JPS6045269B2 - Ceramic powder material for thermal spraying - Google Patents

Ceramic powder material for thermal spraying

Info

Publication number
JPS6045269B2
JPS6045269B2 JP54165239A JP16523979A JPS6045269B2 JP S6045269 B2 JPS6045269 B2 JP S6045269B2 JP 54165239 A JP54165239 A JP 54165239A JP 16523979 A JP16523979 A JP 16523979A JP S6045269 B2 JPS6045269 B2 JP S6045269B2
Authority
JP
Japan
Prior art keywords
thermal spraying
particles
powder
spraying
sprayed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54165239A
Other languages
Japanese (ja)
Other versions
JPS5688882A (en
Inventor
義友 松本
庸夫 笹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SASAOKA TETSUKO KK
UJI DENKAGAKU KOGYO KK
Original Assignee
SASAOKA TETSUKO KK
UJI DENKAGAKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SASAOKA TETSUKO KK, UJI DENKAGAKU KOGYO KK filed Critical SASAOKA TETSUKO KK
Priority to JP54165239A priority Critical patent/JPS6045269B2/en
Publication of JPS5688882A publication Critical patent/JPS5688882A/en
Publication of JPS6045269B2 publication Critical patent/JPS6045269B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

【発明の詳細な説明】 本発明は、金属材料の表面に耐摩耗性その他の性質を
付与するためのセラミツクコーチングに使用される溶射
用セラミック粉末材料に係り、さらに詳しく言えば、酸
化アルミニウム質からなる硬質セラミック粒子の各々の
表面に金属物質の粉末粒子を少くとも1個焼結させるこ
とによつて、酸素−アセチレン炎または酸素一水素の火
炎を用いる通常の粉末溶射法を適用しても、強固なセラ
ミツクコーチング層を形成できるように改善した溶射用
セラミック粉末材料に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ceramic powder material for thermal spraying used for ceramic coating to impart wear resistance and other properties to the surface of metal materials, and more specifically, to By sintering at least one powder particle of a metallic substance on the surface of each of the hard ceramic particles of This invention relates to a ceramic powder material for thermal spraying that is improved so as to be able to form a strong ceramic coating layer.

農業または土木機械の土砂用摩耗部品などの部材に耐
土砂摩耗性を付与するため、表面を硬化する肉盛溶射が
施されることがある。
In order to impart earth and sand wear resistance to members such as earth and sand wear parts for agricultural or civil engineering machinery, overlay thermal spraying is sometimes applied to harden the surface.

その際、この溶射層中に適当な大きさの硬質セラミック
粒子を分散溶着させて更に耐摩耗性を付与することが知
られている。この時に使用される硬質セラミック粒子と
しては、WC粒子またはTiC粒子などの金属炭化物ま
たは酸化物もしくは窒化物などがあるが、通常はWC粒
子が多く使われており、Coなど の金属との複合材料
としたものを粉末溶射法によつて溶射するのが一般であ
る。だが、WC粒子はW資源の偏在と枯渇化が進み価格
も高謄し、よほど高い付加価値を生む成品以外にはその
使用が制約されているのが実状である。したがつて、前
掲のような消耗部品や大型部品への溶射は施工され難く
なつてきた。 このWC粒子に代わる安価でかつ資源的
にも豊富であり、実用上充分に耐摩耗性を発揮する硬質
粒子として、酸化アルミニウム質粒子がある。
At that time, it is known to further impart wear resistance by dispersing and welding hard ceramic particles of an appropriate size into this thermal sprayed layer. The hard ceramic particles used at this time include metal carbides, oxides, or nitrides such as WC particles or TiC particles, but WC particles are usually used, and composite materials with metals such as Co are commonly used. It is common to thermally spray the powder using the powder spraying method. However, as W resources become unevenly distributed and depleted, the prices of WC particles become high, and the reality is that their use is restricted to products other than products with very high added value. Therefore, it has become difficult to perform thermal spraying on consumable parts and large parts as mentioned above. Aluminum oxide particles are available as hard particles that are inexpensive and abundant in resources, and exhibit sufficient wear resistance for practical use, in place of WC particles.

だが、酸化アルミニウム質粒子は粉末溶射用のガンで粒
子単体を溶射しても溶射母材に接着させるこ とができ
ない。またこれらの粒子に金属物質の粉末粒子を混合し
た混合粉を前記した熱源による粉、末溶射法で溶射して
も溶射母材にこれら硬質粒子を実用上効果的に接着させ
ることはできない。このため、酸化アルミニウム質粒子
は通常の粉末溶射法には実用されておらず、プラズマ溶
射法、ワイヤー溶射法または爆発溶射法などの高度な溶
射フ法の材料となつている。しかし、これらの溶射法は
、高融点粒子を瞬間的に溶融粒子として溶射するもので
あり、非常に高い温度(例えば10000℃〜1600
0’C)を必要とするので、この超高温を履歴する間に
硬質粒子の結晶形変換が生じたり、溶射熱源の熱が溶射
母材に伝達し母材の材質に悪影響を与えるなどの問題が
おこる場合がある。また溶射材料を成形焼結した焼結棒
とする必要もあるなど高価な材料を使用する結果となつ
ている。本発明は、酸化アルミニウム質からなる粒子を
、通常の酸素−アセチレン炎または酸素一水素炎を熱源
とする粉末溶射法により、該硬質粒子を未溶融または半
溶融粒子の状態で溶射し、母材との充分な接着強度を有
する溶射層が得られるように改善し、かつその改善手段
が非常に簡単な手法であるところの溶射用セラミック粉
末材料を提供するものである。すなわち本発明は酸化ア
ルミニウム質からなる溶射用粒子の各々の表面に金属物
質の粉末粒子(この金属物質の粉末粒子は単一金属、合
金の粉である)を少くとも1個、予め焼結によつて接着
させてなる溶射用セラミック粉末材料で、その焼結され
た金属物質の粉末粒子の表面部分が溶射の際に半溶融も
しくは軟化の状態となりこれが溶射母材への接着剤の役
割をして、従来困難であつた酸化アルミニウム質粒子の
接着を可能としたものである。ここで金属物質とは、原
素周期表の第1族、第■族、第■族の金属およびその合
金群から選ばれるもので、酸化アルミニウム質粒子より
も低い融点の金属物質て、その軟化温度が約600℃か
ら約1300゜Cの間にあつて、施工しようとする溶射
母材の材質によつて、または溶射成品の用途により適切
なものを選択するが、この金属物質としては主にニッケ
ル、ニッケル●クロム合金、ニッケル●銅合金、銅、鉄
、鉄・銅合金、鉄・ニッケル合金,などが好適てある。
However, aluminum oxide particles cannot be bonded to the spraying base material even if they are sprayed individually using a powder spray gun. Further, even if a mixed powder obtained by mixing these particles with powder particles of a metallic substance is thermally sprayed by the above-mentioned powder spraying method using a heat source, these hard particles cannot be practically effectively adhered to the thermally sprayed base material. For this reason, aluminum oxide particles are not used in ordinary powder spraying methods, but are used as materials for advanced thermal spraying methods such as plasma spraying, wire spraying, and explosive spraying. However, these thermal spraying methods instantaneously spray high melting point particles as molten particles, and at extremely high temperatures (for example, 10,000°C to 1,600°C).
0'C), problems such as crystal shape transformation of hard particles occur during this extremely high temperature history, and heat from the spray heat source is transferred to the spray base material, adversely affecting the base material. may occur. Furthermore, it is necessary to form a sintered rod by molding and sintering the thermal spraying material, resulting in the use of expensive materials. In the present invention, particles made of aluminum oxide are thermally sprayed in the state of unmolten or semi-molten particles by a powder spraying method using a normal oxygen-acetylene flame or oxygen-hydrogen flame as a heat source. The object of the present invention is to provide a ceramic powder material for thermal spraying which is improved so that a thermal sprayed layer having sufficient adhesion strength to the thermal spraying layer can be obtained, and the means for improving the thermal spraying layer is a very simple method. That is, in the present invention, at least one powder particle of a metallic substance (the powder particle of the metallic substance is a powder of a single metal or an alloy) is sintered in advance on the surface of each particle for thermal spraying made of aluminum oxide. In this ceramic powder material for thermal spraying, the surface of the sintered metal powder particles becomes semi-molten or softened during thermal spraying, and this acts as an adhesive to the thermal spraying base material. This makes it possible to bond aluminum oxide particles, which has been difficult in the past. Here, the metal substance refers to a metal selected from Group 1, Group Ⅰ, Group Ⅲ metals of the periodic table of elements, and their alloys, and has a melting point lower than that of aluminum oxide particles, and its softening The temperature is between about 600°C and about 1300°C, and the metal material is selected depending on the material of the sprayed base material to be applied or the purpose of the sprayed product. Nickel, nickel-chromium alloy, nickel-copper alloy, copper, iron, iron-copper alloy, iron-nickel alloy, etc. are suitable.

これらの金属物質は再加熱処理に用いる自溶性合金と容
易に冶金的結合をするので特に有利である。すなわち、
本発明品による溶射の実作業に於ては、セラミック溶射
層の上に自溶性合金によるオーバーコートを施した後、
こ!れを再加熱処理するのが最も効果的であるが、その
さいにこの自溶性合金と金属物質が強固に結合し、良好
な溶射層を形成することができる。使用する酸化アルミ
ニウム質からなる粒子の実用上有利な粒径は、約50p
mから約300μmの範ダ囲内にあり、その表面に焼結
させる金属物質の粉末粒子径は約3μmから約300p
mの範囲が好適であり、該硬質粒子1個あたりに金属物
質粉末粒子を少くとも1個焼結させる。この焼結は該硬
質粒子の表面を金属物質によつて覆うような全面焼結の
必要はないが、その表面に常に存在して移動を共にする
ような焼結状態が保たればよい。この焼結を行うには、
使用する金属物質の融点よりも低い温度(肚点×0.6
〜0.8の温度)に、この酸化アルミニウム質からなる
粒子と金属物質粉末粒子との混合物を加熱しながら適宜
、攪拌を与えることにより好適に行い得る。加熱処理の
雰囲気は使用する金属物質の種類によつて通常の大気、
不活)性ガス、中性ガスまたは真空雰囲気が選ばれる。
酸化速度がおそくしかも加熱処理時間が短く数分間以内
ですむ場合は通常の大気雰囲気を使用してもよい。この
場合使用した金属物質粉末粒子の表面が若干酸化するが
、溶射母材に溶射し溶射層を・形成させた後、Bおよび
Siを含む自溶性合金によるオーバーコートを施し、こ
れを再加熱処理することによつてこの酸化物をスラグ化
して除去することができる。本発明の溶射用セラミック
粉末材料の製造過程”は前記のように簡単で連続した工
程として大量処理にも適する。
These metallic materials are particularly advantageous because they readily form metallurgical bonds with the self-fusing alloys used in the reheat treatment. That is,
In the actual thermal spraying work using the product of the present invention, after applying an overcoat with a self-fusing alloy on the ceramic spray layer,
child! The most effective method is to reheat the material, and at this time, the self-fusing alloy and the metal material are firmly bonded to form a good sprayed layer. The practically advantageous particle size of the aluminum oxide particles used is approximately 50p.
m to about 300 μm, and the powder particle size of the metal material to be sintered on the surface is about 3 μm to about 300 μm.
A range of m is preferred, and at least one metal powder particle is sintered per one hard particle. This sintering does not require full-scale sintering in which the surface of the hard particles is covered with a metal substance, but it is sufficient to maintain a sintered state in which the metal substance always exists on the surface and moves together. To perform this sintering,
Temperature lower than the melting point of the metal substance used (abdominal point x 0.6
This can be suitably carried out by appropriately stirring the mixture of aluminum oxide particles and metal powder particles to a temperature of 0.8 to 0.8° C. while heating the mixture. The atmosphere for heat treatment may be normal air or air depending on the type of metal material used.
An inert gas, neutral gas or vacuum atmosphere is selected.
If the oxidation rate is slow and the heat treatment time is short and takes less than a few minutes, a normal atmospheric atmosphere may be used. In this case, the surface of the metal powder particles used is slightly oxidized, but after spraying the sprayed base material to form a sprayed layer, an overcoat with a self-fluxing alloy containing B and Si is applied, and this is reheated. By doing so, this oxide can be turned into a slag and removed. As described above, the manufacturing process of ceramic powder material for thermal spraying of the present invention is a simple and continuous process that is suitable for mass processing.

これらの工程によつて得られる酸化アルミニウム質から
なる粒子を溶射用セラミック粉末材料として、通常の粉
末溶射用ガンで溶射し母材表面に形成するセラミック・
コーテング溶射層は、公知のWC粒子を基質とする市販
の溶射材料を溶射して得られる溶射層とほとんど同程度
の耐摩耗性能を発揮できるばかりでなく、溶射装置、溶
射技術ともに公知の酸素一アセチレンまたは酸素一水素
炎を熱源とする粉末溶射法がそのまま適用できる。また
溶射母材に予めボンディング・コートを施すこともない
ばかりか、溶射材料費が安価な上に作業能率の向上と省
エネルギーな溶射法を提供てきる。以下に本発明の実施
例、使用効果を記すがこれは代表例であつて、この例に
本発明は何ら限定されるものではない。
Particles made of aluminum oxide obtained through these processes are used as ceramic powder material for thermal spraying, and are sprayed with a normal powder spraying gun to form ceramic powder on the surface of the base material.
The thermal sprayed coating layer not only exhibits almost the same level of wear resistance as a thermal sprayed layer obtained by thermally spraying a commercially available thermal sprayed material with known WC particles as a substrate, but also has thermal spraying equipment and thermal spraying technology that are well known in the art. A powder spraying method using an acetylene or oxygen-hydrogen flame as a heat source can be applied as is. In addition, there is no need to apply a bonding coat to the base material for thermal spraying in advance, and the cost of thermal spraying materials is low, as well as improving work efficiency and providing an energy-saving thermal spraying method. Examples and usage effects of the present invention are described below, but these are representative examples, and the present invention is not limited to these examples in any way.

実施例1 約870℃に調整した真空中の電気炉内に、マグネシア
質特殊耐火物の金属溶融ルツボを入れ、その中に酸化ア
ルミニウム質人造研削材(JISR6lll適合品)の
砥粒(#120)を100gr″と、ニッケル粉(平均
径30μm)100gr′をよく混合して装入し2扮間
保持した。
Example 1 A metal melting crucible made of magnesia special refractory is placed in a vacuum electric furnace adjusted to about 870°C, and abrasive grains (#120) of aluminum oxide artificial abrasive material (JISR6lll compliant product) are placed in the crucible. and 100 gr' of nickel powder (average diameter 30 μm) were thoroughly mixed and charged, and the mixture was kept for two hours.

その間に3回の攪拌操作を行つた。電気炉内で約100
℃程度まで除冷した後、炉から取出し更に常温まで冷却
させた。得られた製品は砥粒の各々の表面にニッケル粉
が1個ないし数個が焼結して形成された粒子であつたが
溶射ガンの噴射口径を勘案して粗大化した粒子を篩網で
除去した。この製品を溶射用セラミック粉末材料として
酸素−アセチレン炎を熱源とする粉末溶射装置に供給し
、市販の粉末溶射用ガンによりあらかじめサンドブラス
トして表面処理した幅23n1/m×長85rT1/M
X厚3.2rr1/mの試験片鋼板(SS4lB)の表
面に溶射した場合と、同じ溶射方法によつて砥粒(#1
20)と市販の自溶性合金(Nl基Cr−B−Si系)
を夫々5唾量%混合した混合材料を溶射した場合と、さ
らに砥粒(#120)単体を溶射したときの3試験片に
ついて、砥粒の試験片への接着率を求め、その結果を第
1表に示した。実施例2 実施例1の本発明品を溶射した摩耗部品により耐土砂摩
耗性能テストを実施した結果は下記のようてあつた。
During that time, stirring operations were performed three times. Approximately 100 in an electric furnace
After being gradually cooled to about 0.degree. C., it was taken out of the furnace and further cooled to room temperature. The obtained product was particles formed by sintering one or several pieces of nickel powder on the surface of each abrasive grain, but taking into consideration the spray aperture of the thermal spray gun, the coarse particles were removed using a sieve screen. Removed. This product was supplied as a ceramic powder material for thermal spraying to a powder thermal spraying device using an oxygen-acetylene flame as a heat source, and the surface was treated by sandblasting with a commercially available powder thermal spraying gun.Width 23n1/m x length 85rT1/M
Abrasive grains (#1
20) and commercially available self-fusing alloys (Nl-based Cr-B-Si system)
The adhesion rate of the abrasive grains to the test piece was determined for three test pieces, one in which a mixed material containing 5% of each was sprayed, and the other in which a single abrasive grain (#120) was sprayed, and the results were calculated as follows. It is shown in Table 1. Example 2 A soil and sand abrasion performance test was carried out using the wear parts sprayed with the product of the present invention of Example 1, and the results were as follows.

使用したテスト機は市販の手押ロータリーモアで、最大
出力3.5PS/3600r′・p−mのエンヂンを搭
載し、直径(イ)dのロータリーナイフ1枚を有するも
のであつた。この動力草刈機のロータリーナイフの片側
刃部(長さ約1?)をサンドブラストにより表面処理し
、本発明品を粉末溶射した後、市販の自溶性合金(Ni
基Cr−B−Si系)でオーバーコートを施し再加熱処
理を行なつたが溶射層厚は約0.7m/mであつた。他
方の刃部には前記と同様の表面処理と、同種の自溶性合
金による公知の溶射層を約0.7m/m厚に作りNO.
l刃とした。表面処理されたNO.2刃には公知の粉末
溶射法により、市販のWC基質の自溶合金(40%WC
入り)を溶射し再加熱処理して約0.7m/mの溶射層
とした刃部と、NO.l刃に用いたものと同種の自溶性
合金を溶射し約0.7m/m厚の溶射層とした刃部を作
り比較材料とした。各ロータリーナイフは安全のため慎
重なバランス調整を行つた。テスト機にこれらのロータ
リーナイフを装着し正常な運転状態に保ちながら天然の
海浜小砂面上を入力移動させながらロータリーナイフが
常に海浜小砂と充分に接触する状態で3吟間連続して運
転したのち、刃部溶射層の欠け、剥離の有無を検したが
NO.l刃、NO.2刃ともに異状は認められな・かつ
た。次に各溶射刃部の摩耗量を求めるために各ロータリ
ーナイフの回転中心線上を夫々切断してNO.l−(イ
)(本発明品溶射)、ND.l−(口)(自溶性合金溶
射)、NO.2−(イ)(40%WC自溶性合金溶射)
、NO.2−(口)(自溶性合金溶射)の4片とし、・
各片の重量を測定した。NO.l刃とNO.2刃の摩耗
テスト条件の微妙な差違を消去するために、一定条件下
における自溶性合金溶射層の摩耗量は一定との仮定を設
け夫々の自溶性合金溶射刃部を持つ片との重量差を算出
し、第2表に耐摩耗率として示)した。以上のように本
発明品は、酸化アルミニウム質からなる粒子の各々の表
面に、金属物質の粉末粒子を焼結させて形成する溶射用
セラミック粉末材料であつて、公知の酸素−アセチレン
炎または酸素一水素炎を熱源とする粉末溶射法によつて
強固な耐摩耗性その他の性質を付与した溶射層が容易に
形成できるばかりでなく、溶射材料費の低減と作業能率
向上と相俟つて省エネルギーな溶射法で酸化アルミニウ
ム質粒子の溶射層を提供できる溶射用セラミック粉末材
料である。
The test machine used was a commercially available hand-push rotary mower equipped with an engine with a maximum output of 3.5 PS/3600 r'pm and equipped with one rotary knife of diameter (a) d. One side of the blade (about 1? length) of the rotary knife of this power mower was surface-treated by sandblasting, and the product of the present invention was powder-sprayed, and then a commercially available self-fusing alloy (Ni
An overcoat was applied with a Cr--B--Si group and a reheating treatment was performed, but the sprayed layer thickness was about 0.7 m/m. The other blade part was subjected to the same surface treatment as described above, and a known thermal spray layer made of the same type of self-fluxing alloy was made to a thickness of about 0.7 m/m.
It was made into a l-blade. Surface treated NO. The two blades were coated with a commercially available WC-based self-melting alloy (40% WC) using a known powder spraying method.
The blade part is thermally sprayed with NO. A blade part was made by thermal spraying the same type of self-fluxing alloy as that used for the blade and had a sprayed layer of about 0.7 m/m thick, and was used as a comparative material. Each rotary knife has been carefully balanced for safety. These rotary knives were attached to the test machine, and while maintaining normal operating conditions, the rotary knife was operated continuously for 3 minutes while inputting and moving over the natural beach sand surface, with the rotary knife always making sufficient contact with the beach sand. , the presence or absence of chipping and peeling of the thermal sprayed layer on the blade was examined, but NO. l blade, NO. No abnormalities were observed on either of the two blades. Next, in order to determine the amount of wear on each thermal spray blade part, each rotary knife was cut on the rotation center line and NO. l-(A) (thermal spraying of the present invention), ND. l-(mouth) (self-fusing alloy spraying), NO. 2-(A) (40% WC self-fusing alloy thermal spraying)
, NO. 2- (mouth) (self-fusing alloy sprayed), 4 pieces,
The weight of each piece was measured. NO. l blade and NO. In order to eliminate subtle differences in the wear test conditions of the two blades, it was assumed that the wear amount of the self-fusing alloy sprayed layer under certain conditions was constant, and the weight difference between the pieces with the self-fusing alloy sprayed blades was calculated. was calculated and shown as the wear resistance rate in Table 2). As described above, the present invention is a ceramic powder material for thermal spraying formed by sintering powder particles of a metallic substance on the surface of each particle made of aluminum oxide, and is a ceramic powder material for thermal spraying that is formed by sintering powder particles of a metallic substance on the surface of each particle made of aluminum oxide. The powder spraying method, which uses hydrogen flame as a heat source, not only makes it easy to form a sprayed layer with strong wear resistance and other properties, but also reduces the cost of spraying materials and improves work efficiency, resulting in energy savings. This is a ceramic powder material for thermal spraying that can provide a sprayed layer of aluminum oxide particles using a thermal spraying method.

Claims (1)

【特許請求の範囲】[Claims] 1 酸化アルミニウム質からなる粒子の各々の表面に金
属物質の粉末粒子を少くとも1個焼結させてなる溶射用
セラミック粉末材料。
1. A ceramic powder material for thermal spraying comprising at least one powder particle of a metallic substance sintered on the surface of each particle made of aluminum oxide.
JP54165239A 1979-12-19 1979-12-19 Ceramic powder material for thermal spraying Expired JPS6045269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54165239A JPS6045269B2 (en) 1979-12-19 1979-12-19 Ceramic powder material for thermal spraying

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54165239A JPS6045269B2 (en) 1979-12-19 1979-12-19 Ceramic powder material for thermal spraying

Publications (2)

Publication Number Publication Date
JPS5688882A JPS5688882A (en) 1981-07-18
JPS6045269B2 true JPS6045269B2 (en) 1985-10-08

Family

ID=15808503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54165239A Expired JPS6045269B2 (en) 1979-12-19 1979-12-19 Ceramic powder material for thermal spraying

Country Status (1)

Country Link
JP (1) JPS6045269B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4421799A (en) * 1982-02-16 1983-12-20 Metco, Inc. Aluminum clad refractory oxide flame spraying powder
JPS60161379A (en) * 1984-01-28 1985-08-23 新日本製鐵株式会社 Refractory material powder for flame spray
US5102429A (en) * 1988-10-14 1992-04-07 Minnesota Mining And Manufacturing Company Shelling-resistant abrasive grain, a method of making the same, and abrasive products
DE19520614C1 (en) * 1995-06-06 1996-11-07 Starck H C Gmbh Co Kg Microcrystalline sintered abrasive grains based on a-AI¶2¶O¶3¶ with high wear resistance, process for its production and its use

Also Published As

Publication number Publication date
JPS5688882A (en) 1981-07-18

Similar Documents

Publication Publication Date Title
US5271547A (en) Method for brazing tungsten carbide particles and diamond crystals to a substrate and products made therefrom
US4725508A (en) Composite hard chromium compounds for thermal spraying
JP3112697B2 (en) Thermal spray powder mixture
US5375759A (en) Alloy coated metal base substrates, such as coated ferrous metal plates
US5236116A (en) Hardfaced article and process to provide porosity free hardfaced coating
EP0459114A1 (en) Aluminium and boron nitride thermal spray powder
CN100476014C (en) Thermal spraying powder and method of forming thermal sprayed coating using same
JPH11350102A (en) Powder comprising chromium carbide and nickel chromium
JPH01100254A (en) Heat spray coating having enhanced adhesiveness, low residual stress and enhanced spalling resistance and production thereof
US2961312A (en) Cobalt-base alloy suitable for spray hard-facing deposit
JPH02111862A (en) Method for manufacturing powders of cobalt-combined tungsten carbide for flame coating and the powders
JPH10110206A (en) Production of fine-grained (chromium carbide)-(nickel chromium) powder
US4004042A (en) Method for applying a wear and impact resistant coating
JPS5921267B2 (en) Surface hardening method for metal substrates
EP0157231B1 (en) Aluminum and yttrium oxide coated thermal spray powder
JPH0313303B2 (en)
JPS6045269B2 (en) Ceramic powder material for thermal spraying
JPS61501713A (en) thermal spray materials
US5014768A (en) Chill plate having high heat conductivity and wear resistance
CN110004372A (en) A kind of high temperature resistant, anti-oxidant, wear-resisting metallurgy roller and preparation method thereof
JPH0128828B2 (en)
JPS62177183A (en) Method for forming metallic lining on inside surface of metallic pipe or the like
JPH05271900A (en) Heating and pressurizing method of thermally sprayed film
US5100617A (en) Wires made of copper-based alloy compositions
US5236662A (en) Wires made of copper-based alloy compositions