JPS604278B2 - electroplating method - Google Patents

electroplating method

Info

Publication number
JPS604278B2
JPS604278B2 JP2316280A JP2316280A JPS604278B2 JP S604278 B2 JPS604278 B2 JP S604278B2 JP 2316280 A JP2316280 A JP 2316280A JP 2316280 A JP2316280 A JP 2316280A JP S604278 B2 JPS604278 B2 JP S604278B2
Authority
JP
Japan
Prior art keywords
plating
plated
thickness
shielding plate
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2316280A
Other languages
Japanese (ja)
Other versions
JPS56119792A (en
Inventor
良夫 名取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2316280A priority Critical patent/JPS604278B2/en
Publication of JPS56119792A publication Critical patent/JPS56119792A/en
Publication of JPS604278B2 publication Critical patent/JPS604278B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/007Current directing devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】 本発明は電気メッキ法に於いて、メッキ層の縦断面形状
が、目的とする被メッキ物表面に対しト任意の連続した
傾斜角度をもって変化したメッキ層(以下これをテーパ
ーメツキと言う。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses an electroplating method in which the longitudinal cross-sectional shape of the plated layer changes at an arbitrary continuous angle of inclination with respect to the surface of the target object to be plated (hereinafter referred to as this). It's called taper metal.

)を得る為に開発された新規の電気メッキ方法に関する
ものであり、メッキ層の厚みを可能な限り平均させ、均
一に行う方向で行なわれてきた従来の電気メッキの技術
開発及びその工業的応用分野とは全く異なるテーパーメ
ッキと言う新規なメッキ素材を開発し、提供する事によ
って、電気メッキの新たな工業的応用分野を見し、出す
事を目的として開発されたメッキ方法である。メッキに
関する用語の中に「均一電着性」の如き技術用語がある
様に、従来メッキとは、その厚さが平均して均一なるも
のと言う概念がある。
), it is related to a new electroplating method developed to obtain the same thickness as possible, and the development and industrial application of conventional electroplating techniques, which aim to average the thickness of the plating layer as much as possible and make it as uniform as possible. This plating method was developed with the aim of finding new industrial application fields for electroplating by developing and providing a new plating material called taper plating, which is completely different from other fields. As there is a technical term such as "uniform electrodeposition" in the terminology related to plating, conventional plating has the concept of having a uniform thickness on average.

また同時にメッキ技術及びその応用分野に於いて、メッ
キはできる限り均一な厚さ、平均したメッキ厚分布を得
る為の技術開発が行われ、またその用途開発が研究され
てきた。しかしここで、本発明者は上述の如き従来の技
術及び用途開発の方向とは逆に、メッキ厚を任意に変化
させる事を考え、これを高精度にコントロールする為の
技術開発を試みた。
At the same time, in the field of plating technology and its application, technological development has been carried out to obtain as uniform a plating thickness and an average plating thickness distribution as possible, and the development of its applications has been studied. However, contrary to the direction of conventional technology and application development as described above, the present inventor considered changing the plating thickness arbitrarily and attempted to develop a technology for controlling this with high precision.

即ち、本発明者は、次にひとつの例として記載した1及
び2によって示される如く、現在行われ利用されている
メッキの応用分野に於いて、もし精度の高いテーパーメ
ツキを行う事ができれば、そのテーパーメツキの産業上
の利用価値は、従来の、厚さの均一なメッキに比べ、個
々の使用目的に対して極めて有効であり、且つコスト面
に於いても優れたものができると考えたからである。以
下にその具体例を挙げる。【11 メッキ厚標準板とし
ての応用 周知の通り、メッキ業界に於いて、破壊、非破壊を問わ
ず種々の方法によってメッキ厚を測定する為の測定機器
が汎用されている。
That is, the present inventor believes that if highly accurate taper plating can be performed in the currently used plating application field, as shown in 1 and 2 described below as examples, We believe that the industrial value of tapered plating is that it is extremely effective for each purpose, and is also superior in terms of cost, compared to conventional plating with a uniform thickness. It is. Specific examples are listed below. [11] Application as a plating thickness standard plate As is well known, in the plating industry, measuring instruments are widely used to measure plating thickness by various methods, both destructive and non-destructive.

そして、これ等メッキ厚を測定する為の機器を常に正常
な状態で使用する目的から、金属板上に概知の厚さにメ
ッキを施したメッキ厚標準板を用意している。それは未
知の被検査物のメッキ厚を測定する際にこのメッキ厚標
準板のメッキ厚表示値の通りに、使用する測定機器が機
能し、メッキ厚を指示する事を確認する為に用い、もし
違った数値を指示した時には、その誤差から測定機器を
正しく鮫正する目的に使用するのである。さてここで、
従来の標準メッキ厚板は、一枚の金属板の表面に可能な
限り厚さの均一なメッキを施したものを作り、メッキ厚
標準板としている。
In order to always use these devices for measuring plating thickness in a normal condition, a plating thickness standard board is prepared by plating a metal plate to a known thickness. It is used when measuring the plating thickness of an unknown object to be inspected to confirm that the measuring equipment used functions and indicates the plating thickness according to the plating thickness display value of this plating thickness standard plate. When a wrong numerical value is indicated, the error is used to correct the measuring equipment. Now here,
Conventional standard plated plates are made by plating the surface of a single metal plate as uniformly as possible to create a plated thickness standard plate.

そしてメッキの種類と厚さによって何種類もの標準メッ
キ厚板を用意している。即ち、メッキ厚測定器を鮫正す
るに際し、その鮫正の為に使用する標準メッキ厚板は、
これから実際に測定しようとする被検査物のメッキ厚に
できる限り近い厚さのものを使用し機器の鮫正を行う事
が望ましいからである。例えばメッキ厚100ミクロン
位と予想される被検査物のメッキ厚測定に対し使用する
機器の鮫正を数ミクロンの標準メッキ厚板も用いて行っ
たならば、そる鮫正が正しく行われても、100ミクロ
ンの標準メッキ厚板を用いて鮫正した場合に比べ、その
測定結果に大きな誤差を含む危Z険性がある事はここに
言うまでもない。一方、これとは逆にメッキ厚数ミクロ
ン位と予想される被検査物のメッキ厚測定に対して、使
用する機器の鮫正を100ミクロンの標準メッキ厚板を
用して行う場合、前例の厚測定精度に関して問題は無い
Zが、実際のメッキ厚測定に要する時間の何十倍もの時
間をかけて測定機器を鮫正することになり、時間的には
なはだ不経済であると共に、必要以上の精度鮫正を行っ
ていると言わざるを得ない。本発明者は上述の如き現況
に鑑み、テーパーメッキによって標準メッキ厚板を作る
事を考案した。即ち、一枚のメッキ厚標準板にメッキ厚
数ミクロンから数100ミクロンまで包含した試験片で
あり、もしテーパーメッキを高精度に行う事ができれば
、この一枚の標準メッキ厚板によって現状のほとんど全
ての種類のメッキ厚測定の際の機器鮫正に対して、各々
の場合に於ける最適の鮫正を行う事が可能となる事は容
易に想像されよう。
We also offer a variety of standard plated plates depending on the type and thickness of the plating. In other words, when correcting a plating thickness measuring device, the standard plating plate used for the correction is:
This is because it is desirable to calibrate the equipment by using a plate whose thickness is as close as possible to the plating thickness of the object to be actually measured. For example, if the measurement of the plating thickness of an object to be inspected is expected to be approximately 100 microns, if the measurement of the plating thickness of the equipment used is performed using a standard plating plate of several microns, even if the warp correction is performed correctly. Needless to say, there is a risk that the measurement results will contain a large error compared to the case where a standard plating plate of 100 microns is used for the measurement. On the other hand, when measuring the plating thickness of an object to be inspected, which is expected to have a plating thickness of several microns, when using a standard plating plate of 100 microns, the previous example Although Z has no problem with thickness measurement accuracy, he ends up spending tens of times as much time correcting the measuring equipment as it takes to actually measure the plating thickness, which is extremely uneconomical in terms of time and requires unnecessary work. I have to say that the accuracy is the same. In view of the above-mentioned current situation, the present inventor devised a method of producing a standard plated thick plate using tapered plating. In other words, it is a test piece with a plating thickness ranging from several microns to several hundred microns on one standard plating plate, and if taper plating can be performed with high precision, most of the current plated thickness can be achieved with this single standard plating plate. It is easy to imagine that it is possible to perform the optimum measurement in each case with respect to the equipment correction when measuring all types of plating thickness.

(2ー 浸透探傷検査試験片としての応用非破壊検査法
に於いて航空機部品等の被検査物表面に存在する可能性
にある微細な欠陥則ち、割れキズやピンホール等を検出
する方法として一般に浸透探傷検査法が汎用されている
(2- Application as penetrant test specimen) As a method for detecting minute defects, such as cracks and pinholes, that may exist on the surface of inspected objects such as aircraft parts in non-destructive testing methods. Penetrant testing is generally used.

浸透深傷検査法は、そのまま肉眼では検出する事のでき
ない微細な表面欠陥の内部に、浸透液と言われる通常赤
色の染料、又は黄色の蛍光染料にて着色された油状の液
体を検査対象物表面に塗布する事によって、該浸透液を
検査物対象物表面の欠陥内に浸み込ませた後、表面に付
着残留した浸透液をウェス等にてきれいにぬぐい去り、
かかる後、現像剤と言われる通常白色の無機質微粉末を
揮発性の有機溶剤に分散させた液体を塗布し、溶剤の蒸
発飛散と共に残された白色微粉末上に形成される欠陥内
部の残留浸透液のニジミ模様によって、初め肉眼では検
出が不可能であった微細な欠陥を何倍にも拡大して検出
する方法である。
The penetrating deep flaw inspection method uses an oily liquid called a penetrating liquid usually colored with a red dye or a yellow fluorescent dye inside the inspected object, inside minute surface defects that cannot be detected with the naked eye. By applying it to the surface, the penetrating liquid penetrates into the defects on the surface of the object to be inspected. After that, the penetrating liquid remaining on the surface is wiped off with a cloth etc.
After that, a liquid made by dispersing usually white inorganic fine powder called a developer in a volatile organic solvent is applied, and as the solvent evaporates and scatters, residual penetration inside the defects that is formed on the white fine powder left behind is removed. This method uses the smudge pattern of the liquid to magnify minute defects that were initially impossible to detect with the naked eye.

この浸透探傷試験に於いて、欠陥検出精度の良否は前述
の浸透液の性能の良否に大きく依存している事は言うま
でもない。さてここで、従来より行われている浸透液の
性能を判断する為の方法について説明する。
It goes without saying that the accuracy of defect detection in this penetrant test is largely dependent on the quality of the performance of the penetrant liquid described above. Now, a conventional method for determining the performance of a penetrating liquid will be explained.

現在、浸透液の性能を判断し、さらにその性能を保存に
対して維持し、管理する目的の為に何種類かの試験片が
提案されている。
At present, several types of test specimens have been proposed for the purpose of determining the performance of the permeate and also for maintaining and controlling its performance during storage.

例えば「実用新案公報昭49−14633」に記載され
ている浸透探傷検査試験片(以下これを公知の試験片と
言う)は、蓑銅板等の表面に厚みの均一なメッキを施し
た後、これを曲げてメッキを割る事によって人工の欠陥
を作るのである。この方法によれば任意の深さの人工欠
陥を再現性良く作り出すことが可能である事から浸透深
傷検査試験片として、浸透液の性能試験、品質の管理等
の目的に汎用されている。しかし、この公知試験片はメ
ッキ厚を一枚の金属坂上に均一にメッキしたものである
為、試験片の種類は必要となる欠陥の深さ、即ち、メッ
キ厚ごとに何種類もを用意しなければならず、実用上は
10ミクロン間隔に10ミクロンから50ミクロンまで
の数種類が製造され使用されているに過ぎない。
For example, the penetrant inspection test piece (hereinafter referred to as a known test piece) described in "Utility Model Publication 14633/1984" is made by plating the surface of a copper plate with a uniform thickness. An artificial defect is created by bending the material and breaking the plating. According to this method, it is possible to create artificial defects of any depth with good reproducibility, so it is widely used as a penetrating deep flaw inspection test piece for performance testing of penetrating liquids, quality control, etc. However, since this known test piece is one in which the plating thickness is uniformly plated on a single metal slope, several types of test pieces are prepared depending on the required defect depth, that is, the plating thickness. However, in practice, only several types from 10 microns to 50 microns are manufactured and used at 10 micron intervals.

しかし近年の産業の発達と高度化に伴い、従来以上のさ
らに高度な品質管理体制が要求される様になった現在、
浸透深傷剤の性能は従来に比べ大幅に改良され、数種類
の公知試験片ではその性能の優劣を判定できなくなって
来ている。この現状に対処する為には、数ミクロン間隔
で何十種類もの公知試験片を作れば良いのであるが、実
際にはメッキ厚を均一にコントロールする技術は、その
目的とするメッキ厚に対して土10%以内を確保するの
がやっとの状態であり、数ミクロン間隔で試験片を作る
事は現状に於いては無意味である。
However, with the development and sophistication of industry in recent years, a more advanced quality control system than before is now required.
The performance of penetrating deep wound agents has been greatly improved compared to conventional ones, and it has become impossible to judge the superiority or inferiority of their performance using several types of known test pieces. In order to deal with this current situation, it is possible to make dozens of known test pieces at intervals of several microns, but in reality, the technology to control the plating thickness uniformly is limited to the desired plating thickness. It is barely possible to secure a soil content of 10% or less, and making test pieces at intervals of several microns is currently meaningless.

例えば、今仮に5ミクロン間隔で試験片を作ったと仮定
し、キズの深さ45ミクロンの試験片とキズの深さ50
ミクロンの試験片を比較すると、メッキ厚さ精度は共に
公称寸法の±10%であるから、キズ深さ45ミクロン
の試験片は実際のキズの深さ範囲に於いて40.5ミク
ロンから49.5ミクロンの範囲にある。一方、それに
対してキズ深さ50ミクロンの試験片は、同様にして4
5.0ミクロンから55.0ミクロンの範囲にある事に
なる。
For example, if we assume that test pieces are made at 5 micron intervals, a test piece with a scratch depth of 45 microns and a test piece with a scratch depth of 50 microns.
Comparing the micron test pieces, the plating thickness accuracy is ±10% of the nominal dimension, so the test piece with a scratch depth of 45 microns has an actual scratch depth range of 40.5 microns to 49.5 microns. In the range of 5 microns. On the other hand, a test piece with a scratch depth of 50 microns was
This will range from 5.0 microns to 55.0 microns.

そそで両方の試験片は45.0ミクロンから49.5ミ
クロンの間に共通したキズ深さの範囲ができてしまい、
キズ深さを各45ミクロン、50ミクロンと等級分類し
ているにもかかわらず、両方がこの範囲にあった場合に
は、探傷試験の結果は相万共全く同じになってしまう事
が考えられる。またさらに、場合によって相万の公称寸
法が大小が全く逆になる場合も出てくるのでZある。こ
の様なメッキ技術の現況から、実用上の公知試験片の種
類は現状の10ミクロン間隔に数種類を用意している事
が妥当である。しかし、前述の如く近年の浸透探傷法に
対する諸産業界の要望は、試験片に於いては少なくとも
数ミクロンの単Z位で浸透探傷剤の性能を判定でき、ま
た深傷工程の管理等の目的にも使用する事のできる性能
を備えたものの開発が強く望まれている。本発明者は上
述の現況に鑑み、テーパーメッキによって浸透深傷検査
用試験片を考案した。
Therefore, both test pieces had a common scratch depth range between 45.0 microns and 49.5 microns.
Even though the flaw depth is classified as 45 microns and 50 microns, if both are within this range, it is possible that the results of the flaw detection test will be exactly the same. . Furthermore, depending on the case, the nominal dimensions of the two parts may be completely opposite in size, so there is Z. In light of the current state of plating technology, it is appropriate to prepare several types of known test pieces for practical use at 10 micron intervals. However, as mentioned above, the demand from various industries for penetrant testing methods in recent years is that the performance of penetrant testing agents can be determined at least at a single Z level of several microns in test specimens, and that it is also possible to use penetrant testing methods for purposes such as deep flaw process management. There is a strong desire to develop something with performance that can also be used in other applications. In view of the above-mentioned current situation, the present inventor devised a test piece for penetrating deep damage inspection using tapered plating.

即2ち、黄鋼板等の表面にニッケル、クローム等の金属
を施し、このメッキ層を人工的に割る事によって作られ
る公知の試験片の利点そのまま生かし、さらに従来のメ
ッキ技術ではできなかった本発明のテーパーメッキの技
術をこれに応用するのであ2る。テーパーメッキによっ
て得られる浸透探傷検査用試験片は、一枚の板状試験片
上の一辺がメッキ厚1ミクロンから他の一辺が50ミク
ロンに、換言すれば、キズ深さ1ミクロンから他の一辺
が50ミクロンまで、該試験片の長さ方向に対し高精度
に比例して変化した人工欠陥が施されている。この為試
験片上の一本一本のキヅは全てその深さが1ミクロンか
ら50ミクロンまで連続して変化しており、これを浸透
液の性能試験に用いた場合、従来の試験片では10ミク
ロン単位でしかその欠陥検出能力を判定できなかった訳
であるが、これに対し、例えば欠陥検出能力を7ミクロ
ンの如く極めて厳密に判定し、その優劣を正確且つ客観
的に判断する事が可能となる事は容易に想像できよう。
本発明者は、以上述べた2項目にて明らかな如く、テー
パーメッキの持つ特性と応用面での利用価値は、従来の
厚さが均一なメッキでは望めない懐れたものである事に
着目し、テーパーメツキ方法の具体化について種々の実
験を行った結果、本発明方法を完成したのである。次に
本発明の構成について図面を用いて説明する。
In other words, it takes advantage of the advantages of the known test pieces, which are made by applying metals such as nickel or chromium to the surface of a yellow steel plate, and then artificially breaking this plating layer, while also creating a test piece that could not be created using conventional plating techniques. This is because the taper plating technology of the invention is applied to this. The penetrant test specimen obtained by taper plating has a plating thickness of 1 micron on one side and 50 micron on the other side, in other words, a scratch depth of 1 micron on the other side. Artificial defects of up to 50 microns are applied with high accuracy and proportional variation along the length of the specimen. For this reason, the depth of each crack on the test piece varies continuously from 1 micron to 50 microns, and when used for a performance test of penetrating liquid, the depth of each crack on the test piece varies continuously from 1 micron to 50 microns. Previously, it was only possible to judge the defect detection ability in units of 7 microns, but now it is possible to judge the defect detection ability very strictly, such as 7 microns, and judge its superiority or inferiority accurately and objectively. You can easily imagine what will happen.
The present inventor has focused on the fact that, as is clear from the above two items, the characteristics and application value of tapered plating are superior to conventional plating with a uniform thickness. However, as a result of conducting various experiments regarding the implementation of the taper plating method, the method of the present invention was completed. Next, the configuration of the present invention will be explained using the drawings.

図面は本発明のテーパーメツキの方法に於けるメッキ槽
内の電極等の配置を図化したものであり、本発明のテー
パーメツキの方法が従釆のメッキ方法と異なる最大の特
徴は、図に示す如く、メッキ槽1の一端に陽極Aを配置
し、他の一端に陰極拾具Cを介して被メッキ物である陰
極Bを配置し、さらに導電性の遮蔽板Dを当該陰極Bに
近接して配置する。
The drawing is a diagram illustrating the arrangement of electrodes, etc. in the plating bath in the taper plating method of the present invention. As shown, an anode A is placed at one end of the plating tank 1, a cathode B, which is an object to be plated, is placed at the other end via a cathode pick C, and a conductive shielding plate D is placed close to the cathode B. and place it.

そしてその遮蔽板Dと被メッキ物である陰極Bとを適当
な太さの被覆銅線2で結びメッキ作業中に於いて遮蔽板
Dに陰極電流の一部が流れる様にし、さらにその遮蔽板
Dをメッキ作業中、即ち、通電しながら本釆の被メッキ
材である陰極B面に対して平行に上下、左右等任意の方
向に移動するのである。但し、場合によってはこれとは
逆に遮蔽板を固定し、被メッキ物を移動しても良い。こ
の際、遮蔽板の移動距離、移動速度及び移動回数(一方
同一回の移動又は数回の往復移動)は任意に定めて行う
が、メッキ層に与えるナーパーの形状をメッキ層の縦断
面形状に於いて一定角直線状に保つ為には遮蔽板の移動
距離、移動速度は無論の事、遮蔽板を含む陰極に流れる
単位面積当りの電流値、即ち、陰極電流密度(単位はA
/dれ)をメッキ作業中に於いて常に一定に保たなけれ
ばならない。しかし、もしメッキ槽に与えるテーパーの
種類をメッキ層の縦断面形状に於いて一定の比例曲線状
、あるいは不規則な曲線0状のものを得ようとする場合
には、前記とは逆に遮蔽板の移動距離、移動速度又は陰
極電流密度の内どれか一つ又は全部の要素を上記の要求
に合う様一定の割合であるいは不規則に適宜変化させれ
ば良い。タ 次に、本発明方法に於いてテーパーメッキ
を可能とした前述の遮蔽板を中心にテーパーメッキを実
施する為の具体例を揚げて、その構成と機能について詳
述する。
Then, the shielding plate D and the cathode B, which is the object to be plated, are connected with a coated copper wire 2 of an appropriate thickness so that a part of the cathode current flows through the shielding plate D during plating work, and further, the shielding plate D is moved in any direction such as up and down, right and left, parallel to the surface of the cathode B, which is the material to be plated, during the plating operation, that is, while being energized. However, in some cases, the shielding plate may be fixed and the object to be plated may be moved. At this time, the movement distance, movement speed, and number of movements of the shielding plate (on the other hand, the same movement or several times of reciprocating movement) are determined arbitrarily, but the shape of the napper applied to the plating layer is adjusted to the longitudinal cross-sectional shape of the plating layer. In order to maintain a straight line at a constant angle, the moving distance and moving speed of the shielding plate must of course be changed, and the current value per unit area flowing through the cathode including the shielding plate, that is, the cathode current density (unit: A)
/d) must be kept constant during plating work. However, if the type of taper given to the plating bath is to obtain a constant proportional curve shape or an irregular curve 0 shape in the vertical cross-sectional shape of the plating layer, then the shielding Any one or all of the moving distance, moving speed, and cathode current density of the plate may be appropriately changed at a constant rate or irregularly to meet the above requirements. Next, a specific example for carrying out taper plating will be given, focusing on the above-mentioned shielding plate that enables taper plating in the method of the present invention, and its structure and function will be described in detail.

先ず、本発明方法により行えるメッキの種類0は、通常
の電気メッキが可能な金属の種類、例えば、銅、鉄、ニ
ッケル、コバルト、クローム等の単一金属、及び、ニッ
ケルーコバルト、鉄−ニッケル、又は銅−亜鉛(蓑銅)
の如く、複数の金属組成から成る合金メッキ等、全てが
可能であり、また使用する陽極材料、メッキ液液の組成
及びメッキ条件(液温、液のpH、電流密度等)等につ
いても、通常のメッキ作業に使用されている材料及び標
準的なメッキ条件をそのまま適用する事ができる。例え
ば、ニッケルのテーパーメツキを行う際には陽極として
市販のメッキ用ニッケル板、鍵等をそのまま電極とし、
メッキ液としては水1ク中に硫酸ニッケル(NiS04
組20)30雌、塩化ニッケルNiC12 肌20)4
5g、ホゥ酸(日3B03)30〜37.鷺を標準組成
とするワット格をそのまま使用する事ができる。
First, type 0 of plating that can be performed by the method of the present invention is the type of metal that can be electroplated normally, such as single metals such as copper, iron, nickel, cobalt, and chromium, and nickel-cobalt and iron-nickel. , or copper-zinc (minodo)
All types of plating, such as alloy plating consisting of multiple metal compositions, are possible, and the anode material used, the composition of the plating solution, and the plating conditions (solution temperature, pH of the solution, current density, etc.) are usually variable. The materials and standard plating conditions used for plating work can be applied as is. For example, when taper plating nickel, use a commercially available nickel plate, key, etc. as the anode as the electrode.
The plating solution is nickel sulfate (NiS04) in 1 cup of water.
Group 20) 30 female, nickel chloride NiC12 skin 20) 4
5g, boric acid (Japanese 3B03) 30-37. You can use the wattage whose standard composition is Heron as is.

またこの場合のメッキ条件としては、液温度3〆0〜7
1℃,FH2.0〜5.2,電流密度1〜6.$/dめ
の各々の範囲で行う事ができる。次に、本発明の方法の
基礎をなす導電性の遮蔽板に関してであるが、材質は電
気の良導体である通常の金属板であればそのほとんどが
使用できるが、被メッキ物金属に対して、遮蔽板に使用
する金属は、被メッキ物金属と同様のものを使用する事
が望ましい。
In addition, the plating conditions in this case are that the liquid temperature is 3.0~7.
1°C, FH2.0-5.2, current density 1-6. This can be done in each range of $/d. Next, regarding the conductive shielding plate that forms the basis of the method of the present invention, most ordinary metal plates that are good conductors of electricity can be used; however, for the metal to be plated, It is desirable to use the same metal for the shield plate as the metal to be plated.

なぜならば、メッキ陽極及び陰極金属に対して使用する
遮蔽板の金属が電気化学的にずっと卑な金属、換言すれ
ば、標準電位値の低い金属であった場合に、メッキ液中
に遮蔽板金属が溶け出して爽雑イオンとなり、正常なる
メッキ条件を阻害する危険性を有するからである。次に
、遮蔽板の形状及び被メッキ物である本来の陰極に対す
る大きさ及びその設定位置についてであるが、形状につ
いては被メッキ材である本来の陰極の形状によって異な
る。後述する実施例の如く、被メッキ材の形状が平らな
板状のものである場合には遮蔽板も同様に平らな板状の
ものを用いれば良い。また例えば、被メッキ材の形状が
ピストンの如く円筒形状であり、その外周部全面に7ー
パーメッキを施す様な場合には、円筒形状の当該被メッ
キ物の外周をすっぽり覆う事のできる様な円筒形状の遮
蔽板を用いれば良い。次に遮蔽板の大きさについてであ
るが、テーバーメッキを行う被メッキ物である陰極表面
上の、目標とするテーパーメッキの範囲内を、陽極から
流れるメッキ電流に対し、これを確実に遮蔽できる大き
さであれば良い。
This is because if the metal of the shielding plate used for the plating anode and cathode metal is an electrochemically much less base metal, in other words, a metal with a low standard potential value, the shielding plate metal may be present in the plating solution. This is because there is a risk that the particles will dissolve and become foreign ions, which will disturb normal plating conditions. Next, regarding the shape of the shielding plate, its size relative to the original cathode that is the object to be plated, and its setting position, the shape differs depending on the shape of the original cathode that is the object to be plated. When the material to be plated has a flat plate-like shape, as in the embodiment described later, the shielding plate may also be a flat plate-like material. For example, if the material to be plated has a cylindrical shape like a piston and the entire outer circumference is to be 7-percent plated, a cylindrical plate that can completely cover the outer circumference of the cylindrical object to be plated is used. It is sufficient to use a shaped shielding plate. Next, regarding the size of the shield plate, it can reliably shield the target taper plating range on the cathode surface, which is the object to be plated, from the plating current flowing from the anode. As long as it's big enough, it's fine.

また、遮蔽板の目的からしても明らさな如く、遮蔽板の
設定位置、即ち、遮蔽板及びこれと対面する被メッキ物
である本釆の陰極との距離は、できる限り近接した位置
に設定するのが望ましい事は言うまでもない。ごて、本
発明によるテーパーメッキに於いては、上述の如く構成
された遮蔽板にメッキ作業中、陰極電流の一部を流し、
さらに該遮蔽板を上下、左右等、被メッキ材表面に施す
テーパ−の方向に移動するのであるが、この様に遮蔽板
を機能させる為には、遮蔽板及びメッキ材である本来の
陰極の一箇所、又は必要により数箇所を、ビニール等で
被覆された適当な太さの電線を用いて、メッキ中に遮蔽
板が移動しても、その移動を阻害しない様な電線の長さ
、及び後続方法によって連結する必要がある。
Also, as is clear from the purpose of the shielding plate, the setting position of the shielding plate, that is, the distance between the shielding plate and the cathode of the main holder which is the object to be plated facing it, should be set as close as possible. Needless to say, it is desirable to set it to . In the taper plating according to the present invention, part of the cathode current is passed through the shielding plate configured as described above during the plating operation,
Furthermore, the shielding plate is moved vertically, horizontally, etc. in the direction of the taper applied to the surface of the plated material. In order for the shielding plate to function in this way, the original cathode, which is the shielding plate and the plating material, must be moved. At one point, or at several points if necessary, use an electric wire of an appropriate thickness covered with vinyl, etc., so that even if the shielding plate moves during plating, it will not impede the movement of the electric wire, and Must be concatenated by a subsequent method.

また、遮蔽板の移動方法としては、種々の方法が考えら
れるが、本発明者が実際に試みて成功した、図面に示す
如き方法が使用できる。また、その遮蔽板の移動に際し
ては、遮蔽板と被メッキ材の距離間隔を、遮蔽板がどの
位置に移動しても常に一定である様にする為に、被メッ
キ物を保持する陰極治具、及び遮蔽板の移動方向を固定
する為のガイド治具を、一体で作る事が望ましい。
Furthermore, various methods can be considered for moving the shielding plate, but the method shown in the drawings, which the present inventor actually tried and succeeded in, can be used. In addition, when moving the shield plate, in order to keep the distance between the shield plate and the material to be plated constant no matter where the shield plate moves, a cathode jig is used to hold the object to be plated. , and a guide jig for fixing the direction of movement of the shielding plate are preferably made in one piece.

次に以上の如く構成されたメッキ方法によって7ーパー
メッキが行われる過程について、遮蔽板の作り出す作用
とその効果から説明する。
Next, the process of performing 7-perme plating using the plating method configured as described above will be explained from the actions and effects produced by the shielding plate.

尚、説明には、被メッキ物に施すテーパーメツキの種類
として、メッキ層がその縦断面形状に於いて規則的に、
連続して変化したものを例に挙げ説明する。周知の如く
、電気メッキに於いて、広義の酸化、還元反応の結果で
ある陰極の被メッキ物表面に析出するメッキ金属の量は
、フアランデーの法則によって支配される。
In addition, in the explanation, the type of taper plating applied to the object to be plated is that the plating layer is regular in its vertical cross-sectional shape.
An example of continuous change will be explained. As is well known, in electroplating, the amount of plating metal deposited on the surface of the object to be plated at the cathode, which is the result of oxidation and reduction reactions in a broad sense, is governed by Farandee's law.

即ち、電気メッキに於いては「陰極上に析出する金属の
量は、メッキを行うに要した電気量に比例し、メッキ金
属1gを析出する為に要する電気量は、メッキ金属の種
類に関係なく常に96500クローン(C)である」と
言い換える事ができる。その法則から計算によって、例
えばニッケルメッキの場合、陰極の電流効率を100%
と仮定した時、メッキの際の電気量IAHに対して約1
1gの金属ニッケルが陰極上に析出される事になる。こ
こで、この析出量を単位面積当りのメッキ厚に芋奥算す
ると(ニッケルの比重を8.9とする)、電気量IAH
(アンペア・アワー)は、陰極面積ldめ当り平均12
.3ヱ厚のニッケルメッキを析出する事になる。ごて、
その様に展開する事によってメッキの厚みに関する要素
としては、メッキを行う際の電気量、即ち、■電流値の
,@時間(H)、及び■陰極面積(d〆)の3項目があ
る事が分かる。ここで通常のメッキ、即ち、メッキ層の
厚みが均一なるものを得る為には、この3項目■,@及
びQをメッキに際して終始一定の値に保てば良いのであ
るが、メッキ厚を規則的に変化させる為には逆にこの3
項目の内のどれかひとつをメッキに際して、終始規則的
に変化させねばならない。本発明者はこの3項目につい
て実際のメッキ作業上、規則的な変化を正確且つ簡便に
行えるものとして@の時間に着目した。時間、即ち、陰
極上に於いて、メッキが行われる時間を被メッキ材の一
端から他の一端まで終始規則的に変化させる事である。
但し、この時間と言う要素を変化させる事に伴い残され
た■の電流値凶及び■の陰極面積(d〆)の2項目、即
ち、電流密度(A/dめ)は、メッキに際して終始一定
に保たねばならない。上述のメッキ時間を規則的に変化
させる方法として、本発明者はメッキ作業中に於いて、
一定速度で遮蔽板を移動しながら、しかも被メッキ材を
完全に遮蔽する方法として、導電性の遮蔽板に陰極電流
の一部を与える事を行ったのである。この遮蔽方法によ
って、被メッキ材である本来の陰極及び遮蔽板の間隔が
多少あっても、陽極方向から見て、遮蔽板と重つた被メ
ッキ材部分は電気的に完全に遮蔽されるのである。
In other words, in electroplating, ``the amount of metal deposited on the cathode is proportional to the amount of electricity required to perform plating, and the amount of electricity required to deposit 1 g of plated metal is related to the type of plated metal. 96,500 clones (C).'' By calculating from this law, for example, in the case of nickel plating, the current efficiency of the cathode can be increased to 100%.
Assuming that, approximately 1 for the electrical quantity IAH during plating
1 g of metallic nickel will be deposited on the cathode. Here, if we calculate this amount of precipitation to the plating thickness per unit area (assuming the specific gravity of nickel is 8.9), we get the electrical quantity IAH
(amp hours) is an average of 12 per cathode area ld
.. 3ヱ thick nickel plating will be deposited. Trowel,
As a result of this development, there are three elements related to the thickness of plating: the amount of electricity used during plating, namely: ■ current value @ time (H), and ■ cathode area (d〆). I understand. In order to obtain normal plating, that is, one in which the thickness of the plating layer is uniform, it is sufficient to keep these three items ■, @, and Q at constant values throughout the plating process. Conversely, in order to change the
When plating any one of the items, it must be changed regularly from beginning to end. Regarding these three items, the present inventor focused on the @ time as a means of making regular changes accurately and easily in actual plating work. The time, ie, the time during which plating is performed on the cathode, is varied regularly from beginning to end from one end of the material to be plated to the other.
However, by changing this element called time, the two remaining items, (i) the current value and (i) the cathode area (d〆), that is, the current density (A/d) remain constant throughout the plating. must be maintained. As a method for regularly changing the plating time described above, the present inventor has proposed the following method during plating work:
In order to completely shield the material to be plated while moving the shield plate at a constant speed, a portion of the cathode current was applied to the conductive shield plate. With this shielding method, even if there is some distance between the original cathode, which is the material to be plated, and the shielding plate, the part of the material to be plated that overlaps with the shielding plate is completely electrically shielded when viewed from the anode direction. .

そしてこの遮蔽板が定められた速さで移動する事によっ
て被メッキ物表面にはメッキ時間が短いから、順次、遮
蔽板の移動方向上にメッキ時間の長い部分ができ、その
結果として、被メッキ物表面にはメッキ厚の小さい部分
から順次メッキ厚を規則的に増したテーパーメッキが形
成されるのである。・さらに、本発明方法に於いてテー
パーメッキを実施にあたっては、前述の如く、陰極に於
ける電流密度(A/dの)を終始一定に保つ事が必要で
あるが、導電性の遮蔽板に本来の陰極電流の一部を流す
方法を採用する事によって、被メッキ物に流れる電流の
増減をそのまま遮蔽板に於いて消費する機構である為、
換言すれば、被メッキ物である本来の陰極が遮蔽板の移
動と共にその表面積(d〆)を増減しても、同時にその
増減した分を遮蔽板自身が別の陰極として、その面積を
自然に補う形となる為、結果的に陰極面積、即ち、メッ
キ電流密度は終始変らず、メッキ開始時に設定した電流
値Aは全く変化させなくて良いのである。ここでもし、
遮蔽板に陰極電流の一部を流さず、あるいは材質を非導
電性のプラスチック等に変えてメッキを行った場合には
、上述した陰極面に於ける電流密度に変化をきたす事は
避けられず、テーパーメッキを行う上に於いて大きな支
障をきたす事は言うまでもない。またこの問題を回避す
る為に、メッキ作業中に於いてメッキ電流値を被メッキ
材の面積変化に追従して変化させ、これを制御する事は
、現状のメッキ技術に於いてはほとんど不可能である。
以上の通り構成された本発明の電気メッキ方法は、従来
のメッキ用語にも存在しなかった「テーパーメッキ」と
言う新規な形態の発想を、理論的に、且つ、実際上に於
いても、これを高精度に行う事を可能とした全く新しい
メッキ方法であると同時に、「テーパーメツキ」と言う
そのメッキ形態は極めて実用価値の高いものである。
Since this shielding plate moves at a predetermined speed, the plating time is short on the surface of the object to be plated, so sections where the plating time is longer are created in the direction of movement of the shielding plate, and as a result, the plating time is longer on the surface of the object to be plated. Tapered plating is formed on the surface of an object, with the plating thickness regularly increasing from the part with the smallest plating thickness.・Furthermore, when performing taper plating in the method of the present invention, as mentioned above, it is necessary to keep the current density (A/d) at the cathode constant from beginning to end. By adopting a method of flowing a part of the original cathode current, the increase or decrease in the current flowing through the object to be plated is consumed as is in the shielding plate.
In other words, even if the surface area (d〆) of the original cathode, which is the object to be plated, increases or decreases as the shielding plate moves, the shielding plate itself will at the same time take up the increased or decreased area as another cathode, naturally increasing its surface area. Since this is a supplementary method, the cathode area, that is, the plating current density does not change from beginning to end, and the current value A set at the start of plating does not need to be changed at all. Here too,
If part of the cathode current is not passed through the shielding plate, or if the material is changed to non-conductive plastic etc. for plating, it is inevitable that the current density at the cathode surface will change as described above. Needless to say, this poses a major problem when performing taper plating. Furthermore, in order to avoid this problem, it is almost impossible to control the plating current value by changing it during plating work to follow changes in the area of the plated material, which is almost impossible with the current plating technology. It is.
The electroplating method of the present invention configured as described above theoretically and practically incorporates the idea of a novel form called "taper plating" which did not exist even in the conventional plating terminology. This is a completely new plating method that makes it possible to perform this with high precision, and at the same time, the plating form called "taper plating" has extremely high practical value.

次に本発明方法の実施例を挙げる。Next, examples of the method of the present invention will be given.

実施例 1 黄鋼板上に、メッキ厚がその一端から池端まで、一定比
率にて規則的に変化したニッケルのテーパーメッキを得
る為のメッキを行った。
Example 1 A yellow steel plate was plated to obtain tapered nickel plating in which the plating thickness varied regularly at a constant ratio from one end to the end of the plate.

メッキを行う前に、先ず、以下に記載した諸材料及び装
置を用意する。(ィ} メッキ槽:内径寸法が縦4比泳
、横25伽、深さ50肌の塩化ピニル製箱型メッキ槽に
1 被メッキ物:長さ30肌×幅15肌×厚さ2伽の黄
鋼板し一 陽極:長さ30弧×幅15伽厚さIQ岬のメ
ッキ用ニッケル電極〇 遮蔽板:長さ30仇×幅15肌
×厚さ2脚の黄銅板にこの遮蔽板を上下移動させると共
に通電する目的から、その一端に塩化ビニル被覆の電線
を接続する。
Before plating, first prepare the materials and equipment described below. (A) Plating tank: 1 box-shaped plating tank made of pinyl chloride with an inner diameter of 4 mm vertically, 25 mm wide, and 50 mm deep.Object to be plated: 30 mm long x 15 mm wide x 2 mm thick. Yellow steel plate Anode: Nickel electrode for plating with length 30 arcs x width 15 arcs and thickness IQ cape Shielding plate: Move this shielding plate up and down on a brass plate of length 30 arcs x width 15 arcs x thickness 2 feet. A vinyl chloride-coated electric wire is connected to one end for the purpose of both powering and energizing.

的 陰極拾具:被メッキ物及び遮蔽板の両方をメッキ槽
中に固定し、且つ相方の間隔を常に5側に保つ様に作ら
れ、同時に被メッキ物との接点を介して核メッキ物に陰
極電流を供給する為の機能をもった治具日 〆ッキ液:
硫酸ニッケル(NiS04・餌20)300g/夕、塩
化ニッケル(NiC12・細20)45g/夕、ホウ酸
(日3B03)3舷/そ及びメッキ光沢剤としてアクナ
B‐,20の‘/そ、アクナB‐21の【/夕(アクナ
B‐,及びB−2はいずれも商品名)より成るメッキ液
40〆を蓮浴し、活性炭及び空軍解等の一般的な手段に
よって交雑物を除いたもの次にメッキの条件でるが、p
H4.0、液温50つ○、電流密度4A/dの則ち、電
源の二次側電流値で1船、そして遮蔽板の移動を上から
下へと1回とし、その速度を1仇肋/分の定速とした。
Cathode pick-up tool: It is made to fix both the object to be plated and the shielding plate in the plating tank, and always keep the distance between the two sides at 5 sides, and at the same time pick up the object to be plated to the nuclear plating object through the contact with the object to be plated. A jig with the function of supplying cathode current.Filling liquid:
Nickel sulfate (NiS04, bait 20) 300g/night, nickel chloride (NiC12, fine 20) 45g/day, boric acid (Japanese 3B03) 3 sides/side and as a plating brightener Acuna B-, 20'/side, Acuna B-21 [/Yu (Akuna B- and B-2 are both trade names) plating solution made of 40% lotus bath, and remove any contaminants by common means such as activated carbon and air force dissolution. Next is the plating conditions, p
H4.0, liquid temperature 50 degrees, current density 4A/d, the secondary current value of the power supply is one ship, and the shield plate is moved once from top to bottom, and the speed is one enemy. The speed was set at a constant speed of ribs/minute.

以上の如きメッキ装置及びメッキ条件にて、シリコン整
流器による三相全波の直流で3粉ご間の電気メッキを行
った結果、被メッキ物上に、その一端、約3肌を除いて
全面が光沢状のニッケルメッキを得た。
Using the plating equipment and plating conditions as described above, electroplating was performed between three powders using a three-phase full-wave direct current using a silicon rectifier. A bright nickel plating was obtained.

電解式メッキ厚測定器を用いて、被メッキ物の長さ方向
に3cの間隔でメッキ厚を測定した結果は第2図に示す
通りであり、極めて精度の高いテーパーメッキである事
が分かる。
The results of measuring the plating thickness at intervals of 3c in the length direction of the object to be plated using an electrolytic plating thickness measuring device are shown in FIG. 2, and it can be seen that the taper plating is extremely accurate.

実施例 2 黄鋼板上に、メッキ厚が、その縦断面形状に於いて曲線
状に変化したニッケルのテーパーメツキを得る為のメッ
キを行った。
Example 2 A yellow steel plate was plated to obtain tapered nickel plating in which the plating thickness varied in a curved shape in its longitudinal cross section.

メッキに使用する諸材料及び装置は、実施例1に於ける
口被メッキ物及び二遮蔽板以外の全てもそのまま使用し
、被メッキ物及び遮蔽板については、実施例1の場合と
同じ材質、形状のものを用意した。次にメッキの条件で
あるが、pH4.0、液温48℃、陰極電流密度4A/
dめ、即ち、電源の二次側電流値で1船、そして遮蔽板
の移動を下から上へ1回とした。
All of the materials and equipment used for plating were the same as in Example 1 except for the mouth plated object and the second shielding plate, and the plated objects and shielding plates were made of the same materials as in Example 1. I prepared a shape. Next, the plating conditions are pH 4.0, liquid temperature 48°C, cathode current density 4A/
d, that is, the secondary current value of the power supply was one ship, and the shield plate was moved once from the bottom to the top.

遮蔽板の移動速度は一定で無く、鱒段可変遠モーターの
ギアー比を、メッキ中に於いて遮蔽板の移動速度が毎分
5側〜35肌までの範囲で次第に遠くなる様に、手動で
操作した。以上の如きメッキ装置及びメッキ条件にて、
シリコン整流流器による三相全波の直流で30分間の電
気メッキを行った結果、被メッキ物上に、その一端、約
5伽を除いて全面が光沢状のニッケルメッキを得た。電
解式メッキ厚測定器を用いて、被メッキ物の長さ方向に
3肌間隔でメッキ厚を測定した結果は第3図に示す通り
であり、遮蔽板の移動速度を任意に変化させる事によっ
て、任意の曲線上に変化したテーパーメッキが得られ事
が分かる。
The moving speed of the shielding plate is not constant, and the gear ratio of the trout stage variable distance motor is manually adjusted so that the moving speed of the shielding plate becomes gradually farther in the range of 5 side to 35 skin per minute during plating. operated. With the plating equipment and plating conditions as above,
As a result of electroplating for 30 minutes using a three-phase full-wave direct current using a silicon rectifier, glossy nickel plating was obtained on the entire surface of the object except for one end, about 5 togs. The results of measuring the plating thickness at three skin intervals in the length direction of the object to be plated using an electrolytic plating thickness measuring device are shown in Figure 3. By arbitrarily changing the moving speed of the shield plate, It can be seen that taper plating that changes along an arbitrary curve can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る電気メッキ法の大略と一例を、
模型的に描いて説明した図である。 図中、Aは陽極、Bは陰極、Cは陰極治具、Dは遮蔽板
であり、1はメッキ槽、2は被覆銅線、3は滑車、4は
銅線、5は減速機、6は無段可変速モーターである。第
2図及び第3図は各々、実施例1及び実施例2に於ける
テーパーメッキのメッキ厚変化の実測値を、グラフにし
て説明したものである。 図中イはメッキ厚(単位:ミクロン)、口はメッキ厚の
測定位置(メッキ板の一端からの距離:センチメートル
)、ハは各測定位置に於けるメッキ厚の実測値を連結し
た線であり、メッキ厚変化の状態を示したものである。
第1図 第2図 第3図
FIG. 1 shows an outline and an example of the electroplating method according to the present invention.
It is a diagram drawn and explained as a model. In the figure, A is an anode, B is a cathode, C is a cathode jig, D is a shielding plate, 1 is a plating bath, 2 is a coated copper wire, 3 is a pulley, 4 is a copper wire, 5 is a reducer, 6 is a continuously variable speed motor. FIGS. 2 and 3 are graphical representations of actual measured values of changes in the plating thickness of taper plating in Examples 1 and 2, respectively. In the figure, A is the plating thickness (unit: microns), the opening is the measurement position of the plating thickness (distance from one end of the plated plate: centimeters), and C is the line connecting the actual values of the plating thickness at each measurement position. This shows the state of change in plating thickness.
Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 電気メツキ法に於いて、メツキ陰極電流の一部が流
れる様に構成された導電性の遮蔽板を用いて、メツキ作
業中に、この遮蔽板にメツキ陰極電流の一部を流しなが
ら、目的とする被メツキ物に対する当該遮蔽板の遮蔽部
分を任意に変化させる事により目的とする被メツキ物上
に電着されるメツキの厚さを、任意に変化せしめる事を
特徴とした電気メツキの方法。
1 In the electroplating method, a conductive shielding plate configured to allow a part of the plating cathode current to flow is used. An electroplating method characterized by arbitrarily changing the thickness of the plating to be electrodeposited on the object to be plated by arbitrarily changing the shielding part of the shielding plate for the object to be plated. .
JP2316280A 1980-02-26 1980-02-26 electroplating method Expired JPS604278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2316280A JPS604278B2 (en) 1980-02-26 1980-02-26 electroplating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2316280A JPS604278B2 (en) 1980-02-26 1980-02-26 electroplating method

Publications (2)

Publication Number Publication Date
JPS56119792A JPS56119792A (en) 1981-09-19
JPS604278B2 true JPS604278B2 (en) 1985-02-02

Family

ID=12102907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2316280A Expired JPS604278B2 (en) 1980-02-26 1980-02-26 electroplating method

Country Status (1)

Country Link
JP (1) JPS604278B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110328624A (en) * 2019-07-26 2019-10-15 郑州磨料磨具磨削研究所有限公司 A kind of deposition fixture and its application method for special-shaped electroplating abrasion wheel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6149432A (en) * 1984-08-18 1986-03-11 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPH03146691A (en) * 1989-05-02 1991-06-21 Yamamoto Tokin Kogyosho:Kk Plating method for forming satin surface and lustrous surface in the same stage
GB9822457D0 (en) * 1998-10-15 1998-12-09 Central Research Lab Ltd Electro-plated structure with varying thickness
EP2045370A1 (en) * 2007-10-02 2009-04-08 Siemens Aktiengesellschaft Method for electrochemical removal of a metal coating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110328624A (en) * 2019-07-26 2019-10-15 郑州磨料磨具磨削研究所有限公司 A kind of deposition fixture and its application method for special-shaped electroplating abrasion wheel
CN110328624B (en) * 2019-07-26 2020-07-31 郑州磨料磨具磨削研究所有限公司 Deposition fixture for special-shaped electroplating grinding wheel and using method thereof

Also Published As

Publication number Publication date
JPS56119792A (en) 1981-09-19

Similar Documents

Publication Publication Date Title
Landolt et al. High rate anodic dissolution of copper
Isaacs et al. The electrochemical response of steel to the presence of dissolved cerium
Notter et al. Porosity of electrodeposited coatings: its cause, nature, effect and management
EP0184972A2 (en) Surface penetrant inspection test piece having varying thickness plating
JPS604278B2 (en) electroplating method
Michel et al. Corrosion behaviour of point‐by‐point wire and arc additively manufactured steel bars
JP3185191B2 (en) High speed electroplating test equipment
Kerr et al. Porosity and corrosion rate measurements for electroless nickel deposits on steel using electrochemical techniques
Alkire et al. The role of conductivity variations within artificial pits during anodic dissolution
JP3849338B2 (en) Method for evaluating weather resistance of steel and weather resistance measuring apparatus
Saeedikhani et al. Electrochemical modeling of scanning vibrating electrode technique on scratched and inclined surfaces
Roos et al. Coulometric measurement of the porosity in thin nickel coatings
Worsley et al. Influence of remote cathodes on corrosion mechanism at exposed cut edges in organically coated galvanized steels
Łosiewicz et al. Use of scanning vibrating electrode technique to localized corrosion evaluation
Butts et al. Structure and grain size of electrodeposited copper
US5425870A (en) Multipurpose electrolytic meter
Tan Studying non-uniform electrodeposition using the wire beam electrode method
GB2054865A (en) Process for the rapid determination of the resistance of corrosion of an electrophoretic coating, and apparatus for its accomplishment
CN112129825A (en) Oxide film detection method and oxide film detection device
Tan et al. Characterising nonuniform electrodeposition and electrodissolution using the novel wire beam electrode method
CN110261296A (en) A kind of spot corrosion simulation test device and method
JP2513964B2 (en) Pinhole evaluation method for inorganic material coatings based on iron-based materials
Hack Development and use of astm standard g5
CN110749485B (en) Preparation method of elongated metal material tensile sample
Ponte et al. Porosity determination of nickel coatings on copper by anodic voltammetry