JPS6051317A - Voltage detecting circuit of mos integrated circuit - Google Patents

Voltage detecting circuit of mos integrated circuit

Info

Publication number
JPS6051317A
JPS6051317A JP58160684A JP16068483A JPS6051317A JP S6051317 A JPS6051317 A JP S6051317A JP 58160684 A JP58160684 A JP 58160684A JP 16068483 A JP16068483 A JP 16068483A JP S6051317 A JPS6051317 A JP S6051317A
Authority
JP
Japan
Prior art keywords
vdd
circuit
channel
voltage detecting
channel doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58160684A
Other languages
Japanese (ja)
Other versions
JPH059963B2 (en
Inventor
Keiichi Miyata
宮田 慶一
Takahito Yamagishi
山岸 孝仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP58160684A priority Critical patent/JPS6051317A/en
Publication of JPS6051317A publication Critical patent/JPS6051317A/en
Publication of JPH059963B2 publication Critical patent/JPH059963B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/14Modifications for compensating variations of physical values, e.g. of temperature
    • H03K17/145Modifications for compensating variations of physical values, e.g. of temperature in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/22Modifications for ensuring a predetermined initial state when the supply voltage has been applied
    • H03K17/223Modifications for ensuring a predetermined initial state when the supply voltage has been applied in field-effect transistor switches

Abstract

PURPOSE:To obtain a power source voltage detecting circuit which is stable against a variance of temperature, by using an MOS transistor TR, which is not subjected to channel doping, as a TR which detects a potential with a treshold. CONSTITUTION:For the purpose of lessening the variance of a detection voltage due to a change of temperature, R2/R1 is set to a small value, and the threshold of a TRT1 is set to a high value. In case of channel doping, the part of the TR T1 is masked to perfrom channel doping for a P-channel TR except the TRT1, and the threshold is reduced. If a bulk MOSTR which is not subjected to channel doping is used as the TRT1, the power source voltage detecting circuit which is relatively stable against a variance of temperature is obtained.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、MOS−ICに於ける電圧検出回路に関する
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a voltage detection circuit in a MOS-IC.

〈従来技術〉 MOS−LSIは近年応用分野が非常に広がっており、
rcに対する仕様内容も複雑多岐になってきている。特
に制御機器の分野では、ICの動作範囲以下においても
異常動作をしないことが要求される場合が多い。この様
な場合には、IC内に電源電圧検出回路を設け、一定電
源電圧以下では、IC内部をリセットしたり、ICの出
力を禁止するなどの対応が必要である。
<Prior art> The field of application of MOS-LSI has expanded greatly in recent years.
The specifications for rc are also becoming more complex and diverse. Particularly in the field of control equipment, it is often required that ICs do not operate abnormally even below the operating range of the IC. In such a case, it is necessary to provide a power supply voltage detection circuit within the IC and take measures such as resetting the IC internally or prohibiting the output of the IC when the power supply voltage is below a certain level.

MO5IC内部では電源電圧を検出するだめの基準電圧
を作ることがむずかしく、したがって安定な電源電圧検
出回路を簡単な回路で実現することができない。特にI
C製造」−のばらつきで、IC内のデバイヌパラメータ
が変動することにより簡単な電圧検出回路では検出レベ
ルが大きくばらついてしまう。
It is difficult to create a reference voltage for detecting the power supply voltage inside the MO5IC, and therefore a stable power supply voltage detection circuit cannot be realized with a simple circuit. Especially I
In a simple voltage detection circuit, the detection level will vary greatly due to variations in the Devine parameters within the IC due to variations in C manufacturing.

第1図は従来の電圧検出回路である。ここでDはダイオ
ード、T+ 、T2はPチャンネルトランジスタ、T3
はNチャンネルトランジスタ、R1+R2,R3は抵抗
である。標準的なCMO8ICではチップ内のPチャン
ネルトランジスタ、Nチャンネルトランジスタは、それ
ぞれのグループ内で同じスレッシュホールド電圧である
。すなわち全てのPチャンネルトランジスタは同じスレ
ッシュホールド電圧(Vthp)であり、また全てのN
チャンネルトランジスタは同じスレッシュホールド電圧
(Vthn)である。したがって、第1図のT、、T2
のスレッシュホールド電圧は一般的に同じである。
FIG. 1 shows a conventional voltage detection circuit. Here, D is a diode, T+, T2 is a P-channel transistor, and T3
is an N-channel transistor, and R1+R2 and R3 are resistors. In a standard CMO8 IC, the P-channel transistors and N-channel transistors within the chip have the same threshold voltage within each group. That is, all P-channel transistors have the same threshold voltage (Vthp), and all N-channel transistors have the same threshold voltage (Vthp).
The channel transistors are at the same threshold voltage (Vthn). Therefore, T, , T2 in Fig. 1
The threshold voltages of are generally the same.

第1図の回路でダイオードDはT1のスレッシュホール
ド電圧の温度変化による電源電圧検出レベルの変動を少
くする目的で使用される。
In the circuit of FIG. 1, the diode D is used for the purpose of reducing fluctuations in the power supply voltage detection level due to temperature changes in the threshold voltage of T1.

第1図の動作原理を第2図に示す。The operating principle of FIG. 1 is shown in FIG. 2.

いま説明を簡単にするために、T、、R3から成るイン
バータ(INV+、Jと略す。以下同じ)の電圧利得を
無限大、すなわち、電源電圧([VDD、Jと略す。以
下同じ)と0点の電位差(VDD−1Vthp+I )
がT1のスレッシュホールド電圧(r I Vthp+
 I Jと略す。以下同じ)以下のときT1がオフして
0点の電位は接地(GND)レベルであり、以」−のと
きはT1がオンして0点の電位はVDDレベルであるも
のと仮定する。
To simplify the explanation, let us assume that the voltage gain of the inverter (INV+, abbreviated as J, the same below) consisting of T, , R3 is infinite, that is, the power supply voltage ([VDD, abbreviated as J, the same below) and 0. Potential difference between points (VDD-1Vthp+I)
is the threshold voltage of T1 (r I Vthp+
Abbreviated as IJ. It is assumed that when the following conditions occur, T1 is turned off and the potential at the 0 point is at the ground (GND) level, and when the following conditions occur, T1 is turned on and the potential at the 0 point is at the VDD level.

VDDをOから上げていくと、0点の電位は第2図の■
の如く変化する。第2図には、VrlDがOから上げて
いくときのVDD I Vthpl Iの変化も同時に
示されている。第2図で■とVDD −IVthp+1
が交差する電源電圧(VDD、 )よりVDDが高けれ
ば第1図の0点はVDDレベルとなり、VDDがVDD
When VDD is raised from O, the potential at the 0 point is shown in Figure 2.
It changes like this. FIG. 2 also shows changes in VDD I and Vthpl I when VrlD increases from O. In Figure 2, ■ and VDD -IVthp+1
If VDD is higher than the power supply voltage (VDD, ) where
.

より低ければ0点はGNDレベルとなる。If it is lower, the 0 point becomes the GND level.

一方、T2.T3から成るインバータ(「■N■2」と
略す。以下同じ)の入力反転電圧はおよそVD竪であυ
、これを第2図に破線で示している。
On the other hand, T2. The input inversion voltage of the inverter (abbreviated as "■N■2", the same applies hereinafter) consisting of T3 is approximately VD vertical υ
, which is shown in broken lines in FIG.

第2図から分る様にVDD < VDD、では0点の電
位は0で丁NV2の反転電圧より低いため第1図の0点
の電位はVDDレベルとなり、VDD > VDD、で
は0点の電位はVDDでINV2の反転電圧より高いた
め0点の電位はGNDレベルとなる。したがって、0点
の出力信号を利用して論理回路を制御することによりV
Dr)+以下のVDDで論理回路が誤動作するのを防止
することができる。
As can be seen from Figure 2, when VDD < VDD, the potential at the 0 point is 0, which is lower than the inversion voltage of NV2, so the potential at the 0 point in Figure 1 is at the VDD level, and when VDD > VDD, the potential at the 0 point is 0. Since is VDD and is higher than the inversion voltage of INV2, the potential at the 0 point becomes the GND level. Therefore, by controlling the logic circuit using the output signal at point 0, V
It is possible to prevent the logic circuit from malfunctioning at VDD below Dr)+.

いま簡単な数式でVDD、をめてみよう。Let's now look at VDD using a simple formula.

0点の電位vAは となる。ここでVFはダイオードDの順方向電圧立ち」
ニリ電圧である。
The potential vA at point 0 is as follows. Here, VF is the forward voltage of diode D.
voltage.

一方、丁NVIが出力を反転するA点の電位VA1は (A) VAI = VDD −I Vthp+ 1 (2)で
あり、(1)、 (2+よりVDD (7)検出レベ)
vvDDlはを解くことにより となる。IVthp+lが変化したときVDDの検出レ
ベ)vvDD、の変化は である。
On the other hand, the potential VA1 at point A where the NVI inverts the output is (A) VAI = VDD - I Vthp+ 1 (2), (1), (2+ from VDD (7) detection level)
vvDDl is obtained by solving . When IVthp+l changes, the VDD detection level (vvDD) changes as follows.

(4)から”DD’A IVthp+ Iの最小値は1
(R2−〇のとき)である。すなわち、VDDの検出レ
ベ/l/VDD、を1Vthp+1にすれば、1Vth
p+Iノ変化した分だけVDD、が変化する。
From (4), the minimum value of DD'A IVthp+I is 1
(When R2-〇). In other words, if the VDD detection level /l/VDD is set to 1Vthp+1, 1Vth
VDD changes by the amount that p+I changes.

一般的にCMOS回路では、回路を安定に動作させるた
めには、 IVthp I +Vthn < VDD (5)に選
ぶ必要があり、前述のVDD検出レベルをIVthp+
 l に選ぶことは、他の論理回路部が安定に動作しな
いことになり、事実上意味がない。
Generally, in a CMOS circuit, in order to operate the circuit stably, it is necessary to select IVthp I +Vthn < VDD (5), and the aforementioned VDD detection level is set to IVthp +
Choosing l is practically meaningless because other logic circuit sections will not operate stably.

通常C/MO8I Cの動作範囲 2.5v〜6vを考
えるとl Vthp l 、 Vthnをそれぞれ約I
V[選ぶのが普通である。また、ダイオードDのvFは
、シリコン基板の場合、約0.7vである。いま、l 
Vthp+ l = 1.Ov 、Vp = 0.7 
vで電源電圧検出レベルVDD、が2.7vになる様に
設計すると式(3) %式% l Vthp Iが1.Ov±0.1vで変動すると仮
定すると電源検出レベルは、2.03 Vmin 、 
2.7 Vtyp。
Considering the normal operating range of C/MO8I C from 2.5v to 6v, Vthp l and Vthn are each approximately I
V[It is normal to choose. Further, vF of the diode D is approximately 0.7V in the case of a silicon substrate. Now l
Vthp+l=1. Ov, Vp = 0.7
If the design is made so that the power supply voltage detection level VDD is 2.7 V at V, then the formula (3) is as follows: Vthp I is 1. Assuming that it fluctuates at Ov±0.1v, the power supply detection level is 2.03 Vmin,
2.7 V type.

3、36 Vmaxとなり設計中心に対して±24%の
変動となる。
3.36 Vmax, which is a variation of ±24% with respect to the design center.

MO5ICの量産に於てはトランジスタのヌレッシュホ
ールド電圧が±0.1vばらつくことは日常的なことで
あるため、第1図の回路で電源検出レベルを安定にする
ことは非常にむずかしい。
In the mass production of MO5ICs, it is common for the transistor threshold voltage to vary by ±0.1V, so it is extremely difficult to stabilize the power supply detection level using the circuit shown in FIG.

〈発明の目的〉 本発明は第1図の簡単な回路でVDT)侠出しベlしの
安定性を改善することを目的としている。
<Object of the Invention> The object of the present invention is to improve the stability of the VDT output level using the simple circuit shown in FIG.

〈実施例〉 式(4)から1Vthp+1のばらつきによるVDIl
l+のばらつきを小さくするためにはR2/R1を小さ
くすれば良いことが分る。R2/R1を小さくして同じ
VDD 、を得るためには、1Vthp+lを大きくし
なければならない。ところが式(5)の関係からIC全
体の1Vthpl を大きくすることはできない。そこ
で第1図のT1の1Vthplのみ高くすれば問題は解
決する。いま、第1図のT、のl vthp 1を1.
5v、同じIC内の1Vthplを1. Ovにしだと
仮定する。式(3)からVDD、を2.7vとして設計
すると、 より 気= b となる。
<Example> From equation (4), VDIl due to variation of 1Vthp+1
It can be seen that in order to reduce the variation in l+, it is sufficient to reduce R2/R1. In order to obtain the same VDD by reducing R2/R1, 1Vthp+l must be increased. However, due to the relationship in equation (5), 1Vthpl of the entire IC cannot be increased. Therefore, the problem can be solved by increasing only 1Vthpl of T1 in FIG. Now, let l vthp 1 of T in FIG. 1 be 1.
5v, 1Vthpl in the same IC to 1. Assume that Ov is Nishi. From equation (3), if VDD is designed to be 2.7V, then q = b.

前述と同じく、I Vthp+ Iが±0.1■ばらつ
くと仮定すると電源電圧の検出レベルは、2.45vm
in。
As mentioned above, assuming that IVthp+I varies by ±0.1■, the detection level of the power supply voltage is 2.45vm.
in.

2.70 Vtyp 、 2.95vmaxとなり設計
中心値に対して±9%の誤差となる。
2.70 Vtyp and 2.95vmax, which is an error of ±9% with respect to the design center value.

通常N基板を使用したP−ウェルのC/Wt OSでは
、基板として比抵抗3〜6ΩG、結晶方向<10<)>
のものを使用しており、これに800〜1000Aのゲ
ート酸化膜と付けたPチャンネルトランジスタのIVt
hplは約1.5vである。先に述べた式(5)を満す
ために、Pチャンネルトランジスタのゲート部分にはチ
ャンネルドープと呼ばれるイオン注入を行いl Vth
p lを下げるのが普通である。
Normally, in a P-well C/Wt OS using an N substrate, the substrate has a specific resistance of 3 to 6 ΩG and a crystal orientation of <10<)>.
The IVt of the P-channel transistor with a gate oxide film of 800 to 1000 A is used.
hpl is approximately 1.5v. In order to satisfy the above-mentioned equation (5), ions called channel doping are implanted into the gate portion of the P-channel transistor, and l Vth
It is normal to lower p l.

したがって、このチャンネル・ドープを行う際、第1図
の13部分をマスキングしてT、以外のPチャンネルト
ランジスタ(第1図ではT2)にチャンネルドープを行
いl Vthp lを下げる。すなわち、T1 として
、チャンネルドープしないバルク(基板)MOS)ラン
ジスタを使用することにより第1図の如き簡単な回路で
も比較的安定な電源電圧検出回路が達成できる。尚、P
チャンネtV )ランジスタのチャンネルドープは通常
フォトマスクを使用し、トランジスタのゲート部分にの
みイオン注入を行うため、T1の部分のみチャンネルド
ープをしない本方式は、工程を変えることなく簡単に実
施できる。
Therefore, when performing this channel doping, masking the portion 13 in FIG. 1, channel doping is performed on the P channel transistors other than T (T2 in FIG. 1) to lower l Vthp l. That is, by using a bulk (substrate) MOS transistor with no channel doping as T1, a relatively stable power supply voltage detection circuit can be achieved even with a simple circuit as shown in FIG. In addition, P
Channel tV) Channel doping of a transistor is normally performed using a photomask and ions are implanted only into the gate portion of the transistor, so this method in which channel doping is not performed only in the T1 portion can be easily implemented without changing the process.

〈効 果〉 以上詳細に説明したように、本発明によれば、簡単な構
成で安定な電圧検出回路を得ることができるものである
<Effects> As described above in detail, according to the present invention, a stable voltage detection circuit can be obtained with a simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電圧検出回路の構成を示す回路図、第2図は第
1図に示す回路の動作説明に供する図である。 符号の説明 D:ダイオード、’r、、’r2:r’チャンネルトラ
ンジスタ、T3:Nチャンネルトランジスタ、R,、R
2,R3:抵抗。
FIG. 1 is a circuit diagram showing the configuration of a voltage detection circuit, and FIG. 2 is a diagram for explaining the operation of the circuit shown in FIG. 1. Explanation of symbols D: diode, 'r', 'r2: r' channel transistor, T3: N channel transistor, R,, R
2, R3: resistance.

Claims (1)

【特許請求の範囲】[Claims] 1、MOS−ICに於て、基板(バルク)を利用したト
ランシヌクを利用して構成したことを特徴とする、MO
S−ICに於ける電圧検出回路。
1. In MOS-IC, MO is characterized in that it is constructed using a transistor using a substrate (bulk).
Voltage detection circuit in S-IC.
JP58160684A 1983-08-30 1983-08-30 Voltage detecting circuit of mos integrated circuit Granted JPS6051317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58160684A JPS6051317A (en) 1983-08-30 1983-08-30 Voltage detecting circuit of mos integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58160684A JPS6051317A (en) 1983-08-30 1983-08-30 Voltage detecting circuit of mos integrated circuit

Publications (2)

Publication Number Publication Date
JPS6051317A true JPS6051317A (en) 1985-03-22
JPH059963B2 JPH059963B2 (en) 1993-02-08

Family

ID=15720227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58160684A Granted JPS6051317A (en) 1983-08-30 1983-08-30 Voltage detecting circuit of mos integrated circuit

Country Status (1)

Country Link
JP (1) JPS6051317A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5170077A (en) * 1990-09-14 1992-12-08 Texas Instruments Incorporated Voltage level detecting circuit
EP0665649A2 (en) * 1994-01-28 1995-08-02 Texas Instruments Incorporated Improvements in or relating to power controller circuits
JP2009071153A (en) * 2007-09-14 2009-04-02 Toshiba Corp Optical coupling device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4710443U (en) * 1971-03-09 1972-10-07

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4710443U (en) * 1971-03-09 1972-10-07

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5170077A (en) * 1990-09-14 1992-12-08 Texas Instruments Incorporated Voltage level detecting circuit
EP0665649A2 (en) * 1994-01-28 1995-08-02 Texas Instruments Incorporated Improvements in or relating to power controller circuits
EP0665649A3 (en) * 1994-01-28 1997-05-07 Texas Instruments Inc Improvements in or relating to power controller circuits.
JP2009071153A (en) * 2007-09-14 2009-04-02 Toshiba Corp Optical coupling device
JP4503059B2 (en) * 2007-09-14 2010-07-14 株式会社東芝 Optical coupling device

Also Published As

Publication number Publication date
JPH059963B2 (en) 1993-02-08

Similar Documents

Publication Publication Date Title
JPH04304708A (en) Ring oscillator, correcting circuit for ring oscillator and correcting method for ring oscillator
JPS62282316A (en) Power voltage drop circuit for semiconductor integrated circuit
US20030011418A1 (en) Level shifting circuit
JPH1188143A (en) Semiconductor circuit
US7659766B2 (en) Semiconductor integrated circuit device enabling to produce a stable constant current even on a low power-source voltage
JPH0659756A (en) Constant voltage output circuit
JPS6051317A (en) Voltage detecting circuit of mos integrated circuit
JPH04329024A (en) Input output buffer circuit
US6404221B1 (en) Threshold invariant voltage detecting device
JP3910568B2 (en) Level down converter
JP3152340B2 (en) Analog switch circuit
JP2549729B2 (en) Semiconductor integrated circuit
JP2827963B2 (en) Semiconductor integrated circuit device
JPH04154207A (en) Schmitt trigger circuit
JP3424434B2 (en) Leak current compensation circuit
JP3373179B2 (en) Semiconductor integrated circuit
JPH08251004A (en) Output circuit
JPS632193A (en) Sense amplifier circuit
JPH03230617A (en) Semiconductor integrated circuit
JP3085362B2 (en) Delay circuit
JPH0685652A (en) Input circuit
JPH04158626A (en) Selector circuit
KR20010020892A (en) Semiconductor device having a constant-current source circuit
JP2003150258A (en) Bias voltage generating circuit
KR100746610B1 (en) Device for generating power-up signal