JPS6027376B2 - Measuring method of refractive index of pharmaceuticals, etc. - Google Patents

Measuring method of refractive index of pharmaceuticals, etc.

Info

Publication number
JPS6027376B2
JPS6027376B2 JP2124878A JP2124878A JPS6027376B2 JP S6027376 B2 JPS6027376 B2 JP S6027376B2 JP 2124878 A JP2124878 A JP 2124878A JP 2124878 A JP2124878 A JP 2124878A JP S6027376 B2 JPS6027376 B2 JP S6027376B2
Authority
JP
Japan
Prior art keywords
refractive index
line
immersion liquid
immersion
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2124878A
Other languages
Japanese (ja)
Other versions
JPS54114282A (en
Inventor
厚 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KENBI KOGAKU KENKYUSHO KK
Original Assignee
KENBI KOGAKU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KENBI KOGAKU KENKYUSHO KK filed Critical KENBI KOGAKU KENKYUSHO KK
Priority to JP2124878A priority Critical patent/JPS6027376B2/en
Publication of JPS54114282A publication Critical patent/JPS54114282A/en
Publication of JPS6027376B2 publication Critical patent/JPS6027376B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は浸液法により結晶性医薬品等の屈折率を簡易に
高精度で測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for easily and highly accurately measuring the refractive index of crystalline pharmaceuticals, etc. using an immersion method.

偏光顕微鏡を用い、浸液法により結晶性物質の屈折率を
測定する方法は、岩石学、鉱物学等の分野では旧くから
用いられていたが、これを医薬品等の有機化合物の分野
にまで応用しようとする詠みは、本発明者が薬学雑誌第
59巻第131頁(1939)に発表したのを庵矢とす
る。
The method of measuring the refractive index of crystalline substances using a polarizing microscope using the immersion method has long been used in fields such as petrology and mineralogy, but this method has also been applied to the field of organic compounds such as pharmaceuticals. The poem I am trying to write is the one published by the present inventor in Pharmaceutical Journal, Volume 59, Page 131 (1939).

浸液法では、屈折率約1.45〜1.75の間の浸液系
列を作成しておき、結晶を浸液で処理して屈折率の異同
を観察しながら、結晶と同一の屈折率を示す浸液を探し
て測定操作を進めるのであるが、有機医薬品等の屈折率
をこの方法で測定しようとすると、浸液の種類によって
は結晶が浸液に溶解するものもあり、また、測定の精度
を上げてたとえば士0.001程度の精度で測定しよう
とすれば100種以上もの異なる浸液を作成し極めて微
弱なべッケ線の動きを観察しなければならず、また実験
回数もそれに伴って多くなるので、測定操作としては極
めて溢路の多いものとされていた。
In the immersion liquid method, an immersion liquid series with a refractive index of approximately 1.45 to 1.75 is prepared, and the crystal is treated with the immersion liquid to observe differences in refractive index. However, when trying to measure the refractive index of organic pharmaceuticals using this method, crystals may dissolve in the immersion liquid depending on the type of immersion liquid. In order to increase the accuracy of measurement to an accuracy of about 0.001, for example, it would be necessary to create more than 100 different types of immersion liquid and observe the extremely weak movement of Becke lines, and the number of experiments would also increase. As a result, the measurement operation was considered to involve an extremely large number of overflows.

このように、浸液法には欠点がみられるにも拘わらずく
この方法による測定は、ごく徴量(たとえば0.2〜2
の9)の試料で分子種の同定確認ができること、同一分
子種で数種の多型や擬多形(pseudopoMmor
phism)に現われる場合には各型(form)の鑑
別を、たとえばX線回折、赤外線吸収スペクトルの測定
等の複雑な機械装置を用いることなく実施しうろこと、
2種以上の物質が混合している場合にも相互に分離する
ことなく鑑別しうるなどの利点があるので、前述した欠
点さえ解消するならば、医薬品の鑑別、同定、識別等の
目的に病院薬局、調剤薬局等で広く利用されるべき方法
と考えられる。
In this way, despite the drawbacks of the immersion method, measurements using this method are limited to only a small amount (for example, 0.2 to 2
It is possible to confirm the identity of the molecular species using the sample in step 9), and to identify several types of polymorphisms and pseudopolymorphisms (pseudopoMmor) in the same molecular species.
phism), the identification of each form can be carried out without using complex mechanical equipment, such as X-ray diffraction, infrared absorption spectrum measurement, etc.
It has the advantage that even when two or more substances are mixed, they can be differentiated without separating them from each other. This method is considered to be widely used in pharmacies, dispensing pharmacies, etc.

本発明者は、このような考えから、X線回折法や赤外線
吸収の測定などの装置を利用し得ない状況下で医薬品等
の結晶型を正確迅速に評価判別するための精密な屈折率
測定法を種々検討した結果、本発明の方法を完成した。
Based on this idea, the present inventor developed a method for precise refractive index measurement to accurately and quickly evaluate and determine the crystal type of pharmaceuticals, etc., in situations where equipment such as X-ray diffraction or infrared absorption measurement cannot be used. As a result of examining various methods, the method of the present invention was completed.

すなわち、本発明は、偏光顕微鏡を使用する浸液法によ
り結晶性薬品の屈折率を測定する方法において、屈折率
差0.004ないし0.00競華度の間隔となるように
浸液の系列を作成し、被検薬品の各浸液に対するべッケ
線強度を評点して各浸液の屈折率を縦髄とし機軸をべッ
ケ線強度とするチャート上にプロットし、各プロットを
結ぶ直線とべッケ線強度0の中心線との交点の屈折率を
縦軸から続みとることを特徴とする医薬品等の屈折率の
測定法である。本発明の方法においては、屈折率差0.
004ないし0.006程度の間隔になるような浸液の
系列が用いられるが、浸液としては通常浸液法による屈
折率の測定に用いられるもののいずれもが適宜に用いら
れる。
That is, the present invention provides a method for measuring the refractive index of a crystalline drug by an immersion method using a polarizing microscope, in which a series of immersion liquids are used so that the refractive index difference is at intervals of 0.004 to 0.00 competitive degrees. Create a chart, evaluate the Becke line intensity for each immersion liquid of the test drug, plot it on a chart with the refractive index of each immersion liquid as the vertical axis and the Becke line intensity as the axis, and connect each plot. This is a method for measuring the refractive index of pharmaceuticals, etc., which is characterized in that the refractive index at the intersection of a straight line and the center line with Becke line intensity of 0 is taken from the vertical axis. In the method of the present invention, the refractive index difference is 0.
A series of immersion liquids with intervals of about 0.004 to 0.006 are used, and any immersion liquid that is normally used for measuring refractive index by the immersion method can be used as appropriate.

たとえばノルマル・デカン(ナトリウムD線に対する2
0qoにおける屈折率(n該)1.420)、オリーブ
油(n色ol.470)、シーダーウツド・油(n容1
.522)、Q−プロモナフタレン(n答1.6斑)、
ヨウ化メチレン(n色01.703)およびイオウ等お
よびこれらの相隣る浸液を適宜に混合して0.004な
いし0.00鏡壁度の屈折率差を有する系列が準備され
る。従来公知の浸液法による屈折率の測定方法において
精度土0.001を得ようとすると、屈折率1.450
から1.750までの間の試料の測定には200〜30
0種の浸液を屈折率0.001〜0.002の間掛で調
製する必要があったが、本発明の方法ではその4ないし
5分の1の浸液を調製するだけで充分である。屈折率の
測定にあたっては、偏光顕微鏡を使用して浸液法によっ
て測定する際に通常行なわれる手段が便宜に適用される
For example, normal decane (2 for the sodium D line)
Refractive index at 0qo (n volume) 1.420), olive oil (n color ol. 470), cedar wood oil (n volume 1
.. 522), Q-promonaphthalene (n answer 1.6 spots),
A series having a refractive index difference of 0.004 to 0.00 specularity is prepared by suitably mixing methylene iodide (n color 01.703), sulfur, etc., and their adjacent immersion liquids. If you try to obtain a precision of 0.001 using the conventional method of measuring the refractive index using the immersion method, the refractive index will be 1.450.
200-30 for measuring samples between 1.750 and 1.750
It was necessary to prepare an immersion liquid of type 0 with a refractive index between 0.001 and 0.002, but with the method of the present invention, it is sufficient to prepare an immersion liquid with a refractive index of 4 to 1/5 of that. . In measuring the refractive index, a method commonly used when measuring by an immersion method using a polarizing microscope is conveniently applied.

すなわち、測定にあたって使用される光源は白色光でも
よく、単色光であってもよい。単色光としては、例えば
ナトリウムのD線が多用されるが、他の単色光であって
もよいのはもちろんである。しかし、白色光で測定する
ときは、単色光を用いるときに比較すればやや精度の劣
る場合もあるので、暗室または半暗室等のなるべく暗い
室内で単色光を用いて測定するのが望ましい。測定にあ
たっては、屈折率を測定しようとする試料の少量をスラ
イドグラス上にとり、これに浸液1−2滴を滴加してカ
バーグラスで抑え、まず偏光顕微鏡の直交ニコル下で観
察する。ついで、測定しようとする試料の消光位で上の
ニコルをとりはずし、下のニコルを通した直線偏光で絞
りを入れて結晶の周縁部に現われる明るに線(ベッケ線
Beckeli肥)を観察する。さらに、鏡筒またはス
テージを僅かに上下して焦点をはずし、このときにべッ
ケ線が結晶周縁を内または外に出入りする方向を観察す
る。顕微鏡の対物レンズと試料との距離が遠くなるとき
べッケ線は屈折率のより高い媒体へ移動する。すなわち
、浸液の屈折率の方が試料のそれよりも高いときは、べ
ッケ線は浸液側へ移動し、逆の場合は試料側へ移動する
。従釆法による屈折率の測定では、この移動を追従して
多種の浸液の屈折率に対する試料の屈折率の高低を知り
、最も近い浸液の屈折率をもって試料の屈折率を知って
いた。従って、測定の精度を上げようとすれば屈折率を
わずかづつ異にする浸液を多数整えておく必要があった
わけである。一方、有機化合物の多くは浸液との屈折率
差が±0.002程度の場合にほとんど識別することが
できない。
That is, the light source used in the measurement may be white light or monochromatic light. As the monochromatic light, for example, sodium D line is often used, but it goes without saying that other monochromatic light may be used. However, when measuring with white light, the accuracy may be slightly lower than when using monochromatic light, so it is desirable to measure using monochromatic light in a room as dark as possible, such as a dark room or semi-dark room. In the measurement, a small amount of the sample whose refractive index is to be measured is placed on a slide glass, 1 to 2 drops of immersion liquid is added thereto, the sample is held down with a cover glass, and the sample is first observed under crossed Nicols of a polarizing microscope. Next, the upper Nicol is removed at the extinction point of the sample to be measured, and the linearly polarized light is passed through the lower Nicol with an aperture to observe the bright lines (Becke lines) appearing at the periphery of the crystal. Furthermore, move the lens barrel or stage up and down slightly to remove the focus, and at this time observe the direction in which the Becke lines move in or out of the crystal periphery. When the distance between the microscope objective lens and the sample increases, the Becke lines move to a medium with a higher refractive index. That is, when the refractive index of the immersion liquid is higher than that of the sample, the Becke line moves toward the immersion liquid, and in the opposite case, it moves toward the sample. In measuring the refractive index using the follow-up method, the refractive index of the sample was determined by following this movement to determine the refractive index of the sample relative to the refractive index of various types of immersion liquid, and the refractive index of the sample was determined from the refractive index of the closest immersion liquid. Therefore, in order to improve measurement accuracy, it was necessary to prepare a large number of immersion liquids with slightly different refractive indexes. On the other hand, many organic compounds can hardly be identified when the difference in refractive index with the immersion liquid is about ±0.002.

ところが本発明者の研究により、ベッケ線の強度または
明るさがある程度微弱な範囲では試料と浸液との屈折率
の差にほゞ比例することが明らかにされた。
However, the inventor's research has revealed that the intensity or brightness of the Becke line is approximately proportional to the difference in refractive index between the sample and the immersion liquid in a certain weak range.

従って、上記したようにして観察されるべッケ線の強度
を知ることにより、たとえば0.004、0.006等
の比較的屈折率差の大きい浸液を用いても、ベツケ線強
度と各浸液の屈折率とから実用上正確とみなしうる±0
.001程度の誤差で試料の屈折率を知ることが可能と
なったのである。換言すれば、試料との屈折率差±0.
003〜0.010程度における比較的強度の弱し、ベ
ッケ線においては識別困難であるが、その強さ(または
明るさ)が屈折率差に比例することを利用して試料との
屈折率差0.002の浸液の両側の(0.002よりも
大きいかまたは小さい)屈折率差をもつ浸液を用い、試
料と浸液との屈折率差を、たとえば、土0.008〜十
0.003のように拡大して測定することにより試料の
屈折率を求めることができるのである。べッケ線強度は
、結晶の屈折率が浸液の屈折率より大きいときを十10
から0とし、その反対のときを0から−10として評点
するのがよい。もちろん、この評点は十10〜一10の
間としなければならないわけではなく、正負各5であっ
ても100であってもよいが、実用上浸液と試料との屈
折率差0.010のときのべツケ線強度を正負各10程
度とすれば充分であり、それ以上細かい評点をとっても
手数がかかる割には精度は向上しない。また、あまりに
粗な評点をつけると、当然のことながら精度は低下する
。べツケ線の強度に対する評点は、結晶の屈折率と近接
した3なし、し8種程度の浸液間で求めるのがよく、多
くの場合5,6種の浸液を用いるのが本発明の方法の目
的には望ましい。たとえば浸液と結晶の1つの屈折率が
ほぼ等しい場合、ベッケ線の見えない位置からステージ
を優かづつ回転してゆくと、ベッケ線の強度が次第に増
加するから、この回転角と強度の関係から例えば浸液と
試料の屈折率差±0.010または土0.005のべッ
ケ線強度を記憶して評点の参考に資することもできる。
結晶性医薬品の顕微鏡下に観察される形状を大別すると
、例えば第1図に示されるように約6種類が存在する。
Therefore, by knowing the intensity of the Becke line observed as described above, even if an immersion liquid with a relatively large difference in refractive index, such as 0.004 or 0.006, is used, the intensity of the Becke line and each ±0, which can be considered practically accurate based on the refractive index of the immersion liquid.
.. It became possible to know the refractive index of a sample with an error of about 0.001. In other words, the refractive index difference with the sample is ±0.
Although it is difficult to identify the Becke line, which has a relatively weak intensity in the range of about 0.003 to 0.010, the refractive index difference between the sample and the sample can be determined by utilizing the fact that its intensity (or brightness) is proportional to the refractive index difference. Using an immersion liquid with a refractive index difference (greater or smaller than 0.002) on both sides of the immersion liquid of 0.002, the difference in refractive index between the sample and the immersion liquid is, for example, 0.008 to 100. The refractive index of the sample can be determined by enlarging it to .003. The Becke line intensity is 110 when the refractive index of the crystal is larger than the refractive index of the immersion liquid.
It is best to score from 0 to 0, and vice versa from 0 to -10. Of course, this score does not have to be between 110 and 110, and may be 5 on each positive or negative side or 100, but in practice, the refractive index difference between the immersion liquid and the sample is 0.010. It is sufficient to set the Bezke line strength to about 10 for each of the positive and negative directions, and even if the score is finer than that, the accuracy will not improve even though it is time-consuming. Furthermore, if the score is too rough, the accuracy will naturally decrease. It is best to evaluate the intensity of the Betzke line between immersion liquids of 3 to 8 types that are close to the refractive index of the crystal, and in most cases, 5 or 6 types of immersion liquids are used in the present invention. desirable for the purpose of the method. For example, if the refractive index of the immersion liquid and one of the crystals are approximately equal, as the stage is slowly rotated from a position where the Becke line is not visible, the intensity of the Becke line will gradually increase, so the relationship between the rotation angle and the intensity is For example, the Becke line intensity of the refractive index difference between the immersion liquid and the sample of ±0.010 or 0.005 can be memorized and used as a reference for scoring.
Roughly dividing the shapes of crystalline pharmaceuticals observed under a microscope, there are approximately six types, as shown in FIG. 1, for example.

これらのうち、b薄い板状あるいは鱗片状、またはe細
長く薄い板状の場合は、スライドグラス上に浸液処理し
てカバーグラスで押えると、結晶の平面は鏡筒軸の方向
に対して直角にいつも同一の方位をとるので、2つの消
光位において2種の屈折率が±0.001の精度で測定
され、この種の結晶では分子種、多形または凝多形の結
晶型(form)を鑑別することができる。これらの結
晶形においては、2種の屈折率が鑑別に用いられるので
、これらをキー屈折率(Keyrefl肌tivein
dices)と呼ぶことにする。第1図のcおよびdの
形状の結晶では、浸液処理に際し点線で示される長軸の
方向を軸として回転する可能性がある。c,dの形の結
晶が直消光する場合は、長軸方向の屈折率は結晶が回転
しても変化しないので、やはり±0.001以内の精度
で屈折率が測定でき、これをキー屈折率として結晶性医
薬品等の同定確認に用いることができる。aのような板
状晶またはfのような角錐状晶の場合においては、普通
メノーの乳鉢等を用い、または他の便宜の手段で結晶を
破砕して鏡検するが、明瞭な男関を有する結晶ではb,
c,dあるいはe等に属する結晶となり、キー屈折率の
測定ができるが、努関性を有せず不規則な破砕を示す場
合には一般にキー屈折率を測定することが困難である。
また、結晶形がc,dの形のつもりであっても、斜消光
する場合にあっては、キー屈折率の測定の困難なときが
ある。このように、標品についてのキー屈折率を測定し
ておけば、本発明の方法によって頚山された試料の屈折
率と比較することにより、極めて容易に試料の固定、確
認、鑑別をすることができる。
Among these, if (b) it is thin plate-like or scaly-like, or (e) it is long and thin, the plane of the crystal will be perpendicular to the direction of the lens barrel axis. Since the two types of refractive indexes are measured with an accuracy of ±0.001 at two extinction positions, it is possible to determine the molecular species, polymorphic or condensed polymorphic crystal form in this type of crystal. can be identified. Two types of refractive indexes are used for identification of these crystal forms, so these are called key refractive indexes (key refractive indexes).
We will call it ``dice''. Crystals having shapes c and d in FIG. 1 may rotate about the long axis direction shown by the dotted line during immersion treatment. When a crystal in the form c or d is directly quenched, the refractive index in the long axis direction does not change even when the crystal rotates, so the refractive index can still be measured with an accuracy within ±0.001, and this is the key refraction. It can be used as a percentage to confirm the identity of crystalline pharmaceuticals, etc. In the case of plate crystals such as a or pyramidal crystals such as f, the crystals are usually crushed using an agate mortar or other convenient means and examined under a microscope. In crystals with b,
It becomes a crystal belonging to c, d, or e, etc., and the key refractive index can be measured, but it is generally difficult to measure the key refractive index when it does not have an interlocking property and shows irregular fractures.
Furthermore, even if the crystal form is intended to be c or d, it may be difficult to measure the key refractive index if oblique extinction occurs. In this way, if the key refractive index of the specimen is measured, it will be extremely easy to fix, confirm, and differentiate the specimen by comparing it with the refractive index of the specimen decoupled by the method of the present invention. Can be done.

また試料が医薬品製剤等の混合物中に含まれる場合にも
これらを分離することなく偏光顕微鏡の鏡検と本発明の
浸液法により含有される医薬品を識別し、試料が多形等
の場合にはそのfo血をも確認することが可能である。
このような場合に例えば米国薬学会編集のナショナル・
フオーミュラリ等に収載されている医薬品の主屈折率の
表を用い、キー屈折率が主屈折率の1部に一致する場合
には、本発明の方法で測定された試料の屈折率とこれと
を比較して、試料を鑑定することができる。以下に塩酸
チアミンの屈折率の測定を例にとって、さらに具体的に
本発明の方法を説明する。この実施例に用いられた浸液
は、オリーブ油(n。=1.470)、シダーウツド油
(n。=1.522)「Q−フロモナフタレン(no=
1.658)およびョウ化メチルン(no=1.703
)およびそれらの混合物であって屈折率差0.003な
し、し0.006として5硯蓮を調製して使用した。ま
た第2図に示されるような屈折率を縦軸に、ベッケ線の
強度を横軸にとり浸液の屈折率を横軸に平行な線で示し
た屈折率測定用のチャートを用意した。このチャートで
は例えば屈折率の差0.010は縦軸10柳に、ベッケ
線強度の差5が横軸1仇岬こ、かつべッケ線強度の差十
10〜一10の範囲で評点できるように強度0の中央線
の左右に各2仇駁ずつ目盛ってある。これを詳しく第4
図に示す。
In addition, even if the sample is contained in a mixture of pharmaceutical preparations, etc., the contained pharmaceuticals can be identified by microscopic examination with a polarizing microscope and the immersion method of the present invention without separating them, and if the sample is polymorphic, etc. It is also possible to confirm the fo blood.
In such cases, for example, the National
Using a table of principal refractive indices of pharmaceuticals listed in formularies, etc., if the key refractive index corresponds to a part of the principal refractive index, compare this with the refractive index of the sample measured by the method of the present invention. By comparison, the sample can be authenticated. The method of the present invention will be explained in more detail below using the measurement of the refractive index of thiamine hydrochloride as an example. The immersion liquids used in this example were: olive oil (n. = 1.470), cedar wood oil (n. = 1.522), Q-fromonaphthalene (n. =
1.658) and methyl iodide (no=1.703
) and a mixture thereof, with a refractive index difference of 0.003 and 0.006, were prepared and used. In addition, a chart for measuring the refractive index was prepared, as shown in FIG. 2, in which the refractive index was taken as the vertical axis, the intensity of the Becke line was taken as the horizontal axis, and the refractive index of the immersion liquid was shown as a line parallel to the horizontal axis. In this chart, for example, a difference in refractive index of 0.010 is 10 on the vertical axis, a difference in Becke line strength of 5 is on the horizontal axis, and the difference in Becke line strength can be scored in the range of 110 to 110. There are two scale marks on each side of the center line where the intensity is 0. This is explained in detail in Part 4
As shown in the figure.

第4図において、ABは縦軸10帆に対応して屈折率差
0.010を表わし、BCは横軸1仇桝こ対応し、CD
は機軸をさらに1仇吻延長したものに対応する。機軸B
CDは20肋となるからべツケ線の強度の差10に対応
することになり、D点は中央線上にのる。図中に託した
A点およびB点の各屈折率nol.550およびnol
.540は一例を示すものである。A点を通って横軸に
平行線をひき中央線との交点をEとすれば、直角三角形
ABEまたはDEBにおいて斜線の角度xは、ねnxニ
AB/AEニDE/BDニ1/2×=26.5o となる。
In FIG. 4, AB corresponds to 10 squares on the vertical axis and represents a refractive index difference of 0.010, BC corresponds to 1 square on the horizontal axis, and CD
corresponds to the axis extended by one additional length. Axis B
Since CD has 20 ribs, it corresponds to a difference in intensity of Betzke lines of 10, and point D is on the center line. Each refractive index no. at point A and point B shown in the figure. 550 and nol
.. 540 shows an example. If a line is drawn parallel to the horizontal axis through point A and its intersection with the center line is E, then the angle x of the diagonal line in a right triangle ABE or DEB is nxniAB/AEniDE/BDni1/2× =26.5o.

(同様に屈折率差0.010を縦軸5柵にべッケ線強度
の差5を上記同様に横軸1物伽こ目盛れば、斜線の角度
はta似=1/4,x=14.036oとなる。)した
がって横軸に対し26.5oの角度で斜線をひけばこの
線と中央線との交点が示す屈折率が斜線と交る各浸液の
べッケ線強度、従って屈折率差に対応してくる。いいか
えれば斜線上の点はべッケ線強度で換算すればすべて同
一の屈折率を示すことになる(以下この線を等屈折率線
と呼ぶ)。斜線が機軸となす角度はこの場合は26.5
0であるが、縦軸の屈折率を例えば0.005をIQ肋
‘ことれば450となり必要に応じ任意にかえられるこ
とは勿論である。さてこの場合には便宜上チャートに2
6.50の平行線を2側間隔程度にひいておくと後に述
べるように屈折率の測定は更に便利になる。たとえば、
第5図は斜線法(斜線の角度2650)によるチャート
の一部分を示すものであるが、中央線両側の平行斜線部
(屈折率差±0.002の範囲)ではべッケ線を識別し
難い。
(Similarly, if we use the refractive index difference 0.010 on the vertical axis 5 and the difference 5 in Becke line intensity on the horizontal axis 1 scale, the angle of the diagonal line is similar to ta = 1/4, x = (14.036o.) Therefore, if we draw a diagonal line at an angle of 26.5o with respect to the horizontal axis, the refractive index indicated by the intersection of this line and the center line will be the Becke line intensity of each immersion liquid that intersects with the diagonal line, and therefore It corresponds to the difference in refractive index. In other words, all the points on the diagonal line show the same refractive index when converted to Becke line intensity (hereinafter, this line will be referred to as the equirefractive index line). In this case, the angle that the diagonal line makes with the machine axis is 26.5
0, but if the refractive index on the vertical axis is, for example, 0.005 equal to IQ, it becomes 450, which can of course be changed as desired. Now, in this case, for convenience, the chart shows 2
If parallel lines of 6.50 are drawn at a spacing between two sides, measurement of the refractive index becomes more convenient as will be described later. for example,
Figure 5 shows a part of the chart based on the diagonal line method (angle of diagonal line 2650), but it is difficult to identify the Bekke lines in the parallel diagonal line areas on both sides of the center line (within a refractive index difference of ±0.002). .

今、ある試料の屈折率(真値al)が浸液aでべツケ線
強度x(約1.7)を示した。しかしながらxは極めて
微弱で識別困難である。そこで、両側の浸液b,cを用
いてべッケ線の強度と移動の方向を測定したところ、図
に示すように明瞭なべッケ線でB点(約十7)とC点(
約一3)が得られた。したがって、試料の屈折率は斜線
BCと中央線の交点mを横切る横線と縦軸との交点al
として求められる。以上の説明は便宜上20つ0の場合
とする。塩酸チァミン(市販品、1水和物)について先
つシーダーウッド油の浸液を用い偏光顕微鏡で観察した
ところ第1図のbないしeに属する薄い板状晶で斜消光
し、2つのキー屈折率の測定が可能と見られた。べッケ
線の観察から浸液を順次塩酸チアミンの屈折率に近いも
のに換えていったところ、no=1.685の浸液でべ
ッケ線強度+6と概側された。1.685横線上に十6
をマークし、この点を通る等屈折率線上で1.695の
浸液の横線との交点を見ると−4である。
Now, the refractive index (true value al) of a certain sample shows Bezke line intensity x (approximately 1.7) in immersion liquid a. However, x is extremely weak and difficult to identify. Therefore, when we measured the strength and direction of movement of the Becke line using immersion liquids b and c on both sides, we found that the Becke line was clear as shown in the figure at point B (approximately 17) and point C (
Approximately 13) was obtained. Therefore, the refractive index of the sample is the intersection point al between the horizontal line that crosses the intersection m between the diagonal line BC and the center line and the vertical axis.
It is required as. For convenience, the above explanation assumes the case of 20 and 0. When thamine hydrochloride (commercial product, monohydrate) was observed under a polarizing microscope using a cedarwood oil immersion solution, the light was obliquely quenched with thin plate-like crystals belonging to b to e in Figure 1, and two key refractions were observed. It seemed possible to measure the rate. Based on the observation of the Becke line, the immersion liquid was sequentially changed to one with a refractive index close to that of thiamine hydrochloride, and the Becke line strength was approximately +6 with the immersion liquid having no. of 1.685. 1.685 16 on the horizontal line
Mark , and look at the intersection with the horizontal line of 1.695 immersion liquid on the equirefractive index line passing through this point, it is -4.

1.695の浸液を用いて鏡検したらべッケ線の強度は
1.磯5で求めた十6の場合よりや)強く、一4になら
なかった。
When microscopically examined using 1.695 immersion liquid, the intensity of the Becke line was 1. It was stronger than the 16 I got at Iso 5, and I didn't get the 14.

そこで1.685のべッケ線強度を十4に補正し再び等
屈折率線上に1.695の藤線との交点を求めると−6
で実測の結果と一致していることがわかった。念のため
1.6791.690の浸液で測定してみたところいず
れも上記の等屈折率線上にのる値がえられたので、この
線と中央線との交点から塩酸チアミンの1つのキー屈折
率は1.魔9と頚。された。つぎに同じ塩酸チアミンの
他の1つのキー屈折率は同様にno=1.59& 1.
613,1.604,1.607等の浸液を順次用い、
ベツケ線の強度を評点し、評点でマークされた点を造る
等屈折率線上に±の反対側の浸液を選び実測の結果必要
があれば補正を行って結局nD=1.605の値が得ら
れた。なお測定時の室温は20℃の標準温度に調節して
おいたので浸液の屈折率の温度補正は必要なく、ベッケ
線の強度が±5以内の微弱なところではナトリウムD線
を用い半階室にして実施した。塩酸チアミンの市販品(
1水和物)のほかに再結晶によって得られる塩酸チアミ
ン無水物(ロ)があるが、この結晶のキー屈折率も同様
にして1.617,1.6斑と測定された。
Therefore, if we correct the Becke line intensity of 1.685 to 14 and find the intersection with the Fuji line of 1.695 on the equirefractive index line again, -6
It was found that the results were in agreement with the actual measurement results. Just to be sure, I measured it with an immersion liquid of 1.6791.690, and all values were on the above-mentioned equirefractive index line, so from the intersection of this line and the center line, one key of thiamine hydrochloride can be determined. The refractive index is 1. Demon 9 and neck. It was done. Next, another key refractive index of the same thiamine hydrochloride is no=1.59&1.
Using immersion liquids such as 613, 1.604, 1.607 in sequence,
Evaluate the intensity of the Betzke line, select the immersion liquid on the opposite side of ± on the equirefractive index line that creates the point marked by the rating, and make corrections if necessary as a result of the actual measurement.In the end, the value of nD = 1.605 is obtained. Obtained. Note that the room temperature at the time of measurement was adjusted to the standard temperature of 20°C, so there was no need for temperature correction of the refractive index of the immersion liquid, and in places where the Becke line intensity was weak within ±5, the sodium D line was used to It was carried out in a room. Commercially available thiamine hydrochloride (
In addition to thiamine hydrochloride anhydride (b), which is obtained by recrystallization, the key refractive index of this crystal was similarly measured to be 1.617 and 1.6.

第2図には無水物(0)のチャート上等屈折率線で測定
した結果が示されている。塩酸チアミンには互に凝多形
の関係にある1水和物(1)と無水物(0)が共に世界
市場に存在し、分子量が異なるので取引上も当然問題と
なるはずであるが、本発明の浸液法によれば比較的に簡
単に識別できることが判明した。この例と同様の手段を
用い、フロムワレリル尿素およびアンピシリンのキー屈
折率を測定したところ、第3図に示す結果が得られた。
FIG. 2 shows the results of measurement using the iso-refractive index line on the chart of anhydride (0). Thiamin hydrochloride exists in the world market as monohydrate (1) and anhydride (0), both of which are coagulated polymorphs, and have different molecular weights, which naturally poses a problem in terms of trade. It has been found that the immersion method of the present invention allows for relatively easy identification. When the key refractive index of fromvalerylurea and ampicillin was measured using the same method as in this example, the results shown in FIG. 3 were obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法で屈折率を測定する医薬品等の結
晶形の説明図、第2図および第3図は実施例における実
験結果を示し、第4図は本発明のチャートの一態様を、
第5図は本発明の測定法を説明するためのものである。 多1脚※十図 子2凶 多;滋 ※ご■
FIG. 1 is an explanatory diagram of crystal forms of pharmaceutical products whose refractive index is measured by the method of the present invention, FIGS. 2 and 3 show experimental results in Examples, and FIG. 4 is an embodiment of the chart of the present invention. of,
FIG. 5 is for explaining the measuring method of the present invention. Multi leg * Juzuko 2 Kyouta; Shigeru * Go■

Claims (1)

【特許請求の範囲】[Claims] 1 偏光顕微鏡を使用する浸液法により結晶性薬品の屈
折率を測定する方法において、屈折率差0.004ない
し0.006程度の間隔となるように浸液の系列を作成
し、被検薬品の各浸液に対するベツケ線強度を評点して
各浸液の屈折率を縦軸とし横軸をベツケ線強度とするチ
ヤート上にプロツトし、各プロツトを結ぶ直線とベツケ
線強度0の中心線との交点の屈折率を縦軸から続みとる
ことを特徴とする医薬品等の屈折率の測定法。
1. In a method of measuring the refractive index of crystalline drugs by the immersion method using a polarizing microscope, a series of immersion liquids are created so that the refractive index difference is approximately 0.004 to 0.006, and the test drug is Score the Betzke line intensity for each immersion liquid, plot it on a chart with the vertical axis as the refractive index of each immersion liquid and the horizontal axis as the Betzke line intensity, and compare the straight line connecting each plot with the center line of the Betzke line intensity of 0. A method for measuring the refractive index of pharmaceuticals, etc., characterized in that the refractive index of the intersection point of is taken from the vertical axis.
JP2124878A 1978-02-24 1978-02-24 Measuring method of refractive index of pharmaceuticals, etc. Expired JPS6027376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2124878A JPS6027376B2 (en) 1978-02-24 1978-02-24 Measuring method of refractive index of pharmaceuticals, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2124878A JPS6027376B2 (en) 1978-02-24 1978-02-24 Measuring method of refractive index of pharmaceuticals, etc.

Publications (2)

Publication Number Publication Date
JPS54114282A JPS54114282A (en) 1979-09-06
JPS6027376B2 true JPS6027376B2 (en) 1985-06-28

Family

ID=12049750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2124878A Expired JPS6027376B2 (en) 1978-02-24 1978-02-24 Measuring method of refractive index of pharmaceuticals, etc.

Country Status (1)

Country Link
JP (1) JPS6027376B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0465168A2 (en) * 1990-06-29 1992-01-08 Amoco Corporation Finding and evaluating rock specimens having classes of fluid inclusions for oil and gas exploration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0465168A2 (en) * 1990-06-29 1992-01-08 Amoco Corporation Finding and evaluating rock specimens having classes of fluid inclusions for oil and gas exploration

Also Published As

Publication number Publication date
JPS54114282A (en) 1979-09-06

Similar Documents

Publication Publication Date Title
Stoiber et al. Crystal identification with the polarizing microscope
Creeth Studies of free diffusion in liquids with the Rayleigh method. I. The determination of differential diffusion coefficients in concentration-dependent systems of two components
Khan et al. Fourier transform infrared spectroscopy for analysis of kidney stones
Yoe Photometric Chemical Analysis:(colorimetry and Nephelometry)
JPH0381648A (en) Method for forming two-dimensional concentration distribution image of intra cellular ion
Benedetti-Pichler Identification of Materials: Via Physical Properties Chemical Tests and Microscopy
Gulik-Krzywicki et al. Monomer-oligomer equilibrium of bacteriorhodopsin in reconstituted proteoliposomes. A freeze-fracture electron microscope study.
JPS6027376B2 (en) Measuring method of refractive index of pharmaceuticals, etc.
US2460515A (en) Calibrated retardation plate for measuring birefringence and method of making same
Colclough et al. High throughput solubility determination with application to selection of compounds for fragment screening
Rajabi et al. Instantaneous mapping of liquid crystal orientation using a polychromatic polarizing microscope
Xue et al. A mix-and-click method to measure amyloid-β concentration with sub-micromolar sensitivity
Allen et al. The measurement of the diameter of erythrocytes by the diffraction method
De Lisi et al. Age and sex differences in representation of horizontality among children in India
CN205940474U (en) Spectrometer with portable collimator
van Oijen et al. Spectrometric imaging of polarization colors and its application in forensic fiber analysis
Cameron Apparatus and techniques for the measurement of certain optical properties of ore minerals in reflected light
DeWolf et al. Determination of phenprocoumon, an anticoagulant, in human plasma.
Shribak et al. Mapping polymer birefringence in three-dimensions using a polarizing microscope with oblique illumination
EP1991864B1 (en) Method for assessing absorption properties of low solubility compounds
UA150393U (en) Method of quantitative spectrophotometric determination of lamotrigine in tablets
West Measurement of refractive indices of resins and plastics
Bryant Optical Crystallographic Studies with the Polarizing Microscope. III. Measurement of Several Types of Selective Dispersion in Organic Compounds
Keenan The application of optical methods to the examination of insectides and fungicides
RU2053500C1 (en) Method of decoding emission spectra