JPS60263334A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS60263334A
JPS60263334A JP11865484A JP11865484A JPS60263334A JP S60263334 A JPS60263334 A JP S60263334A JP 11865484 A JP11865484 A JP 11865484A JP 11865484 A JP11865484 A JP 11865484A JP S60263334 A JPS60263334 A JP S60263334A
Authority
JP
Japan
Prior art keywords
chamber
film
carrier gas
ferromagnetic metal
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11865484A
Other languages
Japanese (ja)
Inventor
Kenichi Baba
馬場 賢一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP11865484A priority Critical patent/JPS60263334A/en
Publication of JPS60263334A publication Critical patent/JPS60263334A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve the durability of a protective film to be formed on the surface of a thin ferromagnetic metallic film by selecting the gaseous monomer of fluorocarbon having an unsatd. bond are carrier gas of nitrogen at a specific volumetric ratio and executing plasma polymn. CONSTITUTION:A high-frequency coil 4 connected to a frequency oscillator 3 is wound around a reaction chamber 1 for plasma polymn. reaction. An introducing pipe 5 for introducing the gaseous monomer and carrier gas is connected to the chamber 1. A supply chamber 8 which lets off a non-magnetic base 6 on which the thin ferromagnetic metallic film 12 is deposited from a roll 7 and a take-up chamber 10 which takes up the base on a roll 9 are provided on both sides of the chamber 1. The residual air in the chamber 1 is removed and the inside thereof is evacuated; thereafter the fluorocarbon having the unsatd. bond as the gaseous monomer and the nitrogen as the carrier gas are selected at 50:50-80:20 volumetric ratio and are introduced into the chamber then the plasma polymn. is executed to form the protective film 13. The protective film which is highly crosslinked and is highly durable is thus formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、所謂蒸着テープの如き強磁性金属薄膜型の磁
気記録媒体の製法に関するもので1、さらに詳細には耐
久性や走行性を改善するために設けられる保護膜の形成
力法の改良に関するものでらる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a ferromagnetic metal thin film type magnetic recording medium such as a so-called vapor-deposited tape1, and more specifically to a method for improving durability and running properties. This paper relates to improvements in the forming force of a protective film provided for the purpose of protecting the protective film.

〔背景技術とその問題点〕[Background technology and its problems]

磁気記録の分野に2いては、記録信号の高密度記録化や
短波長化が進められているが、こわに対応して抗磁力H
cや残留磁束密度Brの大きな磁気記録媒体が要望さ1
ている。
In the field of magnetic recording, efforts are being made to increase the recording density and shorten the wavelength of recording signals, but in response to stiffness, the coercive force H
Magnetic recording media with large c and residual magnetic flux density Br are desired1.
ing.

そこで従来、ポリエステルフィルム等の非磁性支持体上
にC□ −N L合金等の強磁性金属材料を真空蒸着法
やスバクタ法等の手段を用いて強磁性金属薄膜を直接被
着形成し、こnを磁性層となした強磁性金属薄膜型の磁
気記録媒体が提案さね注目を集めている。この強磁性金
属薄膜型の磁気記録媒体は、抗磁力HCや残留磁束密度
Brが太きいばかシでなく、磁性層の厚みを極めて薄く
できるため記録減磁や再生時の厚み損失が著しく小さい
こと、磁性層に塩化ビニル−酢酸ビニル共重合体やポリ
ウレタン樹脂等の樹脂結合剤を混入する必要がないため
強磁性金属材料の充填密度を高めることができること等
、磁気特性の点で数々の利点を有している。
Conventionally, a ferromagnetic metal thin film such as a ferromagnetic metal material such as a C□-N L alloy is directly deposited on a non-magnetic support such as a polyester film using a method such as a vacuum deposition method or a subactor method. A ferromagnetic metal thin film type magnetic recording medium in which n is used as a magnetic layer has been proposed and is attracting attention. This ferromagnetic metal thin film type magnetic recording medium does not have a large coercive force HC or residual magnetic flux density Br, and the thickness of the magnetic layer can be made extremely thin, so the thickness loss during recording demagnetization and reproduction is extremely small. , there are many advantages in terms of magnetic properties, such as the ability to increase the packing density of ferromagnetic metal materials because there is no need to mix resin binders such as vinyl chloride-vinyl acetate copolymer or polyurethane resin into the magnetic layer. have.

しかしながら、上述の強磁性金属薄膜型の磁気記録媒体
は、耐久性や走行性等に欠点が多く、その改善が大きな
課題となつ又いる。
However, the above-mentioned ferromagnetic metal thin film type magnetic recording medium has many drawbacks in terms of durability, runnability, etc., and improvement thereof remains a major challenge.

そこで例えば、上記磁気記録媒体の磁性層、すなわち強
磁性金属薄膜表面に潤滑剤等を塗布して保護膜を形成す
ることによって上記耐久性や走行性等を改善することが
試みられているが、この場合には、最初のうちは摩擦係
数が低減して走行性が良くなるが、上記潤滑剤の強磁性
金属薄膜に対する付着力が弱いので、次第にこの潤滑剤
が磁気ヘッド等で削シ取られてしまい急激に効果が減じ
てしまうというように、耐久性の点や均一性、膜厚等の
点で問題が多い。
For example, attempts have been made to improve the durability and runnability by coating the surface of the magnetic layer of the magnetic recording medium, that is, the ferromagnetic metal thin film, with a lubricant or the like to form a protective film. In this case, the coefficient of friction is initially reduced and running properties are improved, but since the adhesion of the lubricant to the ferromagnetic metal thin film is weak, this lubricant is gradually removed by a magnetic head, etc. There are many problems in terms of durability, uniformity, film thickness, etc., such that the effectiveness decreases rapidly due to overheating.

一方、上記保護膜をプラズマ重合により形成することが
試みられておシ、例えば特開昭58−88828号明細
書に記載されるように、フン化カーボン系のモノマー蒸
気をプラズマ重合させることにより、極めて薄い重合膜
が得ら君、上述の磁気記録媒体の走行性の改善に有効で
めることが報! 告さnている。
On the other hand, attempts have been made to form the above-mentioned protective film by plasma polymerization. It has been reported that an extremely thin polymeric film can be obtained and is effective in improving the runnability of the above-mentioned magnetic recording media! I have been informed.

しかしながら、上記プラズマ重合によって得られる重合
膜にあっては、架橋度の不足による耐久性の不足が問題
となってPす、実用化を図るためにはこの耐久性を19
一層内上することが要望さiている。
However, the polymer film obtained by the above plasma polymerization has a problem of insufficient durability due to insufficient crosslinking degree.
There is a need for people to be more internal.

〔発明の目的〕[Purpose of the invention]

そこで本発明は、前述したような当該技術分野の要望に
こたえて提案されたものでろって、耐久性及び走行性に
優わた重合膜を作製することが可能なプラズマ重合法を
提供し、こむによシ実用レベルの耐久性を有する強磁性
金属薄膜型の磁気記録媒体を製造することが可能な磁気
記録媒体の製法を提供することを目的とするものである
Therefore, the present invention was proposed in response to the above-mentioned needs in the technical field, and provides a plasma polymerization method capable of producing a polymer film with excellent durability and runnability. The object of the present invention is to provide a method for manufacturing a magnetic recording medium that can manufacture a ferromagnetic metal thin film type magnetic recording medium that has a practical level of durability.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち、本発明に係る磁気記録媒体の製法は、非磁性
支持体上に強磁性金属薄膜を設けてなる磁気記録媒体の
前記強磁性金属薄膜表面にプラズマ重合により保護膜を
形成するt/lたり、モノマーガスとして不飽和結合を
有するンルオロカーボンを用いるとともにキャリヤーガ
スとして窒素を用い、モノマーガス:キャリヤーガスを
体積比で50:50〜80:20に選定してプラズマ重
合を行なうことを特徴とするものでめつχ、プラズマ重
合を行なう際のモノマーガスとキャリヤーガスの種類及
び混合比を選定することによシ得られる重合膜の架橋度
を増して耐久性を大幅に向上するとともに表面エネルギ
ーを低減して低摩擦化を図り、こnを保護膜とすること
によシ強磁性金属薄膜型の磁気記録媒体の耐久性、走行
性の向上を図ろうとするものでめる。
That is, the method for producing a magnetic recording medium according to the present invention includes forming a protective film by plasma polymerization on the surface of a ferromagnetic metal thin film of a magnetic recording medium in which a ferromagnetic metal thin film is provided on a nonmagnetic support. , plasma polymerization is carried out by using a fluorocarbon having an unsaturated bond as a monomer gas, using nitrogen as a carrier gas, and selecting a monomer gas:carrier gas volume ratio of 50:50 to 80:20. By selecting the type and mixing ratio of monomer gas and carrier gas during plasma polymerization, it is possible to increase the degree of crosslinking of the resulting polymer film, greatly improving durability and reducing surface energy. The purpose of this invention is to reduce friction by reducing friction, and to improve the durability and runnability of ferromagnetic metal thin film type magnetic recording media by using n as a protective film.

本発明が適用される磁気記録媒体は、非磁性支持体上に
強磁性金属材料を直接被着し、強磁性金属薄膜を磁性層
として形成してなる所謂強磁性金属薄膜型磁気記録媒体
である。
The magnetic recording medium to which the present invention is applied is a so-called ferromagnetic metal thin film type magnetic recording medium in which a ferromagnetic metal material is directly deposited on a nonmagnetic support and a ferromagnetic metal thin film is formed as a magnetic layer. .

上記非磁性支持体の素材としては、ポリエチレンテレフ
タレート等のポリエステル類、ポリエチレン、ポリプロ
ピレン等のポリオレフィン類、セルローストリアセテー
ト、セルロースダイアセテート、セルロースアセテート
クチレート等ノセルロース誘導体、ポリ塩化ビニル、ポ
リ塩化ビニリデン等のビニル系樹脂、ポリカーボネート
、ポリイミド、ポリアミドイミド等のプラスチック等が
挙げられる。また、上記非磁性支持体の形態としては、
フィルム、テープ、シート、ディスク、カード、ドラム
等のいす君でも良い。
Materials for the non-magnetic support include polyesters such as polyethylene terephthalate, polyolefins such as polyethylene and polypropylene, cellulose derivatives such as cellulose triacetate, cellulose diacetate, and cellulose acetate cutylate, polyvinyl chloride, polyvinylidene chloride, etc. Examples include plastics such as vinyl resin, polycarbonate, polyimide, and polyamideimide. Furthermore, the form of the non-magnetic support is as follows:
Any material such as film, tape, sheet, disk, card, drum, etc. is fine.

上記強磁性金属材料としては、鉄Fe、コバル)Co、
ニッケルNJJ等の金属めるいはCo−N=金合金Fe
−Co合金、Fe−N=金合金co−NL−Fe−B合
金等の合金が挙げられる。
The above-mentioned ferromagnetic metal materials include iron (Fe, cobal) Co,
Co-N = gold alloy Fe such as nickel NJJ
-Co alloy, Fe-N=gold alloy co-NL-Fe-B alloy, and other alloys.

上記強磁性金属材料の被着手段としては、真空蒸着法、
イオンブレーティング法、スパツク’fb’4が挙げら
れる。上記真空蒸着法は、10−4〜10”Tor r
の真空下で上記強磁性金属材料を抵抗加熱、高周波加熱
、電子ビーム加熱等にょシ蒸発させ上記非磁性支持体上
に蒸発金属(強磁性金属材料)を沈着するというもので
ロシ、斜方蒸着法及び垂直蒸着法に大別される。上記斜
方蒸着法は、高い抗磁力を得るため非磁性支持体に対し
て上記強磁性金属材料を斜めに蒸着するものでろって、
より高い抗磁力を得るために酸素雰囲気中で上記蒸着を
行なうものも含まわる。上記垂直蒸着法は、蒸着効率や
生産性を向上し、かつ高い抗磁力を得るために非磁性支
持体上にららかじめBL、Tz、Sl)、Ga、Ge等
の下地金属層を形成しておき、この下地金属層上に上記
強磁性金属材料を垂直に蒸着するというものでろる。上
記イオンブレーティング法も真空蒸着法の一柚でろシ、
10−’〜1o−3Torrの不活性ガス雰囲気中でD
Cグロー放電、RFグロー放電を起こし、放電中で上記
強磁性金属を蒸発させるというものでろる。上記スパッ
タ法は、10−3〜10’−’Torrのアルゴンガス
を主成分とする雰囲気中でグロー放電を起こし、生じた
アルゴンイオンでターゲット表面の原子をたたき出すと
いうもので、グロー放電の方法にょシ直流2極、3極ス
パツタ法や、高周波スパッタ法、マたマグネトロン放電
を利用したマグネトロンスパッタ法等がろる。
The means for depositing the ferromagnetic metal material include vacuum evaporation,
Examples include the ion blating method and spac 'fb'4. The above vacuum evaporation method uses 10-4 to 10" Torr
The ferromagnetic metal material is evaporated by resistance heating, high-frequency heating, electron beam heating, etc. in a vacuum, and the evaporated metal (ferromagnetic metal material) is deposited on the non-magnetic support. It is broadly divided into two methods: vertical deposition method and vertical deposition method. The above-mentioned oblique deposition method is a method in which the above-mentioned ferromagnetic metal material is obliquely deposited on a non-magnetic support in order to obtain a high coercive force.
This also includes those in which the above-mentioned vapor deposition is performed in an oxygen atmosphere in order to obtain higher coercive force. In the above-mentioned vertical deposition method, a base metal layer such as BL, Tz, Sl), Ga, Ge, etc. is formed in advance on a non-magnetic support in order to improve deposition efficiency and productivity and obtain high coercive force. Then, the ferromagnetic metal material is vertically deposited on the underlying metal layer. The above ion blating method is also a vacuum evaporation method.
D in an inert gas atmosphere of 10-' to 1o-3 Torr
C glow discharge or RF glow discharge is caused, and the ferromagnetic metal is evaporated during the discharge. The above sputtering method involves generating glow discharge in an atmosphere mainly composed of argon gas at 10-3 to 10'-' Torr, and using the generated argon ions to knock out atoms on the target surface. Examples include DC two-pole and three-pole sputtering methods, high-frequency sputtering methods, and magnetron sputtering methods that utilize magnetron discharge.

そして、本発明においては上述の磁気記録媒体の強磁性
金属薄膜表面にプラズマ重合にニジ保護−膜を形成する
In the present invention, a protective film is formed by plasma polymerization on the surface of the ferromagnetic metal thin film of the above-mentioned magnetic recording medium.

上記プラズマ重合は、通常は有機上ツマーガス単独、ま
たはそのモノマーガスと他のガス(キャリヤーガス)と
の混合ガス中でグロー放電を行ない、その励起モノマー
から誘導される重合膜を放電域に接した基体上に生成さ
せるというものでろって、これによシ例えば 1)基体でろる強磁性金属薄膜に対して高接着性でめる
こと、 2)高密度であること、 3)耐熱性がろること、 4)均一な膜として生成さねること、 等の諸物件を具備した重合膜が保護膜として形成される
のでろる。
In the above plasma polymerization, glow discharge is usually performed in an organic monomer gas alone or in a mixture of the monomer gas and another gas (carrier gas), and a polymer film derived from the excited monomer is brought into contact with the discharge region. For example, 1) it should have high adhesion to the thin ferromagnetic metal film formed on the substrate, 2) it should have high density, and 3) it should have good heat resistance. 4) It is difficult to form a uniform film because a polymeric film is formed as a protective film.

本発明においては、七ツマーカスとキャリヤーガスの混
合ガス中でのグロー放電によって重合膜を形成するが、
ここで、使用するモノマーガスとキャリヤーガスの種類
及び混合比が重要である。
In the present invention, a polymeric film is formed by glow discharge in a mixed gas of a seven-layer liquid and a carrier gas.
Here, the type and mixing ratio of the monomer gas and carrier gas used are important.

先ス、上記モノマーガスとしては、フルオロカーホン(
ぶつ化炭素)が使用さjlなかでもCnF2n C2≦
n≦4) なる一般式で表わされる不飽和結合を有するフルオロカ
ーボンが使用される。この不飽和結合を有するフルオロ
カーボンの炭素数は4以下であることが好壕しく、上記
炭素数が4を越えると架橋度が不足して充分な耐久性を
有する重合膜が得られなくなる虞わがめる。また、同様
に上記フルオロカーボンは不飽和結合を有していること
が必要で、この不飽和結合を有していないと得られる重
合膜の架橋度が不足するばかシか、膜の生成が遅く極端
な場合には重合J模が得られない虞わもある。特に好ま
しいモノマーガスとしては、テトラフルオロエチレン(
CF 2 = CFり ’bるいはへキサフルオロプロ
ピレン(CF2=CF−CF3)が挙げられる。
First, as the monomer gas mentioned above, fluorocarbon (
Among them, CnF2n C2≦
A fluorocarbon having an unsaturated bond represented by the general formula (n≦4) is used. The number of carbon atoms in the fluorocarbon having unsaturated bonds is preferably 4 or less; if the number of carbon atoms exceeds 4, the degree of crosslinking may be insufficient and a polymer film with sufficient durability may not be obtained. . Similarly, the above-mentioned fluorocarbon must have an unsaturated bond, and if it does not have this unsaturated bond, the degree of crosslinking of the polymerized film obtained may be insufficient, or the film formation will be extremely slow. In such cases, there is a possibility that polymerized J model may not be obtained. A particularly preferred monomer gas is tetrafluoroethylene (
Examples include CF2=CF or hexafluoropropylene (CF2=CF-CF3).

一方、上記キャリヤーガスとしては窒素を使用する。こ
の窒素は、分析の結果、プラズマ重合反応の際に上記七
ツマ−とともに網目構造を作り重合膜の架橋度向上に寄
与するものと推定され、得られる重合膜の耐久性を向上
するとともに、表面エネルギーを小さくシシかも摩擦係
数を低下する等、膜質を向上するうえで極めて有用でろ
ることが分かった。
On the other hand, nitrogen is used as the carrier gas. As a result of analysis, it is estimated that this nitrogen forms a network structure together with the above-mentioned 7-mer during the plasma polymerization reaction and contributes to improving the degree of crosslinking of the polymerized film, improving the durability of the resulting polymeric film and improving the surface It has been found that this method is extremely useful for improving film quality by reducing energy consumption and lowering the coefficient of friction.

そして、上記モノマーカスとキャリヤーカスとは、所定
の比率で混合して使用する必要がめり、本発明者の実験
によれば、モノマーガス:キャリヤーガスを体積比で5
0:50〜80:20の範囲内に設定することに、r、
シ、極めて耐久性に優ねた重合膜が生成することが分か
った。すなわち、上記キャリヤーガスの割合が20体積
チ未満でるる場合、るるいは50体積係を越える場合に
は、充分な耐久性を有する重合膜が得られず、したがっ
て強磁性金属薄膜型の磁気記録媒体の耐久性を実用レベ
ルまで引き上げることは難かしい。
The monomer gas and the carrier gas need to be mixed at a predetermined ratio, and according to the inventor's experiments, the volume ratio of the monomer gas to the carrier gas is 5.
By setting within the range of 0:50 to 80:20, r,
It was found that a polymer film with extremely high durability was produced. That is, if the proportion of the carrier gas is less than 20% by volume, or exceeds 50% by volume, a polymer film with sufficient durability cannot be obtained, and therefore ferromagnetic metal thin film type magnetic recording It is difficult to raise the durability of media to a practical level.

上述の七ツマーガス及びキャリヤーカスと使用してプラ
ズマ重合を行なうわけであるが、次に本発明においてプ
ラズマ重合を行なうために使用される反応装置の一例に
ついて説明する。
Plasma polymerization is carried out using the above-mentioned 7-mer gas and carrier gas. Next, an example of a reaction apparatus used for carrying out plasma polymerization in the present invention will be explained.

第1図は本発明において実際に使用される反応装置の構
成を示す概略図である。
FIG. 1 is a schematic diagram showing the configuration of a reaction apparatus actually used in the present invention.

この反応装置は、電極の汚染が無いこと及び放電の安定
性が良いことから無電極方式が採用されかつ誘導結合方
式となっており、プラズマの発振周波数は13.56M
Hzである。そして、上記反応装置は、プラズマ重合反
応のための反応室1を具備してなり、この反応室1の周
囲には整合回路網2を介して周波数発振器3に接続され
る高周波コイル4が巻回されている。また、上記反応室
1には、七ツマーガス及びキャリヤ、−ガスを導入する
ための導入管5が接続さワ、口らかじめ例えばマスフロ
ーコントローラによりそ君ぞれ流it 全調整シタモノ
マーガスとキャリヤーガスとを上述の混合比となるよう
に混合して上記反応室1内に導入するようになっている
。さらに上記反応室1の両側には、表面に強磁性金属薄
膜を被着形成した非磁性支持体6をロール7から繰出す
ための供給室8と、上記非磁性支持体6を反応室1内に
通じた後にロール9に巻取るための巻取り室10とがそ
れぞれ連結されており、非磁性支持体6をガイドローラ
11を介して連続駆動しながらプラズマ重合反応による
重合膜を付着させるように構成さデ nている。なお、上記供給室8及び巻取り室10は、そ
君ぞわ真空ポンプに接続され、反応室1を含めて全体が
高真空Vζ保持さ汎るようになされている。
This reactor uses an electrodeless system because there is no contamination of the electrodes and good discharge stability, and it is an inductively coupled system, and the plasma oscillation frequency is 13.56M.
It is Hz. The reaction apparatus is equipped with a reaction chamber 1 for plasma polymerization reaction, and a high-frequency coil 4 connected to a frequency oscillator 3 via a matching network 2 is wound around the reaction chamber 1. has been done. Further, an inlet pipe 5 for introducing a monomer gas, a carrier gas, and a carrier gas is connected to the reaction chamber 1, and the monomer gas and the carrier gas are all adjusted in advance by a mass flow controller, for example. The gas is mixed with the above-mentioned mixing ratio and introduced into the reaction chamber 1. Further, on both sides of the reaction chamber 1, there is a supply chamber 8 for feeding out from a roll 7 a non-magnetic support 6 having a ferromagnetic metal thin film deposited on its surface, and a supply chamber 8 for feeding the non-magnetic support 6 into the reaction chamber 1. The non-magnetic support 6 is continuously driven via a guide roller 11 to deposit a polymer film formed by a plasma polymerization reaction. It is composed of den. The supply chamber 8 and the winding chamber 10 are connected to a vacuum pump so that the entire chamber, including the reaction chamber 1, is maintained at a high vacuum Vζ.

このように構成される反応装置を用い、まず反応室1内
の残存空気を十分に除去してto−”rorr程度にま
で減圧し、しかる後に所定の混合比を有するモノマーガ
スとキャリヤーカスの混合ガスを所定の流量で反応室1
内に導入しながら発振器3を作動させ、RFパワーをコ
イル4にかけて放電させる。なお、上記プラズマ重合反
応は放電全良好に起こさせるために、一般に10−3〜
3Torrの真空状態で行なわわるのが望ましく、通常
1O−2Torr程度が採用される。
Using the reaction apparatus configured as described above, first, the residual air in the reaction chamber 1 is sufficiently removed to reduce the pressure to about to-''rorr, and then the monomer gas and carrier gas are mixed at a predetermined mixing ratio. Gas is supplied to reaction chamber 1 at a predetermined flow rate.
The oscillator 3 is activated while introducing the RF power into the coil 4, and the RF power is applied to the coil 4 to discharge it. In addition, in order to cause the above plasma polymerization reaction to occur in a good discharge condition, generally 10-3~
It is desirable to carry out the process in a vacuum state of 3 Torr, and usually about 10-2 Torr is employed.

この結果、上記非磁性支持体6上に被着形成される強磁
性金属薄膜表面にプラズマ重合膜が保護膜として成長す
るのである。すなわち、得らnる磁気記録媒体は、第2
図に示すように、非磁性支持体6上に強磁性金属薄膜1
2f:積層形成し、さらにこの強磁性金属薄膜12表面
に上記プラズマ重合により得られる重合膜を保護膜13
として積層形成して構成される。
As a result, a plasma polymerized film is grown on the surface of the ferromagnetic metal thin film deposited on the non-magnetic support 6 as a protective film. That is, the magnetic recording medium obtained is
As shown in the figure, a ferromagnetic metal thin film 1 is placed on a non-magnetic support 6.
2f: A layered layer is formed, and a polymer film obtained by the plasma polymerization described above is further applied to the surface of the ferromagnetic metal thin film 12 as a protective film 13.
It is constructed by laminating layers.

上記プラズマ重合反応によシ得られる保護膜13の1m
厚としては、50〜5ooKの範囲内であることが好ま
しく、さらには50〜150尺の範囲がより好ましい。
1 m of the protective film 13 obtained by the above plasma polymerization reaction
The thickness is preferably in the range of 50 to 50 mm, more preferably 50 to 150 mm.

上記j膜厚が50尺未満でめると滑性付与効果及び耐久
性が不足し、また500λを越えると例えばテープにし
て磁気ヘッド表面7′′ を摺動する際のスペーシングロス(厚み損失)が大きく
なってしまう。
If the above film thickness is less than 50 λ, the lubricating effect and durability will be insufficient, and if it exceeds 500 λ, spacing loss (thickness loss) will occur when the tape is slid on the magnetic head surface 7''. ) becomes large.

上述のように本発明においては、モノマーカスとして不
飽和結合を有するフルオロカーボンを用いキャリヤーガ
スとして窒素を用いるとともに、上記モノマーカスとキ
ャリヤーカスの比率を所定の割合に設定しているので、
表面エネルギーが小さく華擦係数が小さい、かつ高度に
架橋し耐久性の高い重合膜をプラズマ重合反応によシ形
成することができ、この重合膜を保護膜13として強磁
性金属薄膜12土に被着形成することにより耐久性や走
行性に優れた磁気記録媒体を製造することが可能となる
のである。
As described above, in the present invention, a fluorocarbon having an unsaturated bond is used as a monomerus, nitrogen is used as a carrier gas, and the ratio of the monomerus and the carrier gas is set at a predetermined ratio.
A highly crosslinked and highly durable polymeric film with low surface energy and small friction coefficient can be formed by plasma polymerization reaction, and this polymeric film is used as a protective film 13 to cover the ferromagnetic metal thin film 12. By forming an adhesive, it becomes possible to manufacture a magnetic recording medium with excellent durability and running properties.

次に、本発明の具体的な実施例について説明するが、本
発明がこれら実施例に限定されるものでないことは言う
までもない。
Next, specific examples of the present invention will be described, but it goes without saying that the present invention is not limited to these examples.

〔実施例〕〔Example〕

実施例1 ポリエチレンテレフタレートフィルム上に側方蒸着法に
より膜厚1oooXのCo−N=合合金膜CCo含有量
8畢 を蒸着形成した。
Example 1 A Co--N=alloy alloy film having a CCo content of 8 mm was formed on a polyethylene terephthalate film by lateral deposition with a thickness of 1 mm.

次いで、モノマーガスとしてヘキサフルオロプロピレン
(C3F6)を用い、キャリヤーカスとして窒素N2を
用い、これらモノマーガスとキャリヤーガスの比率を第
1表に示すような割合にそれぞれ設定し、全流量1 0
 0 ’lnf/lni n 、圧力5.0×1 0−
2Torr,高周波出力(周波数1 3. 5 6 M
Hz )500Wの条件で1分間プラズマ重合反応を行
ない、上記C O − N L合金膜上にプラズマ重合
膜を形成シてサンプル1ないしサンプル4及び比較サン
プル1ないし比較サンプル6を作製した。なお、ここで
比較サンプル1はプラズマ重合膜を設けない場合を示す
ものである。
Next, using hexafluoropropylene (C3F6) as a monomer gas and using nitrogen N2 as a carrier gas, the ratios of these monomer gases and carrier gases were set as shown in Table 1, and the total flow rate was 10.
0 'lnf/lni n , pressure 5.0×1 0-
2 Torr, high frequency output (frequency 1 3.5 6 M
A plasma polymerization reaction was performed for 1 minute under the condition of 500 W (Hz) to form a plasma polymerized film on the above CO-NL alloy film, thereby producing Samples 1 to 4 and Comparative Samples 1 to 6. Note that Comparative Sample 1 here shows the case where no plasma polymerized film was provided.

得らねた各サンプル及び各比較サンプルについてステル
特性及び摩擦特性を測定した。結果を第1表に示す。な
お、上記メチル特性は、4.2MHzの映像信号を記録
し、この再生出力が50係に減衰するまでのメチル時間
を示すものであって、磁気テープの耐久性の目やすとな
るものである。また、上記摩擦特性は、ステンレスドラ
ムを用いて測定し、100回l]の値を示した。
The stealth characteristics and friction characteristics were measured for each sample that could not be obtained and each comparative sample. The results are shown in Table 1. The above methyl characteristic indicates the methyl time it takes for a 4.2 MHz video signal to be recorded and the playback output to attenuate to a factor of 50, and is a measure of the durability of the magnetic tape. . Further, the above-mentioned frictional characteristics were measured using a stainless steel drum and showed a value of 100 times 1].

第1表 この第1表からも明らかなように、本発明に係る製法に
より作製さtた磁気記録媒体(サンプル1ないしサンプ
ル4)にβっては、耐久性、特に耐メチルに非常に優わ
、かつ摩擦特性が良好でめるので走行性にも優fしてい
ることが分かる。
Table 1 As is clear from Table 1, the magnetic recording media (Samples 1 to 4) produced by the manufacturing method according to the present invention have excellent durability, especially methyl resistance. Moreover, since the friction characteristics are good, it can be seen that the running properties are also excellent.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、高度に架橋し耐久
性に優わるとともに表面エイ・ルギーが小さく摩擦係数
の小さなプラズマ重合膜を作製することが可能とな9、
したがって耐久性及び走行性に優ねた磁気記録媒体を製
造することが可能である。
As described above, according to the present invention, it is possible to produce a plasma polymerized film that is highly cross-linked, has excellent durability, has low surface drag, and has a small coefficient of friction9.
Therefore, it is possible to manufacture a magnetic recording medium with excellent durability and running properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明において使用されるプラズマ反応装置の
一例を示す概略図でろり、第2図は本発明に19得られ
る磁気記録媒体の構成を示す要部拡大断面図である。 6・・・非磁性支持体 12・・・強磁性金属薄膜 13・・・保@膜
FIG. 1 is a schematic diagram showing an example of a plasma reaction apparatus used in the present invention, and FIG. 2 is an enlarged sectional view of a main part showing the structure of a magnetic recording medium obtained by the present invention. 6...Nonmagnetic support 12...Ferromagnetic metal thin film 13...Holding film

Claims (1)

【特許請求の範囲】[Claims] 非磁性支持体上に強磁性金属薄膜を設けてなる磁気記録
媒体の前記強磁性金属薄膜表面にプラズマ重合によシ保
護族を形成するにめたシ、モノマーガスとして不飽和結
合を有するフルオロカーボンを用いるとともにキャリヤ
ーガスとして窒素を用い、モノマーガス:キャリヤーガ
スを体積比で50:50〜80:20に選定してプラズ
マ重合を行なうことを特徴とする磁気記録媒体の製法。
In order to form a protective group by plasma polymerization on the surface of the ferromagnetic metal thin film of a magnetic recording medium comprising a ferromagnetic metal thin film provided on a non-magnetic support, a fluorocarbon having an unsaturated bond is used as a monomer gas. A method for producing a magnetic recording medium, characterized in that plasma polymerization is carried out by using nitrogen as a carrier gas and selecting a monomer gas:carrier gas volume ratio of 50:50 to 80:20.
JP11865484A 1984-06-09 1984-06-09 Production of magnetic recording medium Pending JPS60263334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11865484A JPS60263334A (en) 1984-06-09 1984-06-09 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11865484A JPS60263334A (en) 1984-06-09 1984-06-09 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS60263334A true JPS60263334A (en) 1985-12-26

Family

ID=14741910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11865484A Pending JPS60263334A (en) 1984-06-09 1984-06-09 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS60263334A (en)

Similar Documents

Publication Publication Date Title
EP0206115B1 (en) Magnetic recording medium
US5364690A (en) Magnetic recording medium comprising a ferromagnetic metal film and two carbon protective layers
US4990361A (en) Method for producing magnetic recording medium
US4865878A (en) Method of manufacturing vertical magnetization type recording medium
JPS60263334A (en) Production of magnetic recording medium
JPS60263333A (en) Production of magnetic recording medium
JPS62279521A (en) Production of magnetic recording medium
JPH0458653B2 (en)
JPS61924A (en) Production of magnetic recording medium
JPH0630133B2 (en) Magnetic recording medium and manufacturing method thereof
JPS615435A (en) Manufacture of magnetic recording medium
JPS6366727A (en) Production of magnetic recording medium
JPS61923A (en) Production of magnetic recording medium
JPH053052B2 (en)
JPH038117A (en) Manufacture of magnetic recording tape
JPS62102414A (en) Magnetic recording medium
JPS615426A (en) Magnetic recording medium
JPS61196429A (en) Production of magnetic recording medium
JPH02214017A (en) Magnetic recording tape
JPS63113935A (en) Production of magnetic recording medium
JPH01185834A (en) Production of magnetic recording medium
JPH0528487A (en) Production of magnetic recording medium
JPS61278015A (en) Magnetic recording medium
JPS62277618A (en) Magnetic recording medium and its production
JPH0817050A (en) Magnetic recording medium