JPS6040785A - Wind mill generator - Google Patents

Wind mill generator

Info

Publication number
JPS6040785A
JPS6040785A JP58147800A JP14780083A JPS6040785A JP S6040785 A JPS6040785 A JP S6040785A JP 58147800 A JP58147800 A JP 58147800A JP 14780083 A JP14780083 A JP 14780083A JP S6040785 A JPS6040785 A JP S6040785A
Authority
JP
Japan
Prior art keywords
wind
wind turbine
force
generator
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58147800A
Other languages
Japanese (ja)
Inventor
Takashi Take
武 隆志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58147800A priority Critical patent/JPS6040785A/en
Publication of JPS6040785A publication Critical patent/JPS6040785A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/04Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/10Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/13Stators to collect or cause flow towards or away from turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

PURPOSE:To reduce the size and weight while to improve the efficiency of wind mill by employing two set of coaxially arranged conical tubular air ducts thereby increasing the dynamic energy density of wind functioning onto the wind mill. CONSTITUTION:Two set of air ducts 1, 2 are arranged coaxially while a wind mill 3 is arranged in the center of the inner air duct 1. The dynamic pressure of wind to be taken through wide opening of the inner air duct 1 will concentrate as the cross-section decreases, but since the energy is absorbed by the wind mill to reduce the wind speed, the rear-half of the inner air-duct 1 is made approximately constant while the cross-section is increased slightly to maintain balance of passing wind. The wind taken through the inner and outer air ducts 1, 2 is accelerated as the gap decreases to produce air jet, thus to induce the exhaust of wind mill.

Description

【発明の詳細な説明】 いる。風車発電機を使用してそのエネルギを回収するこ
とは可能であるが、発電力を経済的に向上させることは
容易でない。その理由は利用できる風の有効面積が風車
の直径で制限されるためで、従来の風車は大形になυこ
の大形化が台風等の気象災害に耐えられる機械的強度を
益・々必要とし、設備費に対する相対的な発電力増加が
困難である。
[Detailed Description of the Invention] Yes. Although it is possible to recover the energy using wind turbine generators, it is not easy to economically improve the power generation. The reason for this is that the effective area of wind that can be used is limited by the diameter of the wind turbine, and conventional wind turbines have become larger. Therefore, it is difficult to increase power generation relative to equipment costs.

更に風の変動が著しく空気の粘性等の影響で実際に回収
できるエネルギは理論最大値と言われる60%の数分の
一以下になることもある。また発電力の変動を補償する
には発電機を蓄電池と浮動し乍ら、その充放電によって
電気負荷に安定した電力を供給する必要がある。発電機
の利用効率も低くなるが、その定格を越える発電力に対
しては翼胴の回動によ9通風抵抗を減少し乍ら風車の出
力を制限せねばならない。
Furthermore, due to the influence of air viscosity and other factors, the actual energy that can be recovered may be less than a fraction of the theoretical maximum value of 60%. In addition, in order to compensate for fluctuations in power generation, it is necessary to float the generator with a storage battery and supply stable power to the electrical load by charging and discharging the generator. The utilization efficiency of the generator is also lowered, but when the generated power exceeds its rating, the output of the wind turbine must be limited while reducing ventilation resistance by rotating the blade body.

風速v1質量mなる空気の運動エネルギはTmv2で与
えられるが、単位時間き風と垂直な単位断面を通過する
空気の質量は密度idとすればdVに々る。従って断面
積Aに対する総運動エネルギは上(dv) V”A =
 −!−av’Aである。即ち風車が受ける2 エネルギは風車直径で決るAに比例し、風速Vの3乗に
比例することを表している。士た翼扇表面に均一に作用
する風圧をFで代表させれば、その中心点でθの角度を
もつ力Fは風車の回転軸の方向にあシ、これは第1図に
示すように累層断面に垂直方向のFlと平行方向のF2
にベクトル的に分けることができる1、これらは翼胴の
位置には関係なくその上に働く力で、Flは回転軸を支
点にする曲げモーメントであるが、翼胴が軸に支えられ
ているので吊台〜て相殺されている。これに対して]・
トは翼胴を平行方向に移動させる力であるが、その内の
回転軸に垂直方向の成分F3が風車の回転力になる。F
3−F(至)SθSinθ−T F sin 2θであ
って、θ=Oでは回転力は存在しないが、θ−〜の時に
最大回転力になる。従ってθを六から零まで変えること
によシ風卓出力は容品に加減できる。然し実際には回転
による風の流れは方向が変化するから、この関係が正確
に成り立つ訳ではない。風車は何れの方向へも自由に回
転できるが、翼胴は風に向って湾曲しているために空気
抵抗の差と流動空気による反力で、実際にはF3と反対
の方向の回転になる性質がある。これが揚力に相当する
ものであるが航空機のプロペラとは若干相異し、多翼形
風車の場合の揚力が風速でも変り不安定で速度の変動も
太きい。回転中の風車は“扇風機に似ているが、力を全
く反対に利用することになる。扇風機では電動機の固定
子を挺子にして電動機で強性的に回転せられる翼胴がF
k発生する。これに対して風車には挺子になるものはな
く風の力F3が翼胴を回転させるが、揚力を利用するの
で相対的に回転力並に回転数は著しく低い。然しFは翼
胴前後に作用する圧力Fl並にF2の差で決り、Plを
増加しF2を減少することが出力を増加し風車効率を向
上する方法になる。
The kinetic energy of air with wind speed v1 mass m is given by Tmv2, but the mass of air passing through a unit cross section perpendicular to the wind per unit time is equal to dV if the density id. Therefore, the total kinetic energy for the cross-sectional area A is (dv) V''A =
-! -av'A. In other words, the energy received by the windmill is proportional to A, which is determined by the diameter of the windmill, and is proportional to the cube of the wind speed, V. If we let F represent the wind pressure that acts uniformly on the surface of the fan, the force F having an angle of θ at its center point is directed toward the axis of rotation of the windmill, as shown in Figure 1. Fl perpendicular to the formation cross section and F2 parallel to it
1. These are the forces that act on the wing fuselage regardless of its position, and Fl is the bending moment with the rotation axis as the fulcrum, but when the wing fuselage is supported by the axis. So the hanging stand is offset. On the contrary]·
F is a force that moves the wing body in a parallel direction, and a component F3 in a direction perpendicular to the rotational axis becomes the rotational force of the wind turbine. F
3-F (to) SθSinθ−T F sin 2θ, and there is no rotational force when θ=O, but the rotational force becomes maximum when θ−~. Therefore, by changing θ from 6 to 0, the output of the wind table can be adjusted according to the capacity. However, in reality, the direction of the wind flow due to rotation changes, so this relationship does not hold exactly. A windmill can rotate freely in any direction, but because the wing body is curved toward the wind, the difference in air resistance and the reaction force caused by the flowing air actually causes it to rotate in the opposite direction to F3. It has a nature. This corresponds to lift force, but it is slightly different from an aircraft propeller, in that the lift force of multi-blade wind turbines changes depending on the wind speed, making it unstable and the speed fluctuating widely. A rotating windmill is similar to an electric fan, but it uses force in the exact opposite way.In an electric fan, the blade body, which is forcefully rotated by the electric motor using the electric motor's stator as a lever, is F.
k occurs. On the other hand, a wind turbine has no lever, and the force F3 of the wind rotates the wing body, but since lifting force is used, the rotational force and rotational speed are relatively low. However, F is determined by the difference between the pressure Fl acting before and after the blade body as well as F2, and increasing Pl and decreasing F2 is a method of increasing output and improving wind turbine efficiency.

本発明は従来の低い風車効率を改善するのが目的であり
、まだ発電機と風車間の出力協調制御を自動的に行わせ
る新しい風車発電装置に関するものである。風車は風の
エネルギに恵まれた適地で採用されるが、風車効率が改
善できれは相対的に適地の選択範囲も広がる訳である。
The present invention aims to improve the low efficiency of conventional wind turbines, and relates to a new wind turbine power generation device that automatically performs output coordination control between the generator and the wind turbine. Wind turbines are used in suitable locations blessed with wind energy, but if wind turbine efficiency can be improved, the range of suitable locations will be relatively expanded.

本発明の特長は円錐筒形風道を採用して風車に作用する
風の動的エネルギ密度を増加させることにある。これは
集光レンズ、パラボラアンテナに相当するもので、何れ
もエネルギ取り入れ面積を広げる点で同じ関係にある。
The feature of the present invention is that the conical cylindrical wind channel is adopted to increase the dynamic energy density of the wind acting on the wind turbine. This corresponds to a condensing lens and a parabolic antenna, both of which have the same relationship in terms of expanding the energy intake area.

第2図が本発明の実施例を表すものであって、簡単外断
面図によって配置を示す風車発電装置の説明図であるっ
従来は風の利用面積が風車直径で決るが、これと同じ開
ロ面積ヲ有する円錐筒形風道で置き換えると考えてもよ
い。2組の風道fll+21は同心配置から成り、内部
風道(11の中央部に風車(3)がある。風車の回転は
傘形歯車(41(5)”を介して発電機の回転子(6)
に伝えられ、その固定子(力は風車の支柱(8)に固定
されている。従って(11の広い開口部から取入れられ
る風の動圧は断面積の縮少に従って風車に集中されるが
、風車によってエネルギを吸収された風速は減少するの
で、通過風量が平衡を保つために(11の後半部は略一
定で断面積を若干広げである。また内外風道間から取入
れた風は間隙の縮少に従って加速され言わばゼット気流
になり、これは霧吹きのように空気摩擦を利用する吸引
力で風車の損気を誘い出すのが目的である。そのために
F2を強制的に下げることができるが、風道(11の後
端に支持された整流体(9)が合理的にこれ全助けると
共に若干捻りを与えられた空気流動を更に均一化する作
用を兼ねている。従って風の利用面積は内外風道で分離
されて、風車の前後両面から有効圧力を改善して風車効
率を向上させることができる。従来の一般風車に比較す
れば風車直径が小さくなり軽量化されることによって、
機械的損失を少くし相対的には台風等に耐えられるだめ
の機械的強度に対しても軽量化が可能になる。換言すれ
ば回転部分を必要とする風車は風車効率の改善によって
軽量化するが、減少できない風の利用面積を風道で補い
、風道は回転しない性質を利用してその軽量−化も同時
に可能にしている。これは総合的に信頼度を犠牲にしな
いで設備費を減少した経済的な風車発電を目的とするも
のである。発電機の容量は基準風速によって決めねばな
らないが、風車効率はこの場合に最大になるよう選定さ
れる。元来基準風速は一定で使用されることが望ましい
が、これを超過した場合の発電機の過負荷を避けるには
風車出力・を制限せねばならない。エネルギ源としての
風は費用に無関係であるから、翼胴の傾斜角を変えて回
収エネルギの一部を捨てることになり、この場合には風
車効率を犠牲にしても差支はなく、これが所謂ピ。
Fig. 2 shows an embodiment of the present invention, and is an explanatory diagram of a wind turbine power generator showing the arrangement using a simple external sectional view. It may be considered to replace it with a conical cylindrical air duct having a larger area. The two sets of wind ducts FLL+21 are concentrically arranged, and there is a wind turbine (3) in the center of the internal air duct (11).The rotation of the wind turbine is controlled by the generator rotor ( 6)
is transmitted to its stator (the force is fixed to the wind turbine column (8). Therefore, the dynamic pressure of the wind taken in through the wide opening (11) is concentrated on the wind turbine as the cross-sectional area decreases; The wind speed that absorbs energy by the wind turbine decreases, so in order to keep the passing air volume in balance (the latter half of 11 is approximately constant and the cross-sectional area is slightly expanded), the wind taken in from between the inner and outer wind channels is As it decreases, it accelerates and becomes a so-called jet air current, and the purpose of this is to draw out the loss of air from the wind turbine with the suction force that uses air friction like a mist.For this purpose, F2 can be forcibly lowered, but the The flow regulator (9) supported at the rear end of the airway (11) rationally assists this process and also acts to further equalize the slightly twisted air flow.Therefore, the area used for the wind is equal to the internal and external wind. By being separated on the road, it is possible to improve the effective pressure from both the front and rear sides of the wind turbine and improve the efficiency of the wind turbine.Compared to conventional general wind turbines, the diameter of the wind turbine is smaller and the weight is lighter.
Mechanical loss can be reduced, and the weight can be reduced relative to the mechanical strength required to withstand typhoons and the like. In other words, wind turbines that require rotating parts can be made lighter by improving wind turbine efficiency, but the unreduced wind usage area can be compensated for by wind ducts, and by taking advantage of the non-rotating nature of wind ducts, it is also possible to reduce their weight at the same time. I have to. This is aimed at economical wind turbine power generation that reduces equipment costs without sacrificing overall reliability. The capacity of the generator must be determined by the reference wind speed, and the wind turbine efficiency is selected to maximize in this case. Originally, it is desirable to use a constant standard wind speed, but in order to avoid overloading the generator if this standard wind speed is exceeded, the wind turbine output must be limited. Since wind as an energy source is cost-independent, some of the recovered energy is discarded by changing the inclination angle of the wing body, and in this case there is no harm in sacrificing wind turbine efficiency, which is the so-called Pi.

予制御に相当している。蓄電池の充電電流は発電機との
差電圧で決るが、一般に差電圧は小さく風速の変動に関
らず発電機電圧をこの差電圧の範囲内に維持せねばなら
ない。発電機の定格電流を越えることは許されないから
、実際には常に定格電流を維持し乍らこれを一定に保つ
ようピッチ制御が行われる。定格電流によって蓄゛屯池
は急速に充電できるが基準風速以上の場合に限られ、発
電機電圧が蓄電池電圧以下になる風速では充電は不可能
であり、発電機への放電は阻止されねばならない。従っ
て実際には風速変化に伴い蓄電池は間歇的に充電される
状態に彦る。然し蓄電池は充放電作用で発電力の変動を
補償するだけであって、電気負荷の全電力はすべて発電
機から供給されることになる。尚蓄電池の過充電を避け
るには電量計を挿入して充放電積算値が零以下になる時
、即ち100%充電を越えると発電機の調整電流値を自
己放電電流まで下げる必要がある。
This corresponds to preliminary control. The charging current of the storage battery is determined by the differential voltage between the battery and the generator, but the differential voltage is generally small and the generator voltage must be maintained within this differential voltage range regardless of fluctuations in wind speed. Since it is not allowed to exceed the rated current of the generator, pitch control is actually performed to keep the rated current constant at all times. The storage battery can be charged rapidly with the rated current, but only when the wind speed is above the standard wind speed; charging is not possible at wind speeds where the generator voltage is below the storage battery voltage, and discharge to the generator must be prevented. . Therefore, in reality, the storage battery reverts to being charged intermittently as the wind speed changes. However, the storage battery only compensates for fluctuations in power generation through charging and discharging, and the entire power of the electrical load is supplied from the generator. In order to avoid overcharging of the storage battery, when a coulometer is inserted and the integrated charge/discharge value becomes less than zero, that is, when it exceeds 100% charge, it is necessary to lower the regulated current value of the generator to the self-discharge current.

第3図は第2図に於ける風車の断面構造並にピッチ制御
の方法を具体的に述べる説明図である。
FIG. 3 is an explanatory diagram specifically describing the cross-sectional structure of the wind turbine in FIG. 2 and the pitch control method.

即ち細長い回転円筒uOは気密を保って軸受QDO3&
介し静止円筒α3に内接して支えられる。(IOの他端
には支持腕u4で支えられた外輪qGとの間に複数個の
翼胴αe等を備え、全体がuUの中心線を軸にして自由
に回転できる。捷だ静止円筒03は風道内に固定され、
風の取り入れ口に近い風道の前半部で(I3に円柱状回
動軸(lηが取シ付けられる。これは発電機の回転軸を
内蔵し、支柱(8)で支えられだま寸風道の通風力でj
風車を常に風の方向に向けるためである。け′θの回転
力は通風力の内の風の方向との間にある偏差角に比例し
た分力と071の軸から風車1での距離とを乗じた値に
なる。一方発電機の回転軸には傘形歯車+4) 15+
を介して風車の方向を変えようとする反抗回転力がある
が、これは回転軸から歯車のl1g合中心までの距離に
比例する。上記2種類の距離に著しい差を設ければ、反
抗5回転力が風車の方向に力える影響を著しく小さくで
きる。翼扇回動軸U→は外輪曲に支えられたまま、他端
が放射線状に+l(Jの一端に垂直に集合して、カム機
構を介し00内の可動体(19の偏位で一部に回動烙れ
る。
In other words, the elongated rotating cylinder uO is airtightly connected to the bearings QDO3&
It is supported by being inscribed in the stationary cylinder α3. (The other end of IO is equipped with a plurality of wing bodies αe, etc. between it and the outer ring qG supported by support arm u4, and the whole can rotate freely around the center line of uU. is fixed in the wind duct,
A cylindrical rotating shaft (lη) is attached to I3 in the front half of the wind channel near the wind intake. With the ventilation force of
This is to ensure that the windmill always points in the direction of the wind. The rotational force of ke'θ is a value obtained by multiplying the distance from the axis of 071 at the wind turbine 1 by a component force proportional to the deviation angle between the wind direction and the wind direction of the ventilation force. On the other hand, the rotating shaft of the generator has a bevel gear +4) 15+
There is a counter-rotational force that tries to change the direction of the windmill through the , and this force is proportional to the distance from the rotation axis to the l1g center of the gear. By providing a significant difference between the two types of distances described above, the influence of the counter-rotational force exerted in the direction of the wind turbine can be significantly reduced. The blade fan rotation axis U → is supported by the outer ring bending, and the other end is gathered perpendicularly to one end of +l (J) in a radial manner, and the movable body in 00 (19 deviation There is a lot of rotation in the area.

これがピッチ制御であって、可動体09は03内にある
加圧体翰で再圧されるが、相対的には回転する、ので<
19と翰との間にはころがり球体CI)(ハ)が挿入さ
れている。更に(13内に固定された電動機(ハ)が減
速機Q4を介して加用8困四を偏位させる。翼胴の回動
軸(1砂金中心にしてその両側に加わる風圧が相等しく
なるようにその表面積を選ぶことによって、風圧により
て(113に作用する回転力は相殺できるので、これが
カム機構に力える影響は除かれている。これはカム機構
に必要な加圧力の増加を防ぐのが目的である。回動軸(
1&は両端で支えられているが、外輪avの遠心力によ
って張力が作用する性質があり、豫め適当な張力を保つ
ことによる外輪θQの剛性を利用し乍らその重量を軽減
できる3、この点は恰も自転車の車輪軽量化に相当する
ものである。
This is pitch control, and the movable body 09 is re-pressurized by the pressure body holder inside 03, but it rotates relatively, so <
A rolling sphere CI) (c) is inserted between 19 and the wire. Furthermore, the electric motor (c) fixed in (13) deflects the applied force through the reducer Q4. By choosing the surface area as such, the rotational force acting on 113 due to wind pressure can be canceled out, so the influence of this on the cam mechanism is eliminated. This prevents an increase in the pressurizing force required on the cam mechanism. The purpose is to rotate the rotation axis (
1& is supported at both ends, but it has the property of being subjected to tension due to the centrifugal force of the outer ring AV, and by maintaining an appropriate tension, the weight can be reduced while utilizing the rigidity of the outer ring θQ.3. This point is equivalent to reducing the weight of bicycle wheels.

元来風のエネルギ密度が低いために実際に翼胴が受ける
風圧も比較的低いが、従来の片持ちとは異なシ両端を支
えることによって翼胴の軽量化全容易にしてカム機構の
加圧力を減少させる効果がある。これらの特長ケ積重ね
る上記の構造が回転円筒IO並に静止円筒α4の直径を
小さくして、風道(11内に於ける通風の妨害を少くす
ることを目的にしえたものが第5図である。回動軸uB
は挿め発条の力で最適の位置に保たれているが、第5図
に於て可動体θ9が押し下げられると例えばμaに付属
するレバーを回転偏位させ、これがピッチ制御に相当す
る訳である。その回動範囲は約135°以下でこれを、
越えることはない。捷だ台風等による無理々力が風道で
保護さ井鷺車に加わることはビ、チ制御によって自動的
に除かれるが、風道(2)はその中作で閉じる発条の力
で閉塞されてゼット気流全発生するが、台風等によって
内圧が異常に増加する緊急時には連名的に開放されるの
で無理な通風力の増加を自動的に避けることができる。
Since the energy density of the wind is originally low, the wind pressure actually applied to the wing fuselage is relatively low.However, by supporting both ends of the wing fuselage, which is different from the conventional cantilever structure, it is possible to reduce the weight of the wing fuselage, making it easier to pressurize the cam mechanism. It has the effect of reducing Figure 5 shows a structure in which these features are combined to reduce the diameters of the rotating cylinder IO as well as the stationary cylinder α4 to reduce the obstruction of ventilation in the air passage (11). Yes.Rotation axis uB
is maintained at the optimum position by the force of the insert spring, but when the movable body θ9 is pushed down in Fig. 5, the lever attached to μa, for example, is rotated and deflected, which corresponds to pitch control. be. Its rotation range is approximately 135° or less,
It will never be surpassed. The unreasonable force exerted on the Isagi car protected by the wind path is automatically removed by the B and C control, but the wind path (2) is blocked by the force of the spring that closes with the intermediate work. However, in the event of an emergency where the internal pressure increases abnormally due to a typhoon, etc., it can be opened jointly, automatically avoiding an unreasonable increase in ventilation force.

太陽熱発電に広い利用面積を必要とするのと同様に風道
の開口面積も広くなるが、これによって無理な外力が除
かれるのでj風道の軽量化は比較的容易になる。
Just as solar thermal power generation requires a large usable area, the opening area of the wind duct also becomes large, but this removes unreasonable external forces, making it relatively easy to reduce the weight of the wind duct.

要するに本発明の特長は風の利用面積を変えることなく
、風道全利用して風車の小形軽量化と風車効率改善を可
能にし、ピッチ制御と外部風道の開閉扉の作用で気象災
害による被害を少くした経済的な風車発電装置にある。
In short, the features of the present invention are that it makes it possible to reduce the size and weight of wind turbines and improve wind turbine efficiency by making full use of the wind duct without changing the area where the wind can be used. This is an economical wind turbine generator with less energy.

従って風車発電に於ける根本的な欠陥である経済性を改
善できると同時に、自動的なピッチ制御による保守の簡
易化と信頼度の向上を兼ねていることになる。
Therefore, it is possible to improve economic efficiency, which is a fundamental flaw in wind turbine power generation, while at the same time simplifying maintenance and improving reliability through automatic pitch control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は風車の翼扇に作用するj賦圧をベクトル図で示
し、第2図は本発明の風車発電装置の簡単な断面配置を
表す説明図、第3図はその風車部分の断面構造を示す説
明図である。第4図は翼扇回動軸の配置を回転円筒の垂
直断面で表す説明図で、これを展開図に置換えたものが
第5図である。 (11・・・・・・・内部風道、(2)・・・・・・・
・・外部風道、(3)・・・・・・・・風車(4) (
51・・−傘形歯車、(6)・・・・・・発電機の回転
子、(7)・・・・・−発電機の固定子、(8)・・・
・・風車の支柱、(9)・・・・・整流体、+HJ・・
・・・回転円筒、uO@・ ・・軸受、(13・・・・
静止円筒、ullr・・−支持腕、uO・・・・外輪、
(IO・・・・・翼扇、07) ・円柱状回動軸、α急
 ・翼扇回動軸、09・・・・可動体、Q(ト・・・・
加圧体、シW2・・・ころがり球体、(ホ)・・・・・
・電動機、0.4)・・ 減速機、(2−(ノーーーー
ー議病帥峯 11@ 寡λ1η
Fig. 1 shows a vector diagram of the pressure applied to the blade fan of a wind turbine, Fig. 2 is an explanatory diagram showing a simple cross-sectional arrangement of the wind turbine generator of the present invention, and Fig. 3 shows the cross-sectional structure of the wind turbine part. FIG. FIG. 4 is an explanatory view showing the arrangement of the blade fan rotating shafts in a vertical cross section of the rotating cylinder, and FIG. 5 is a developed view replacing this view. (11...Internal wind duct, (2)...
... External wind duct, (3) ... Wind turbine (4) (
51...-Bevel gear, (6)...Rotor of generator, (7)...-Stator of generator, (8)...
・・Windmill support, (9)・・Flow regulator, +HJ・・
... Rotating cylinder, uO@... Bearing, (13...
Stationary cylinder, ulr...-support arm, uO...outer ring,
(IO... wing fan, 07) ・Cylindrical rotation axis, α steep ・Wing fan rotation axis, 09... Movable body, Q (t...
Pressure body, W2...Rolling sphere, (E)...
・Electric motor, 0.4)・Reducer, (2-(Noーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー 11@ λ1η

Claims (2)

【特許請求の範囲】[Claims] (1) 中心線を共有する同心配置の内外2組の円錐筒
形風道と、内部風道の中央部に固定する風車と、傘形歯
車を介し風車の回転を伝える発電機と発電機の回転軸を
内蔵して風道の風上に近い前半部に固定した円柱状回動
軸とから成シ、内部風道の広い開口面積から取9人れら
れる風の動的エネルギを風車に集中し、内外風道間から
取シ入れられる風が通過断面の縮少に従って加速される
気流で風車出口に設けた整流体と共に空気摩擦による吸
引力を利用し乍ら風車前後の圧力差を増加させ、且つ風
道の通風力で常に風車を風に向けるよう円柱状回動軸を
回動させることを特長とする風車発電装置。
(1) Two pairs of conical cylindrical wind ducts (outside and outside) concentrically arranged sharing a center line, a wind turbine fixed in the center of the internal wind duct, a generator that transmits the rotation of the wind turbine through a bevel gear, and a generator. It consists of a cylindrical rotating shaft with a built-in rotating shaft fixed in the front half near the windward side of the windway, and the dynamic energy of the wind, which is extracted from the wide opening area of the internal windway, is concentrated in the windmill. The wind taken in from the inner and outer wind channels is accelerated as the cross-section of the wind turbine narrows, and the airflow is used together with a flow regulator installed at the wind turbine outlet to increase the pressure difference between the front and rear of the wind turbine while utilizing the suction force created by air friction. , and a wind turbine power generation device characterized in that a cylindrical rotation shaft is rotated so that the wind turbine is always directed toward the wind by the ventilation force of the wind duct.
(2)風道の中心線上に固定された部上円筒に内接し乍
ら軸受を介して支えられる回転円筒と、回転円筒の後端
部に放射線状で集合する翼端回動軸と、その回動軸端の
カム機構を介してこれを一勢に回動させる回転円筒内の
可動体と、ころが9球体を介して回転する可動体に接触
し乍らこれを加圧する静止円筒内の加圧体と、加圧体に
偏位をカえる静止円筒内に固定された電動機並に減速機
とから成シ、翼端回動軸を中心にし両側に占める教書面
積を選んでこれが風圧によってその回動軸に与える回転
力を相殺させると共に、翼端回動軸の先端を円周として
連ねる外輪とでその回動軸を両端で支えて張力を保ち乍
ら、翼端回動軸の回動量全電動機によって加減すること
を特長とする風車発電機の出力制御装置。
(2) A rotating cylinder that is inscribed in an upper cylinder fixed on the center line of the airway and supported via a bearing, a blade tip rotation axis that gathers in a radial shape at the rear end of the rotating cylinder, and A movable body inside a rotating cylinder that rotates the rotating body in one force via a cam mechanism at the end of the rotating shaft, and a stationary cylinder whose rollers contact the rotating movable body through nine spheres and pressurize it. It consists of a pressurizing body, an electric motor fixed in a stationary cylinder, and a speed reducer that exerts deflection on the pressurizing body. In addition to canceling out the rotational force applied to the rotary shaft, the rotary shaft is supported at both ends by an outer ring that connects the tip of the rotary shaft as a circumference, and the tension is maintained while the rotary force of the rotary shaft is This is an output control device for a wind turbine generator, which is characterized in that the output is controlled by an all-electric motor.
JP58147800A 1983-08-12 1983-08-12 Wind mill generator Pending JPS6040785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58147800A JPS6040785A (en) 1983-08-12 1983-08-12 Wind mill generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58147800A JPS6040785A (en) 1983-08-12 1983-08-12 Wind mill generator

Publications (1)

Publication Number Publication Date
JPS6040785A true JPS6040785A (en) 1985-03-04

Family

ID=15438497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58147800A Pending JPS6040785A (en) 1983-08-12 1983-08-12 Wind mill generator

Country Status (1)

Country Link
JP (1) JPS6040785A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622572U (en) * 1992-03-16 1994-03-25 嘉之 松田 Wind turbine for wind power generator
JP2010508459A (en) * 2006-10-28 2010-03-18 ヘールニヒ マリア Wind power generator, generator for generating power from the atmosphere, and method for generating power from the moving atmosphere
JP2020101151A (en) * 2018-12-25 2020-07-02 株式会社グローバルエナジー Water turbine device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622572U (en) * 1992-03-16 1994-03-25 嘉之 松田 Wind turbine for wind power generator
JP2010508459A (en) * 2006-10-28 2010-03-18 ヘールニヒ マリア Wind power generator, generator for generating power from the atmosphere, and method for generating power from the moving atmosphere
JP2020101151A (en) * 2018-12-25 2020-07-02 株式会社グローバルエナジー Water turbine device

Similar Documents

Publication Publication Date Title
US6278197B1 (en) Contra-rotating wind turbine system
US6692230B2 (en) Balanced, high output, rapid rotation wind turbine (Weathervane multi-rotor windmill)
US8668433B2 (en) Multi-turbine airflow amplifying generator
US8354759B2 (en) Wind powered apparatus having counter rotating blades
RU2124142C1 (en) Wind-driven electric plant
US7868476B2 (en) Wind-driven electric power generation system
CA1266005A (en) Wind turbine &#34;runner&#34; impulse type
US20120003077A1 (en) Annular multi-rotor double-walled turbine
US20150159628A1 (en) Offshore contra rotor wind turbine system
WO2008121378A1 (en) Wind-driven electric power generation system
Shuqin Magnetic suspension and self-pitch for vertical-axis wind turbines
JP2012092651A (en) Wind power generation apparatus
JPS6040785A (en) Wind mill generator
JPH1162813A (en) Sabonius-type wind mill and wind-power generating device using sabonius-type wind mill
CN209959395U (en) High-speed shaft protection device of wind driven generator
CN209275238U (en) Wind-power engine room wheel hub transport support with guiding function
CN116745518A (en) Wind power generation device capable of being mounted on mobile body
CN201103511Y (en) Variable oar wind wheel
CN211202200U (en) Braking device for wind driven generator
US20170107972A1 (en) Vertical wind turbine
CN109989872B (en) Ocean current energy power generation device with automatic adjusting function
CN103147927B (en) Controlled rotating fresnel lens array vacuum magnetic suspension wind power system
JP7085161B1 (en) A wind turbine with an automatic control mechanism for wind turbine blades using an elastic body
RU2118700C1 (en) Windmill electric generating plant
CN202832975U (en) Two-vane centrifuge variable-pitch wind driven generator