回路20
からトリガー信号32が得られる。そしてトリガー信号
32にもとづき、再トリガモノマルチ21から第6D図
に示すようなパルス信号33が得られる。ところで、モ
ータ1の回転周期が再トリガモノマルチ21の時定数よ
りも大きい時には、パルス信号33のHレベルの時間巾
TlOは再トリガモノマルチ21の時定数によつて決定
され、またLレベルの時間巾TlOはモータ1の回転速
度に応じて変化する。
Next, a pulse signal 31 as shown in FIG. 6B is obtained by the remitter circuit 3.
A trigger signal 32 is obtained from. Based on the trigger signal 32, a pulse signal 33 as shown in FIG. 6D is obtained from the retrigger monomulti 21. By the way, when the rotation period of the motor 1 is larger than the time constant of the retrigger monomulti 21, the time width TlO of the H level of the pulse signal 33 is determined by the time constant of the retrigger monomulti 21, and the time width TlO of the L level is determined by the time constant of the retrigger monomulti 21. The time width TlO changes depending on the rotational speed of the motor 1.

いま仮りに、モータ1の回転速度が次第に低下すれば、
パルス信号33のLレベルの時間巾T,Oが次第に広く
なる。従つて変換回路5内の鋸歯状波発生回路から、前
述したLレベルの時間巾TlOに応じた波高値V。の鋸
歯状波信号34aが得られる。この結果、サンプルホー
ルド回路から得られる直流信号35の電圧レベルは、第
6F図の点線のレベルE1から実線で示すレベルE2に
変化する。そしてモータ駆動回路6からモータ1に供給
される制御信号のレベルも高くなつて、モータ1の回転
速度は次第に高くなる。故に第6A図の時間T2〜T3
に示すように、周波数信号30の周期も短かくなる。従
つてパルス信号33のLレベルの時間巾TlOも短かく
なり、鋸歯状波信号34bの波高値V。も低レベルにな
る。このため直流信号35の電圧レベルも、電圧レベル
E2からE3に低下する。このときの直流信号35の電
圧レベルの変化は、鋸歯状波信号34a,34bの波高
値■。の変化に比例する。このように直流信号35の電
圧レベルが低下すると、モータ1の回転速度も低くなる
はづであるが、モータ1の慣性等によつてその回転速度
が急激に低下することはない。
Now, if the rotational speed of motor 1 gradually decreases,
The time widths T and O of the L level of the pulse signal 33 gradually become wider. Therefore, from the sawtooth wave generation circuit in the conversion circuit 5, the peak value V is generated according to the above-mentioned L level time width TlO. A sawtooth wave signal 34a is obtained. As a result, the voltage level of the DC signal 35 obtained from the sample and hold circuit changes from the level E1 shown by the dotted line in FIG. 6F to the level E2 shown by the solid line. The level of the control signal supplied from the motor drive circuit 6 to the motor 1 also increases, and the rotational speed of the motor 1 gradually increases. Therefore, time T2-T3 in FIG. 6A
As shown in , the period of the frequency signal 30 also becomes shorter. Therefore, the L level time width TlO of the pulse signal 33 also becomes shorter, and the peak value V of the sawtooth wave signal 34b. will also be at a low level. Therefore, the voltage level of the DC signal 35 also decreases from voltage level E2 to E3. The change in the voltage level of the DC signal 35 at this time is the peak value ■ of the sawtooth wave signals 34a and 34b. is proportional to the change in When the voltage level of the DC signal 35 decreases in this way, the rotational speed of the motor 1 should also decrease, but due to the inertia of the motor 1, etc., the rotational speed does not decrease suddenly.

従つてFG2から得られる周波数信号30の周期は、第
6A図の時間T3〜ζに示すように狭くなる。そしてト
リガー信号32a,32b間の周期も狭くなるから、再
トリガモノマルチ4がトリガー信号32aによつて動作
している間に、次のトリガー信号32bが供給される。
このため、再トリガモノマルチ21はトリガー信号32
bが供給された時腓,から、更に時間巾TlOだけ動作
する。故に鋸歯状波信号34の、時間ζに対応する位置
には鋸歯状波が表われず、従つて直流信号35の電圧レ
ベルE3も変化しない。このようにして、直流信号35
の電圧レベルE3が一定のま)であれば、モータ1の回
転速度は次第に低下する。
Therefore, the period of the frequency signal 30 obtained from FG2 becomes narrower as shown from time T3 to ζ in FIG. 6A. Since the cycle between the trigger signals 32a and 32b also becomes narrower, the next trigger signal 32b is supplied while the retrigger monomulti 4 is operating in response to the trigger signal 32a.
For this reason, the retrigger monomulti 21 uses the trigger signal 32
After b is supplied, the operation continues for a time width TlO. Therefore, the sawtooth wave does not appear at the position corresponding to time ζ of the sawtooth wave signal 34, and therefore the voltage level E3 of the DC signal 35 does not change. In this way, the DC signal 35
If the voltage level E3 remains constant, the rotational speed of the motor 1 gradually decreases.

従つて周波数信号30の周期も第6A図の時間ζ〜T5
に示すように広くなる。故にパルス信号33のLレベル
の時間巾TlOは、時間らに対応する位置まて延長され
ることになり、従つて鋸歯状波信号34には鋸歯状波3
4cが表われることとなる。このため直流信号35は電
圧レベルE3からE4に変化するので、モータ1の回転
速度は次第に高速回転になる。このように、モータ1の
回転速度が高くなると、再トリガモノマルチ21の動作
中に次のトリガー信号32が供給されるので、この間直
流信号35の電圧レベルが変化しない。
Therefore, the period of the frequency signal 30 is also the time ζ~T5 in FIG. 6A.
It becomes wider as shown in . Therefore, the L level time width TlO of the pulse signal 33 is extended to the position corresponding to the time, and therefore the sawtooth wave signal 34 has the sawtooth wave 3.
4c will appear. For this reason, the DC signal 35 changes from voltage level E3 to E4, so that the rotational speed of the motor 1 gradually increases. In this way, when the rotational speed of the motor 1 increases, the next trigger signal 32 is supplied while the retrigger monomulti 21 is operating, so the voltage level of the DC signal 35 does not change during this time.

従つてモータ1の回転速度が次第に高くなつて、所定の
回転速度の整数倍の回転速度になるようなこともなく、
またこの整数倍の回転速度をそのま)保持するようなこ
ともない。一方、再トリガモノマルチ21の時定数は、
可変抵抗21aを調整することによつて変化させること
が出来るので、この時定数を選択してモータ1の回転速
度を所望の回転速度に変えることが出来る。次に再トリ
ガモノマルチ21の時定数を変化させたときの制御装置
の回路動作を説明する。
Therefore, the rotational speed of the motor 1 does not gradually increase to a rotational speed that is an integral multiple of the predetermined rotational speed.
Furthermore, there is no possibility of maintaining a rotational speed that is an integral multiple of this value. On the other hand, the time constant of the retrigger monomulti 21 is
Since it can be changed by adjusting the variable resistor 21a, the rotational speed of the motor 1 can be changed to a desired rotational speed by selecting this time constant. Next, the circuit operation of the control device when the time constant of the retrigger monomulti 21 is changed will be explained.

可変抵抗21aを調整して再トリガモノマルチ21の時
定数か変化すると、この時定数を基準としてモータ1の
回転速度が制御される。即ち、再トリガモノマルチ21
の時定数を小さくすると、パルス信号33のHレベルの
時間巾TlOが狭くなる。従つてパルス信号33のLレ
ベルの時間巾TlOが広くなり、以下前述のように鋸歯
状波信号34の波高値V。及び直流信号35の電圧レベ
ルが高くなる。このためモータ1の回転速度は次第に高
速回転となり、これに応じてFG2から得られる周波数
信号30の周期が次第に短かくなる。
When the time constant of the retrigger monomulti 21 is changed by adjusting the variable resistor 21a, the rotational speed of the motor 1 is controlled based on this time constant. That is, the retrigger monomulti 21
When the time constant of is made smaller, the time width TlO of the H level of the pulse signal 33 becomes narrower. Therefore, the time width TlO of the L level of the pulse signal 33 becomes wider, and the peak value V of the sawtooth wave signal 34 increases as described above. And the voltage level of the DC signal 35 becomes high. Therefore, the rotational speed of the motor 1 gradually increases, and the period of the frequency signal 30 obtained from the FG 2 gradually becomes shorter accordingly.

そしてパル・ス信号33のHレベルの時間巾TlOより
も、周波数信号30の周期が短かくなつたとき、前述の
ように直流信号35の電圧レベルが低下する。従つてモ
ータ1の回転速度も、直流信号35の電圧レベルに応じ
て低くなる。以後、モータ1の回転速ノ度は前述のよう
にして制御され、パルス信号33のHレベルの時間巾T
lOを基準に高速回転を続ける。一方、可変抵抗21a
を調整して再トリガモノマルチ21の時定数が変化する
と、この時定数を基準としてモータ1の回転速度が制御
される。即ち、再トリガモノマルチ21の時定数を大き
くすると、パルス信号33のHレベルの時間巾TlOが
広くなる。従つてパルス信号33のLレベルの時間巾T
lOが狭くなり、以下前述のように鋸歯状波信号34の
波高値V。及び直流信号35の電圧レベルが低くなる。
このため、モータ1の回転速度は次第に低速回転となり
、これに応じてFG2から得られる周波数信号30の周
期が次第に広くなる。
When the period of the frequency signal 30 becomes shorter than the H level time width TlO of the pulse signal 33, the voltage level of the DC signal 35 decreases as described above. Therefore, the rotational speed of the motor 1 also decreases in accordance with the voltage level of the DC signal 35. Thereafter, the rotational speed of the motor 1 is controlled as described above, and the time width T of the H level of the pulse signal 33 is controlled.
Continue high speed rotation based on lO. On the other hand, variable resistor 21a
When the time constant of the re-trigger monomulti 21 changes by adjusting , the rotational speed of the motor 1 is controlled based on this time constant. That is, when the time constant of the retrigger monomulti 21 is increased, the time width TlO of the H level of the pulse signal 33 becomes wider. Therefore, the time width T of the L level of the pulse signal 33
lO becomes narrower, and the peak value V of the sawtooth wave signal 34 becomes smaller as described above. And the voltage level of the DC signal 35 becomes low.
For this reason, the rotational speed of the motor 1 gradually decreases, and the period of the frequency signal 30 obtained from the FG 2 gradually increases accordingly.

そしてパルス信号33のHレベルの時間巾TlOよりも
、周波数信号30の周期が広くなつたとき、前述のよう
に直流信号35の電圧レベルが高くなる。従つてモータ
1の回転速度も、直流信号35の電圧レベルに応じて高
くなる。以後、モータ1の回転速度は前述のように制御
され、パルス信号33のHレベルの時間巾TlOを基準
に低速回転を続ける。このように、再トリガモノマルチ
21の時定数を調整すれば、パルス信号33のHレベル
の時間巾TlOが変化するので、これを基準にして極め
て容易にモータ1の回転速度を変えることが可能である
。従つて従来のこの種の制御装置のように、モータ1の
回転速度を決定するために基準信号発生回路等を設ける
必要がなく、また制御装置全体の回路構成を簡単にする
ことが出来る。本発明は上述の如く、モータの回転速度
に応じた周波数信号が供給されるりミッター回路と、こ
のりミッター回路の出力が供給されるリトリガラブル◆
モノステイブル●マルチバイブレータと、このリトリガ
ラブル・モノステイブル・マルチバイブレータの時定数
を可変することによりモータの回転速度を設定する調整
手段と、上記リトリガラブル●モノステイブル●マルチ
バイブレータの出力信号をそのパルス巾に応じた直流電
圧に変換する変換回路とを設け、上記変換回路の出力に
応じて上記モータを制御するようにしたものである。
When the period of the frequency signal 30 becomes wider than the H level time width TlO of the pulse signal 33, the voltage level of the DC signal 35 becomes higher as described above. Therefore, the rotational speed of the motor 1 also increases according to the voltage level of the DC signal 35. Thereafter, the rotational speed of the motor 1 is controlled as described above, and the motor 1 continues to rotate at a low speed based on the H level time width TlO of the pulse signal 33. In this way, by adjusting the time constant of the retrigger monomulti 21, the time width TlO of the H level of the pulse signal 33 changes, so it is possible to change the rotational speed of the motor 1 very easily based on this. It is. Therefore, there is no need to provide a reference signal generation circuit or the like for determining the rotational speed of the motor 1, unlike the conventional control device of this type, and the circuit configuration of the entire control device can be simplified. As described above, the present invention provides a retriggerable circuit that is supplied with a frequency signal corresponding to the rotational speed of the motor, and a retriggerable circuit that is supplied with the output of this miter circuit.
A monostable multivibrator, an adjusting means for setting the rotational speed of the motor by varying the time constant of this retriggerable monostable multivibrator, and an adjustment means that sets the output signal of the retriggerable monostable multivibrator to its pulse width. A conversion circuit for converting the DC voltage into a corresponding DC voltage is provided, and the motor is controlled according to the output of the conversion circuit.

このように構成されたモータの制御装置によれば、リト
リガラブル●モノステイブル●マルチバイブレータの時
定数よりも、モータの回転速度に応じた周波数信号の周
期が小さい場合でも、モータを正常に制御することが出
来、従つてモータの回転速度を所定の回転速度よりも大
巾に変動することがないようになし得られる。上記時定
数を調整手段により可変することによつてモータの回転
速度を任意に設定することが出来るので、上記設定が極
めて容易で面倒な調整作業は不要であり、このために生
産コストを低減させることが可能てある。
According to the motor control device configured in this way, the motor can be controlled normally even when the period of the frequency signal according to the rotational speed of the motor is smaller than the time constant of the retriggerable monostable multivibrator. Therefore, it is possible to prevent the rotational speed of the motor from fluctuating more than a predetermined rotational speed. By varying the above-mentioned time constant using an adjustment means, the rotational speed of the motor can be arbitrarily set, so the above-mentioned setting is extremely easy and there is no need for troublesome adjustment work, which reduces production costs. It is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来のモータの制御装置の第1例を
示すものてあつて、第1図は回路構成を示すブ七ツクダ
イヤグラム、第2図は第1図に示す回路の各部の波形図
てある。
1 and 2 show a first example of a conventional motor control device. FIG. 1 is a block diagram showing the circuit configuration, and FIG. 2 is a block diagram showing each part of the circuit shown in FIG. 1. The waveform diagram is shown.

Claims (1)

【特許請求の範囲】[Claims] 1 モータの回転速度に応じた周波数信号を形成し、こ
の周波数信号に応じて上記モータの回転速度を制御する
ようにしたモータの制御装置において、上記周波数信号
が供給されるリミッター回路と、このリミッター回路の
出力が供給されるリトリガラブル・モノステイブル・マ
ルチバイブレータと、このリトリガラブル・モノステイ
ブル・マルチバイブレータの時定数を可変することによ
りモータの回転速度を設定する調整手段と、上記リトリ
ガラブル・モノステイブル・マルチバイブレータの出力
信号をそのパルス巾に応じた直流電圧に変換する変換回
路とを設け、上記変換回路の出力に応じて上記モータを
制御するようにしたモータの制御装置。
1. A motor control device that forms a frequency signal corresponding to the rotational speed of a motor and controls the rotational speed of the motor according to this frequency signal, comprising: a limiter circuit to which the frequency signal is supplied; a retriggerable monostable multivibrator to which the output of the circuit is supplied; an adjusting means for setting the rotational speed of the motor by varying the time constant of the retriggerable monostable multivibrator; A motor control device comprising: a conversion circuit that converts an output signal of a vibrator into a DC voltage according to a pulse width thereof, and controls the motor according to an output of the conversion circuit.
JP51149173A 1976-12-10 1976-12-10 Motor control device Expired JPS6056394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51149173A JPS6056394B2 (en) 1976-12-10 1976-12-10 Motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51149173A JPS6056394B2 (en) 1976-12-10 1976-12-10 Motor control device

Publications (2)

Publication Number Publication Date
JPS5373315A JPS5373315A (en) 1978-06-29
JPS6056394B2 true JPS6056394B2 (en) 1985-12-10

Family

ID=15469386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51149173A Expired JPS6056394B2 (en) 1976-12-10 1976-12-10 Motor control device

Country Status (1)

Country Link
JP (1) JPS6056394B2 (en)

Families Citing this family (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55167794U (en) * 1979-05-18 1980-12-02
JPS55155588A (en) * 1979-05-18 1980-12-03 Matsushita Electric Ind Co Ltd Speed controller for motor
JPS59165975A (en) * 1983-03-10 1984-09-19 Fuji Xerox Co Ltd Failure detector of encoder
US11871901B2 (en) 2012-05-20 2024-01-16 Cilag Gmbh International Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage
US11504192B2 (en) 2014-10-30 2022-11-22 Cilag Gmbh International Method of hub communication with surgical instrument systems
JP6496674B2 (en) * 2016-02-10 2019-04-03 株式会社三共 Game machine
US11229436B2 (en) 2017-10-30 2022-01-25 Cilag Gmbh International Surgical system comprising a surgical tool and a surgical hub
US11564756B2 (en) 2017-10-30 2023-01-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11317919B2 (en) 2017-10-30 2022-05-03 Cilag Gmbh International Clip applier comprising a clip crimping system
US11510741B2 (en) 2017-10-30 2022-11-29 Cilag Gmbh International Method for producing a surgical instrument comprising a smart electrical system
US10959744B2 (en) 2017-10-30 2021-03-30 Ethicon Llc Surgical dissectors and manufacturing techniques
US11911045B2 (en) 2017-10-30 2024-02-27 Cllag GmbH International Method for operating a powered articulating multi-clip applier
US11291510B2 (en) 2017-10-30 2022-04-05 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11141160B2 (en) 2017-10-30 2021-10-12 Cilag Gmbh International Clip applier comprising a motor controller
US11311342B2 (en) 2017-10-30 2022-04-26 Cilag Gmbh International Method for communicating with surgical instrument systems
US11801098B2 (en) 2017-10-30 2023-10-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US10892995B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11464535B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Detection of end effector emersion in liquid
US11571234B2 (en) 2017-12-28 2023-02-07 Cilag Gmbh International Temperature control of ultrasonic end effector and control system therefor
US11818052B2 (en) 2017-12-28 2023-11-14 Cilag Gmbh International Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11109866B2 (en) 2017-12-28 2021-09-07 Cilag Gmbh International Method for circular stapler control algorithm adjustment based on situational awareness
US11410259B2 (en) 2017-12-28 2022-08-09 Cilag Gmbh International Adaptive control program updates for surgical devices
US11253315B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Increasing radio frequency to create pad-less monopolar loop
US11058498B2 (en) 2017-12-28 2021-07-13 Cilag Gmbh International Cooperative surgical actions for robot-assisted surgical platforms
US11864728B2 (en) 2017-12-28 2024-01-09 Cilag Gmbh International Characterization of tissue irregularities through the use of mono-chromatic light refractivity
US11419630B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Surgical system distributed processing
US10987178B2 (en) 2017-12-28 2021-04-27 Ethicon Llc Surgical hub control arrangements
US11257589B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes
US11304720B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Activation of energy devices
US11666331B2 (en) 2017-12-28 2023-06-06 Cilag Gmbh International Systems for detecting proximity of surgical end effector to cancerous tissue
US11311306B2 (en) 2017-12-28 2022-04-26 Cilag Gmbh International Surgical systems for detecting end effector tissue distribution irregularities
US11278281B2 (en) 2017-12-28 2022-03-22 Cilag Gmbh International Interactive surgical system
US11308075B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity
US11589888B2 (en) 2017-12-28 2023-02-28 Cilag Gmbh International Method for controlling smart energy devices
US11857152B2 (en) 2017-12-28 2024-01-02 Cilag Gmbh International Surgical hub spatial awareness to determine devices in operating theater
US11612408B2 (en) 2017-12-28 2023-03-28 Cilag Gmbh International Determining tissue composition via an ultrasonic system
US11304745B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical evacuation sensing and display
US11602393B2 (en) 2017-12-28 2023-03-14 Cilag Gmbh International Surgical evacuation sensing and generator control
US11147607B2 (en) 2017-12-28 2021-10-19 Cilag Gmbh International Bipolar combination device that automatically adjusts pressure based on energy modality
US11744604B2 (en) * 2017-12-28 2023-09-05 Cilag Gmbh International Surgical instrument with a hardware-only control circuit
US11419667B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location
US20190200981A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws
US11324557B2 (en) 2017-12-28 2022-05-10 Cilag Gmbh International Surgical instrument with a sensing array
US11432885B2 (en) 2017-12-28 2022-09-06 Cilag Gmbh International Sensing arrangements for robot-assisted surgical platforms
US11179208B2 (en) 2017-12-28 2021-11-23 Cilag Gmbh International Cloud-based medical analytics for security and authentication trends and reactive measures
US11056244B2 (en) 2017-12-28 2021-07-06 Cilag Gmbh International Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks
US11160605B2 (en) 2017-12-28 2021-11-02 Cilag Gmbh International Surgical evacuation sensing and motor control
US10944728B2 (en) 2017-12-28 2021-03-09 Ethicon Llc Interactive surgical systems with encrypted communication capabilities
US10898622B2 (en) 2017-12-28 2021-01-26 Ethicon Llc Surgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device
US11166772B2 (en) 2017-12-28 2021-11-09 Cilag Gmbh International Surgical hub coordination of control and communication of operating room devices
US11284936B2 (en) 2017-12-28 2022-03-29 Cilag Gmbh International Surgical instrument having a flexible electrode
US11832899B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical systems with autonomously adjustable control programs
US10943454B2 (en) 2017-12-28 2021-03-09 Ethicon Llc Detection and escalation of security responses of surgical instruments to increasing severity threats
US10966791B2 (en) 2017-12-28 2021-04-06 Ethicon Llc Cloud-based medical analytics for medical facility segmented individualization of instrument function
US11896322B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub
US11026751B2 (en) 2017-12-28 2021-06-08 Cilag Gmbh International Display of alignment of staple cartridge to prior linear staple line
US11424027B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Method for operating surgical instrument systems
US11678881B2 (en) 2017-12-28 2023-06-20 Cilag Gmbh International Spatial awareness of surgical hubs in operating rooms
US10849697B2 (en) 2017-12-28 2020-12-01 Ethicon Llc Cloud interface for coupled surgical devices
US10932872B2 (en) 2017-12-28 2021-03-02 Ethicon Llc Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set
US11202570B2 (en) 2017-12-28 2021-12-21 Cilag Gmbh International Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US11612444B2 (en) 2017-12-28 2023-03-28 Cilag Gmbh International Adjustment of a surgical device function based on situational awareness
US10758310B2 (en) 2017-12-28 2020-09-01 Ethicon Llc Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US11304699B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US11389164B2 (en) 2017-12-28 2022-07-19 Cilag Gmbh International Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US11266468B2 (en) 2017-12-28 2022-03-08 Cilag Gmbh International Cooperative utilization of data derived from secondary sources by intelligent surgical hubs
US20190201139A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Communication arrangements for robot-assisted surgical platforms
US11291495B2 (en) 2017-12-28 2022-04-05 Cilag Gmbh International Interruption of energy due to inadvertent capacitive coupling
US11100631B2 (en) 2017-12-28 2021-08-24 Cilag Gmbh International Use of laser light and red-green-blue coloration to determine properties of back scattered light
US11633237B2 (en) 2017-12-28 2023-04-25 Cilag Gmbh International Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures
US11576677B2 (en) 2017-12-28 2023-02-14 Cilag Gmbh International Method of hub communication, processing, display, and cloud analytics
US11376002B2 (en) 2017-12-28 2022-07-05 Cilag Gmbh International Surgical instrument cartridge sensor assemblies
US11446052B2 (en) 2017-12-28 2022-09-20 Cilag Gmbh International Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue
US11659023B2 (en) 2017-12-28 2023-05-23 Cilag Gmbh International Method of hub communication
US11273001B2 (en) 2017-12-28 2022-03-15 Cilag Gmbh International Surgical hub and modular device response adjustment based on situational awareness
US10892899B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Self describing data packets generated at an issuing instrument
US11234756B2 (en) 2017-12-28 2022-02-01 Cilag Gmbh International Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter
US11423007B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Adjustment of device control programs based on stratified contextual data in addition to the data
US10595887B2 (en) 2017-12-28 2020-03-24 Ethicon Llc Systems for adjusting end effector parameters based on perioperative information
US11559307B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method of robotic hub communication, detection, and control
US11132462B2 (en) 2017-12-28 2021-09-28 Cilag Gmbh International Data stripping method to interrogate patient records and create anonymized record
US20190201039A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Situational awareness of electrosurgical systems
US11540855B2 (en) 2017-12-28 2023-01-03 Cilag Gmbh International Controlling activation of an ultrasonic surgical instrument according to the presence of tissue
US11937769B2 (en) 2017-12-28 2024-03-26 Cilag Gmbh International Method of hub communication, processing, storage and display
US11317937B2 (en) 2018-03-08 2022-05-03 Cilag Gmbh International Determining the state of an ultrasonic end effector
US11076921B2 (en) 2017-12-28 2021-08-03 Cilag Gmbh International Adaptive control program updates for surgical hubs
US11903601B2 (en) 2017-12-28 2024-02-20 Cilag Gmbh International Surgical instrument comprising a plurality of drive systems
US10755813B2 (en) 2017-12-28 2020-08-25 Ethicon Llc Communication of smoke evacuation system parameters to hub or cloud in smoke evacuation module for interactive surgical platform
US11529187B2 (en) 2017-12-28 2022-12-20 Cilag Gmbh International Surgical evacuation sensor arrangements
US11069012B2 (en) 2017-12-28 2021-07-20 Cilag Gmbh International Interactive surgical systems with condition handling of devices and data capabilities
US11464559B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Estimating state of ultrasonic end effector and control system therefor
US11051876B2 (en) 2017-12-28 2021-07-06 Cilag Gmbh International Surgical evacuation flow paths
US11832840B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical instrument having a flexible circuit
US11364075B2 (en) 2017-12-28 2022-06-21 Cilag Gmbh International Radio frequency energy device for delivering combined electrical signals
US11786251B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US11559308B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method for smart energy device infrastructure
US11786245B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Surgical systems with prioritized data transmission capabilities
US11896443B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Control of a surgical system through a surgical barrier
US11304763B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use
US11589915B2 (en) 2018-03-08 2023-02-28 Cilag Gmbh International In-the-jaw classifier based on a model
US11259830B2 (en) 2018-03-08 2022-03-01 Cilag Gmbh International Methods for controlling temperature in ultrasonic device
US11389188B2 (en) 2018-03-08 2022-07-19 Cilag Gmbh International Start temperature of blade
US11207067B2 (en) 2018-03-28 2021-12-28 Cilag Gmbh International Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing
US10973520B2 (en) 2018-03-28 2021-04-13 Ethicon Llc Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature
US11219453B2 (en) 2018-03-28 2022-01-11 Cilag Gmbh International Surgical stapling devices with cartridge compatible closure and firing lockout arrangements
US11197668B2 (en) 2018-03-28 2021-12-14 Cilag Gmbh International Surgical stapling assembly comprising a lockout and an exterior access orifice to permit artificial unlocking of the lockout
US11589865B2 (en) 2018-03-28 2023-02-28 Cilag Gmbh International Methods for controlling a powered surgical stapler that has separate rotary closure and firing systems
US11471156B2 (en) 2018-03-28 2022-10-18 Cilag Gmbh International Surgical stapling devices with improved rotary driven closure systems
US11096688B2 (en) 2018-03-28 2021-08-24 Cilag Gmbh International Rotary driven firing members with different anvil and channel engagement features
US11278280B2 (en) 2018-03-28 2022-03-22 Cilag Gmbh International Surgical instrument comprising a jaw closure lockout
US11090047B2 (en) 2018-03-28 2021-08-17 Cilag Gmbh International Surgical instrument comprising an adaptive control system
US11369377B2 (en) 2019-02-19 2022-06-28 Cilag Gmbh International Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout
US11357503B2 (en) 2019-02-19 2022-06-14 Cilag Gmbh International Staple cartridge retainers with frangible retention features and methods of using same
US11751872B2 (en) 2019-02-19 2023-09-12 Cilag Gmbh International Insertable deactivator element for surgical stapler lockouts
US11331100B2 (en) 2019-02-19 2022-05-17 Cilag Gmbh International Staple cartridge retainer system with authentication keys
US11317915B2 (en) 2019-02-19 2022-05-03 Cilag Gmbh International Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers
USD950728S1 (en) 2019-06-25 2022-05-03 Cilag Gmbh International Surgical staple cartridge
USD952144S1 (en) 2019-06-25 2022-05-17 Cilag Gmbh International Surgical staple cartridge retainer with firing system authentication key

Also Published As

Publication number Publication date
JPS5373315A (en) 1978-06-29

Similar Documents

Publication Publication Date Title
JPS6056394B2 (en) Motor control device
US4482850A (en) Control circuit for DC capstan motor
JPS6247854A (en) Automatic tracking device for magnetic recording and reproducing device
US4539666A (en) Apparatus for controlling rotation of a record disk at a constant linear velocity
US4910448A (en) PWM circuit
US4516060A (en) Digital motor speed control
EP0138457A2 (en) Reproduced signal switching circuit for reproducing apparatus having rotary heads for special reproduction
JPS59207470A (en) Head feed controller
JPS61267957A (en) Magnetic tape recording/reproducing device
US3943565A (en) Track scan initiation and cutout arrangement for a helical scan video recorder
CA1048146A (en) Speed and phase control system
JPS63302794A (en) Motor current control
JPS639272Y2 (en)
JP2527562B2 (en) Rotary head type digital magnetic reproducing device
JPS63110988A (en) Controller for rotational speed
JP2569506B2 (en) Electronic circuit
JPS5850403Y2 (en) Rotation control device
KR940001070Y1 (en) Recording position decision circuit for recording device
JP2788371B2 (en) Phase correction circuit
JP3060737B2 (en) Recording or playback device
JP2780360B2 (en) Magnetic recording / reproducing device
JP2607608B2 (en) Tape speed controller
JPH0487588A (en) Tension servo device
JPS6311875B2 (en)
JPS63119059A (en) Magnetic recording and reproducing device