JPS60260628A - Thermoplastic resin molding coated with plasma polymer film - Google Patents

Thermoplastic resin molding coated with plasma polymer film

Info

Publication number
JPS60260628A
JPS60260628A JP11656284A JP11656284A JPS60260628A JP S60260628 A JPS60260628 A JP S60260628A JP 11656284 A JP11656284 A JP 11656284A JP 11656284 A JP11656284 A JP 11656284A JP S60260628 A JPS60260628 A JP S60260628A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin molding
plasma
polymer film
plasma polymerized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11656284A
Other languages
Japanese (ja)
Inventor
Toshiharu Taguchi
俊晴 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP11656284A priority Critical patent/JPS60260628A/en
Publication of JPS60260628A publication Critical patent/JPS60260628A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:The titled resin molding excellent in gas barrier property, moisture impermeability and liquid barrier property and high in the production rate, prepared by forming a plasma polymer film of a specified monomer on the surface of a specified thermoplastic resin molding. CONSTITUTION:The desired thermoplastic resin molding is obtained by coating the surface of a molding of at least one thermoplastic resin selected from among polycarbonate resins, styrene resins and polyolefin resins with a plasma polymer film of at least one monomer selected from among tetrafluoroethylene, acrylonitrile, acrylic acid, methyl methacrylate, vinyl chloride and vinylidene chloride. In order to activate the surface of the thermoplastic resin molding, it is desirable to pretreat the surface of the molding by ion bombardment in a plasma of an inert gas such as helium or argon.

Description

【発明の詳細な説明】 [発明の技術分野1 本発明は、プラズマ重合膜被覆熱可塑性樹脂成形体に関
し、更に詳しくは、ガスバリヤ−性、非透湿性、液体遮
断性が優れ、製造時における生産性が高いプラズマ重合
膜被覆熱可塑性樹脂成形体に関する。
Detailed Description of the Invention [Technical Field 1 of the Invention] The present invention relates to a thermoplastic resin molded article coated with a plasma polymerized film, and more specifically, it has excellent gas barrier properties, moisture impermeability, and liquid barrier properties, and is easy to manufacture during production. The present invention relates to a thermoplastic resin molded article coated with a plasma polymerized film having high properties.

[発明の技術的背景とその問題点] ポリカーボネート樹脂、スチレン系樹脂、ポリオレフィ
ン系樹脂等の熱可塑性樹脂は、各種の分野において広く
使用されている。
[Technical background of the invention and its problems] Thermoplastic resins such as polycarbonate resins, styrene resins, and polyolefin resins are widely used in various fields.

しかしながら、これらの熱可塑性樹脂は、ガスバリヤ−
性、非透湿性に劣っているため、これらの樹脂で食品包
装容器、炭化水素の保存容器等を製造した場合、内容物
が酸化したり、容器自体が劣化する等の問題を引き起し
ている。
However, these thermoplastic resins have limited gas barrier properties.
Because these resins have poor water resistance and moisture impermeability, when food packaging containers, hydrocarbon storage containers, etc. are manufactured using these resins, problems such as oxidation of the contents and deterioration of the containers themselves may occur. There is.

このような事態を回避するため、これら熱可塑性樹脂成
形体の表面をガスバリヤ−性の優れた樹脂で被覆する方
法が行なわれているが、しかし、この方法には、■積層
されている2層間で剥離現象が起りやすい、■製造1程
が複雑になる等の欠点が派生する。
In order to avoid this situation, a method has been used to coat the surface of these thermoplastic resin molded bodies with a resin having excellent gas barrier properties. There are disadvantages such as peeling phenomenon that occurs easily, and (1) manufacturing process becomes complicated.

また、特開昭55−8043i3号公報に開示されてい
るように、熱可塑性樹脂成形体の上にプラズマ重合法で
高分子薄膜を形成する方法も提案されている。しかしな
がら、この方法で得られたプラズマ重合膜では、■ガス
バリヤー性が不十分である、■プラズマ重合における反
応速度が遅いため生産性が低くなるという問題を避けえ
ない。
Furthermore, as disclosed in Japanese Patent Application Laid-Open No. 55-8043i3, a method has been proposed in which a thin polymer film is formed on a thermoplastic resin molded body by plasma polymerization. However, the plasma-polymerized membrane obtained by this method cannot avoid the problems of (1) insufficient gas barrier properties and (2) low productivity due to slow reaction rate in plasma polymerization.

[発明の目的J 本発明は、」二記した問題点を解消し、ガスバリヤ−性
、非透湿性、耐摩耗性、耐薬品性が優れていると共に生
産性も高いプラズマ重合膜被覆熱可塑性樹脂成形体の提
供を目的とする。
[Objective of the Invention J] The present invention solves the problems mentioned above and provides a plasma-polymerized film-coated thermoplastic resin that has excellent gas barrier properties, moisture impermeability, abrasion resistance, and chemical resistance, and has high productivity. The purpose is to provide molded objects.

[発明の概要] 本発明者らは、上記目的を達成すべく鋭意研究を重ねた
結果、後述する熱可塑性樹脂成形体の表面に、後述する
千ツマ−を用いてプラズマ重合膜を形成すると、上記課
題が達成できるという事実を見出し本発明を完成するに
到った。
[Summary of the Invention] As a result of extensive research in order to achieve the above object, the present inventors have found that when a plasma polymerized film is formed on the surface of a thermoplastic resin molded article, using a chisel described below, The present invention was completed after discovering the fact that the above-mentioned problems can be achieved.

すなわち、本発明のプラズマ重合膜被覆熱可塑性樹脂成
形体は、熱可塑性樹脂成形体と、該成形体の表面を被覆
するプラズマ重合膜とから成るプラズマ重合膜被覆熱可
塑性樹脂成形体において、該熱可塑性樹脂成形体が、ポ
リカーボネート樹脂、スチレン系樹脂、ポリオレフィン
系樹脂から選ばれる1種又は2種以上の樹脂成形体であ
り、かつ、該プラズマ重合膜が、テトラフルオロエチレ
ン、アクリロニトリル、アクリル酸、メタクリル酸メチ
ル、塩化ビニル、塩化ビニリデンから選ばれる1種又は
2種以上をモノマーとするプラズマ重合膜であることを
特徴とする。
That is, the plasma polymerized film-coated thermoplastic resin molded article of the present invention comprises a thermoplastic resin molded article and a plasma polymerized membrane that covers the surface of the molded article. The plastic resin molding is one or more resin moldings selected from polycarbonate resin, styrene resin, and polyolefin resin, and the plasma polymerized film is made of tetrafluoroethylene, acrylonitrile, acrylic acid, methacrylate. It is characterized by being a plasma polymerized membrane containing one or more monomers selected from acid methyl, vinyl chloride, and vinylidene chloride.

まず、本発明の熱可塑性樹脂成形体は、機械的特性が優
れ、成形加工が比較的良好な、ポリカーボネート樹脂、
スチレン系樹脂、ポリオレフィン系樹脂から選ばれる1
種又は2種以上の熱可塑性樹脂の成形体である。
First, the thermoplastic resin molded article of the present invention is made of polycarbonate resin, which has excellent mechanical properties and is relatively easy to mold.
1 selected from styrene resin and polyolefin resin
It is a molded article of a thermoplastic resin or two or more kinds of thermoplastic resins.

本発明に使用されるポリカーボネート樹脂は、溶剤法、
すなわち、塩化メチレン等の溶剤中で、公知の酸受容体
、分子量調整剤の存在下、二価 ゛フェノールとホスゲ
ンのようなカーボネート前駆体との反応によって製造さ
れる樹脂、又は、二価 ;1(・フェノールとジフェニ
ルカーボネートとのカーボネート前駆体とのエステル交
検反応によって製造される樹脂である。
The polycarbonate resin used in the present invention can be prepared by solvent method,
That is, a resin produced by the reaction of a divalent phenol with a carbonate precursor such as phosgene in a solvent such as methylene chloride in the presence of a known acid acceptor or molecular weight modifier; (It is a resin produced by the cross-esterification reaction of phenol and diphenyl carbonate with a carbonate precursor.

ここで、使用し得る二価フェノールとしてはビスフェノ
ール類が好ましく、とくに、2,2−ビス(4−ヒドロ
キシフェニル)フロパン(ビスフェノールA)が好まし
い。また、ビスフェノールAの一部又は全部を他の二価
フェノールで置換したものであってもよい。ビスフェノ
ールA以外の二価フェノールとしては、例えば、ハイド
ロキノン、4.4°−ジヒドロキシジフェニル、ビス(
4−ヒドロキシフェニル)アルカン、ビス(トヒドロキ
シフェニル)シクロアルカン、ビス(4−ヒドロキシフ
ェニル)スルフィド、ビス(4−ヒドロキシフェニル)
スルホン、ビス(4−ヒドロキシフェニル)スルホキシ
ド、ビス(4−ヒドロキシフェニル)エーテルのような
化合物又はビス(3,5−ジブロモ−4−ヒドロキシフ
ェニル)フロパンのようなハロゲン化ビスフェノール類
をあげることができる。これら二価フェノールのホモポ
リマー又は2種以上のコポリマー若しくはブレンド物で
あってもよい。更には、多官能性芳香族化合物を二価フ
ェノール及び/又はカーボネート前駆体と反応させた熱
可塑性ランダム分岐ポリカーボネートであってもよい。
Here, as the dihydric phenol that can be used, bisphenols are preferable, and 2,2-bis(4-hydroxyphenyl)furopane (bisphenol A) is particularly preferable. Alternatively, part or all of bisphenol A may be substituted with other dihydric phenol. Examples of dihydric phenols other than bisphenol A include hydroquinone, 4.4°-dihydroxydiphenyl, and bis(
4-hydroxyphenyl)alkane, bis(tohydroxyphenyl)cycloalkane, bis(4-hydroxyphenyl)sulfide, bis(4-hydroxyphenyl)
Compounds such as sulfone, bis(4-hydroxyphenyl) sulfoxide, bis(4-hydroxyphenyl) ether or halogenated bisphenols such as bis(3,5-dibromo-4-hydroxyphenyl)furopane may be mentioned. . A homopolymer or a copolymer or blend of two or more of these dihydric phenols may be used. Furthermore, it may be a thermoplastic randomly branched polycarbonate made by reacting a polyfunctional aromatic compound with a dihydric phenol and/or a carbonate precursor.

用いるポリカーボネート樹脂は、機械的強度及び成形性
の点からして、その粘度平均分子量は10.000〜1
00,000ものが好ましく、とくに20,000〜4
0,000のものは好適である。
The polycarbonate resin used has a viscosity average molecular weight of 10.000 to 1 in terms of mechanical strength and moldability.
00,000 is preferable, especially 20,000 to 4
0,000 is preferred.

本発明に使用されるスチレン系樹脂としては、以下のも
のがあげられる。
Examples of the styrenic resin used in the present invention include the following.

すなわち、 (A)一般用ポリスチレン(GPPS)と
して知られるスチレン単独重合体;(B)スチレン以外
の他のモノマー、例えばα−メチルスルホン。
(A) a styrene homopolymer known as general purpose polystyrene (GPPS); (B) other monomers other than styrene, such as α-methylsulfone.

0−クロルスチレンのようなスチレン誘導体、アクリロ
ニトリル、α−メチルアクリロニトリル、無水マレイン
酸などとスチレンとの共重合体;(C)上記のような他
のモノマーとスチレンとを合成ゴムの共存下で重合した
共重合体; (A)、(B)、(C)の各樹脂と合成ゴ
ムとの混合物を例示することができる。これらのスチレ
ン系樹脂は、メルトインデックス(XI)が0.3〜5
.0g/ 10分の流動性をもつものが好適である。
A copolymer of styrene and a styrene derivative such as 0-chlorostyrene, acrylonitrile, α-methylacrylonitrile, maleic anhydride, etc.; (C) Polymerization of styrene and other monomers as described above in the coexistence of synthetic rubber. Examples of copolymers include mixtures of resins (A), (B), and (C) and synthetic rubber. These styrene resins have a melt index (XI) of 0.3 to 5.
.. A material having a fluidity of 0 g/10 minutes is preferable.

本発明に使用されるポリオレフィン系樹脂としては、以
下のものがあげられる。すなわち、低密度ポリエチレン
、高密度ポリエチレン、ポリプロピレン、ポリブテン等
のα−オレフィンの単独重合体;エチレン−プロピレン
共重合体、エチレン−酢酸ビニル共重合体、エチレン−
アクリル酸共重合体等のエチレン又はプロピレンと他の
不飽和モノマーとの共重合体;塩素化ポリエチレン。
Examples of the polyolefin resin used in the present invention include the following. That is, α-olefin homopolymers such as low-density polyethylene, high-density polyethylene, polypropylene, and polybutene; ethylene-propylene copolymers, ethylene-vinyl acetate copolymers, ethylene-
Copolymers of ethylene or propylene with other unsaturated monomers, such as acrylic acid copolymers; chlorinated polyethylene.

塩素化ポリプロピレン;などである。chlorinated polypropylene; etc.

上記した熱可塑性樹脂をそれぞれ単独で、又は2種以上
を適宜に用い、これらに射出成形、中空成形、真空成形
等の熱成形法を適用して、フィルム、シートの他、所望
する形状に成形する。このようにして成形された成形体
は、食器包装容器、薬品容器の他、例えば、ヘルメット
、家電製品/\ウジング、カメラボディ、メッキ製品の
基体、光メモリディスクなどにも適用できる。
The above-mentioned thermoplastic resins are used individually or in combination of two or more, and thermoforming methods such as injection molding, blow molding, and vacuum forming are applied to mold them into films, sheets, and other desired shapes. do. The molded body formed in this manner can be applied not only to tableware packaging containers and medicine containers, but also to, for example, helmets, home appliances/Usings, camera bodies, substrates for plated products, optical memory disks, and the like.

本発明にかかるプラズマ重合膜の原料上ツマ−としては
、テトラフルオロエチレン、アクリロニトリル、アクリ
ル酸、メタクリル酸メチル、塩化ビニル、塩化ビニリデ
ンから選ばれる1種又は2種以上のものをあげることが
できる。
The raw materials for the plasma polymerized film according to the present invention include one or more selected from tetrafluoroethylene, acrylonitrile, acrylic acid, methyl methacrylate, vinyl chloride, and vinylidene chloride.

」二記したモノマーを使用して、上記した成形体にプラ
ズマ重合膜を被覆させた場合、いずれのモノマーを使用
しても、ガスバリヤ−性は向上するが、各モノマーによ
り発揮される効果が異なるので、以下モノマーごとに示
す。
When the above-mentioned molded article is coated with a plasma polymerized film using the monomers mentioned above, the gas barrier properties will be improved regardless of which monomer is used, but the effect exerted by each monomer will be different. Therefore, each monomer is shown below.

まず、テトラフルオロエチレンを用いた場合には、ガス
バリヤ−性、非透湿性、耐薬品性、#摩耗性が向−1ニ
し、アクリロニトリルを用いた場合には、ガスバリヤ−
1性、非透湿性が向上し、アクリル酸を用いた場合には
、ガスバリヤ−性、成形体との接着性が向上する。また
、メタクリル酸メチルを用いた場合には、ガスバリヤ−
性、#候性が、塩化ビニル、塩化ビニリデンを用いた場
合に ゛は、ガスバリヤ−性、耐候性が、それぞれ向上
する。 ・、( 本発明のプラズマ重合膜被覆熱可塑性樹脂成形体の製造
にあたっては、まず、プラズマ重合膜の形成に先だって
、」二記した熱可塑性樹脂成形体表面を活性化させるた
め、ヘリウム、アルゴン等の不活性ガスのプラズマ中で
イオンポンパードラ行ない、成形体表面に前処理を施す
ことが好ましい。
First, when tetrafluoroethylene is used, gas barrier properties, moisture impermeability, chemical resistance, and wear resistance are improved; when acrylonitrile is used, gas barrier properties are improved.
properties and moisture impermeability are improved, and when acrylic acid is used, gas barrier properties and adhesion to molded articles are improved. In addition, when methyl methacrylate is used, the gas barrier
When vinyl chloride and vinylidene chloride are used, gas barrier properties and weather resistance are improved.・, (In manufacturing the plasma polymerized film-coated thermoplastic resin molded body of the present invention, first, prior to forming the plasma polymerized film, helium, argon, etc. Preferably, the surface of the compact is pretreated by using an ion pumper in an inert gas plasma.

次に、プラズマ重合にあたっては、反応器内に前処理を
施した熱可塑性樹脂成形体をセットし、上記したモノマ
ーからなるガスを反応器内に所定の流量で供給し、高周
波、マイクロ波、低周波のいずれかの周波数により所定
出力でグロー放電させ、モノマーを低温プラズマ重合さ
せる。グロー放電を所定時間行なうことにより、成形体
の放電域に接する面上には重合膜が形成される。この場
合、成形体の全体又は一部分に重合膜を形成させること
ができる。
Next, for plasma polymerization, the pretreated thermoplastic resin molded body is set in a reactor, and a gas consisting of the above-mentioned monomer is supplied into the reactor at a predetermined flow rate. Glow discharge is performed at a predetermined output using one of the frequencies, and the monomer is subjected to low-temperature plasma polymerization. By performing glow discharge for a predetermined period of time, a polymer film is formed on the surface of the molded body that is in contact with the discharge area. In this case, a polymer film can be formed on the whole or a part of the molded body.

プラズマ重合の際の重合条件は、成形体の種類、用途、
要求される性能、使用するモノマーの種類により適宜選
択されるが、温度は常温〜60℃;圧力は 0.1〜I
h+mHg好ましくは0.2〜5 m+nHg ;放電
時間は1〜10分;の範囲にするとよい。放電用電源の
周波数及び出力は、それぞれ。
The polymerization conditions during plasma polymerization depend on the type of molded product, its purpose,
It is selected as appropriate depending on the required performance and the type of monomer used, but the temperature is room temperature to 60°C; the pressure is 0.1 to I
h+mHg, preferably 0.2 to 5 m+nHg; discharge time is preferably in the range of 1 to 10 minutes; The frequency and output of the discharge power supply are different.

高周波放電の場合、通常13.58MHz 、 +(1
〜200W ; ?イクロ波放電の場合、 2450M
Hz 、loo〜5000W ;低周波放電の場合、 
0.1〜20kHz、 10〜200Wにするとよい。
In the case of high frequency discharge, usually 13.58MHz, +(1
~200W;? For microwave discharge, 2450M
Hz, loo~5000W; For low frequency discharge,
It is recommended to set the frequency to 0.1 to 20kHz and 10 to 200W.

このうち、高周波放電は重合膜が均一に形成される点か
らして好適である。尚、雰囲気ガス中には、He、At
、N2などの不活性ガスが共存しているのが好ましい。
Among these, high-frequency discharge is preferable from the viewpoint of uniformly forming a polymer film. Incidentally, the atmospheric gas contains He, At
It is preferable that an inert gas such as , N2, etc. coexist.

重合膜の膜厚は、成形体の用途等により適宜決定される
が、通常は 100A〜]Ogmの範囲である。
The thickness of the polymer film is appropriately determined depending on the use of the molded article, etc., but is usually in the range of 100A to ]Ogm.

[発明の実施例] 実施例1〜17 熱可塑性樹脂成形体として以下のものを用意した。すな
わち、PC板:粘度平均分子量が28000のポリカー
ボネート樹脂を射出成形法により厚さ2fllfflの
板に成形したもの、LDPEフィルム:密度0.910
でにI 0.5g/10分の低密度ポリエチレンからな
る厚さ20ILmのフィルム、HOPEフィルム:密度
0.945でMI O,1g/10分の高密度ポリエチ
レンからナル厚す+571mのフィルム、PPフィルム
:密度0.810でにI 7.Og/10分のポリプロ
ピレンからなる厚さ40ルmのフィルム、GPPS板二
分子量250の一般用ボリスチレンを射出成形法により
厚さ2II1mの板に成形したものである。
[Examples of the Invention] Examples 1 to 17 The following thermoplastic resin molded bodies were prepared. That is, PC board: polycarbonate resin with a viscosity average molecular weight of 28,000 molded into a board with a thickness of 2flffl by injection molding, LDPE film: density 0.910.
A 20ILm thick film made of low density polyethylene of 0.5g/10min, HOPE film: A 20ILm thick film made of high density polyethylene with a density of 0.945, 1g/10min, PP film. : Density 0.810 and I7. This is a 40 lm thick film made of polypropylene of Og/10 minutes, and a GPPS plate made of general-use polystyrene with a molecular weight of 250 and molded into a 2II1 m thick plate by injection molding.

モノマーとして以下のものを用意した。すなわち、テト
ラフルオロエチレン(TFE) 、アクリロニトリル(
AN)、アクリル酸(AA)、メタクリル酸メチル(H
MA) 、塩化ビニル(VC)、塩化ビニリデン(VO
C)である。
The following monomers were prepared. That is, tetrafluoroethylene (TFE), acrylonitrile (
AN), acrylic acid (AA), methyl methacrylate (H
MA), vinyl chloride (VC), vinylidene chloride (VO
C).

熱可塑性樹脂成形体を低温高周波プラズマ装置の反応器
内に設置し1反応器内の圧力を10−3mmHgに減圧
した。次に、アルゴンガスを反応器内に供給し、反応器
内の圧力を0.05mmHHに維持して、常温で13.
5f1MHzの高周波電源により出力SOWで10分間
放電を行ない成形体表面を活性化させて前処理、 を行
なった。次に、表に示す如き成形体とモノマーの組合せ
により、表に示す如きプラズマ重合条件でプラズマ重合
を行なった。尚、実施例16ではTFEとMMAをl対
lの割合で混合したものを使用1 した。得られた各重合膜の膜厚、酸素透過量、水蒸気透
過量の測定及びテーパー摩耗試験を下記の仕様で行なっ
た。
The thermoplastic resin molded body was placed in a reactor of a low-temperature high-frequency plasma device, and the pressure inside one reactor was reduced to 10 −3 mmHg. Next, argon gas was supplied into the reactor, the pressure inside the reactor was maintained at 0.05 mmHH, and 13.
A pretreatment was performed by activating the surface of the molded article by performing a discharge for 10 minutes at an output SOW using a high frequency power source of 5f1 MHz. Next, plasma polymerization was carried out using the combinations of molded bodies and monomers shown in the table under the plasma polymerization conditions shown in the table. In Example 16, a mixture of TFE and MMA in a ratio of 1:1 was used. Measurement of the film thickness, oxygen permeation amount, water vapor permeation amount, and taper abrasion test of each obtained polymeric film were performed according to the following specifications.

重合膜膜厚:反射型位相差顕微鏡で測定。Polymer film thickness: Measured using a reflection phase contrast microscope.

酸素透過量: ASTM D−1434−86に準拠。Oxygen permeation rate: Based on ASTM D-1434-86.

温度40℃、湿度80%、24時間、厚さ 100#L
mに換算して表示。
Temperature 40℃, humidity 80%, 24 hours, thickness 100#L
Displayed in m.

水蒸気透過量: JIS 20208に準拠。厚さ10
0μmに換算して表示。
Water vapor permeation amount: Based on JIS 20208. thickness 10
Displayed in terms of 0 μm.

テーパー摩耗試験: ASTMロー1044−73に準
拠。摩耗輪C5−10を使用し荷重500gでテーパー
摩耗回数 100回行なった 後のヘイズを測定。
Taper wear test: Based on ASTM Row 1044-73. Using a wear wheel C5-10, measure the haze after performing taper wear 100 times under a load of 500g.

比較例1〜5 成形体をプラズマ重合膜で被覆しない場合の酸素透過量
、水蒸気透過量、チーへ−摩耗試験のへ“′1°1°°
1°“e 、 、t。
Comparative Examples 1 to 5 Oxygen permeation amount, water vapor permeation amount, and wear test when the molded body is not coated with a plasma polymerized film
1°“e, ,t.

2 [発明の効果] 以上から明らかなように、本発明のプラズマ重合膜被覆
熱可塑性樹脂成形体は、酸素、窒素、炭酸ガス、水素、
ヘリウム等のガスバリヤ−性、非透湿性、有機溶剤、ガ
ソリン、灯油等液体の遮断性が優れている。更に本発明
品は、耐摩耗性が優れ、重合膜と成形体の接着が強固で
ある。しかも、反応速度が大きいプラズマ重合によるた
め製造が容易であり生産性が高い。
2 [Effects of the Invention] As is clear from the above, the thermoplastic resin molded article coated with a plasma polymerized film of the present invention can contain oxygen, nitrogen, carbon dioxide, hydrogen,
Excellent gas barrier properties such as helium, moisture impermeability, and barrier properties against liquids such as organic solvents, gasoline, and kerosene. Furthermore, the product of the present invention has excellent abrasion resistance and strong adhesion between the polymer film and the molded article. In addition, since plasma polymerization is used, which has a high reaction rate, it is easy to manufacture and has high productivity.

以上のような優れた性能を有するため、本発明品は、包
装用フィルム、各種の容器、シート、家電製品や自動車
分野における各種の部品等適用分野が広く、産業界に資
するところ大である。
Due to the above-mentioned excellent performance, the product of the present invention can be applied to a wide range of fields such as packaging films, various containers, sheets, home appliances, and various parts in the automobile field, and will greatly contribute to the industrial world.

4

Claims (1)

【特許請求の範囲】[Claims] 熱可塑性樹脂成形体と、該成形体の表面を被覆するプラ
ズマ重合膜とから成るプラズマ重合膜被覆熱可塑性樹脂
成形体において、該熱可塑性樹脂成形体が、ポリカーボ
ネート樹脂、スチレン系樹脂、ポリオレフィン系樹脂か
ら選ばれる1種又は2種以上の樹脂成形体であり、かつ
、該プラズマ重合膜が、テトラフルオロエチレン、アク
リロニトリル、アクリル酸、メタクリル酸メチル、塩化
ビニル、塩化ビニリデンから選ばれる1種又は2種以上
をモノマーとするプラズマ重合膜であることを特徴とす
るプラズマ重合膜被覆熱可塑性樹脂成形体。
In a plasma polymerized film-coated thermoplastic resin molded product comprising a thermoplastic resin molded product and a plasma polymerized film covering the surface of the molded product, the thermoplastic resin molded product is made of polycarbonate resin, styrene resin, polyolefin resin. The plasma polymerized film is one or more resin molded products selected from the following, and the plasma polymerized film is one or two resin molded products selected from the group consisting of tetrafluoroethylene, acrylonitrile, acrylic acid, methyl methacrylate, vinyl chloride, and vinylidene chloride. A thermoplastic resin molded article coated with a plasma polymerized film, characterized in that it is a plasma polymerized film containing the above monomers.
JP11656284A 1984-06-08 1984-06-08 Thermoplastic resin molding coated with plasma polymer film Pending JPS60260628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11656284A JPS60260628A (en) 1984-06-08 1984-06-08 Thermoplastic resin molding coated with plasma polymer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11656284A JPS60260628A (en) 1984-06-08 1984-06-08 Thermoplastic resin molding coated with plasma polymer film

Publications (1)

Publication Number Publication Date
JPS60260628A true JPS60260628A (en) 1985-12-23

Family

ID=14690179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11656284A Pending JPS60260628A (en) 1984-06-08 1984-06-08 Thermoplastic resin molding coated with plasma polymer film

Country Status (1)

Country Link
JP (1) JPS60260628A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63116848A (en) * 1986-11-05 1988-05-21 尾池工業株式会社 Non-hot stick film or sheet
DE3811599A1 (en) * 1988-04-07 1989-10-19 Battelle Institut E V Apparatus for coating the inner wall of a plastics motor vehicle tank with a barrier layer
WO2006002479A1 (en) * 2004-07-05 2006-01-12 U.S. Filter Wastewater Group, Inc. Hydrophilic membranes
AU2005259840B2 (en) * 2004-07-05 2010-12-16 Evoqua Water Technologies Llc Hydrophilic membranes
US8057574B2 (en) 2003-07-08 2011-11-15 Siemens Industry, Inc. Membrane post treatment
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
JP2014525847A (en) * 2011-06-29 2014-10-02 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド Hydrophilic stretched fluoropolymer membrane composite and method for producing the same
US8852693B2 (en) 2011-05-19 2014-10-07 Liquipel Ip Llc Coated electronic devices and associated methods
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US9868834B2 (en) 2012-09-14 2018-01-16 Evoqua Water Technologies Llc Polymer blend for membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63116848A (en) * 1986-11-05 1988-05-21 尾池工業株式会社 Non-hot stick film or sheet
DE3811599A1 (en) * 1988-04-07 1989-10-19 Battelle Institut E V Apparatus for coating the inner wall of a plastics motor vehicle tank with a barrier layer
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US8057574B2 (en) 2003-07-08 2011-11-15 Siemens Industry, Inc. Membrane post treatment
US8262778B2 (en) 2003-07-08 2012-09-11 Siemens Industry, Inc. Membrane post treatment
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8524794B2 (en) * 2004-07-05 2013-09-03 Siemens Industry, Inc. Hydrophilic membranes
WO2006002479A1 (en) * 2004-07-05 2006-01-12 U.S. Filter Wastewater Group, Inc. Hydrophilic membranes
AU2005259840B2 (en) * 2004-07-05 2010-12-16 Evoqua Water Technologies Llc Hydrophilic membranes
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8372276B2 (en) 2007-05-29 2013-02-12 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US8852693B2 (en) 2011-05-19 2014-10-07 Liquipel Ip Llc Coated electronic devices and associated methods
JP2014525847A (en) * 2011-06-29 2014-10-02 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド Hydrophilic stretched fluoropolymer membrane composite and method for producing the same
JP2016014152A (en) * 2011-06-29 2016-01-28 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated Hydrophilic expanded fluoropolymer membrane composite and method of making the same
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US11065569B2 (en) 2011-09-30 2021-07-20 Rohm And Haas Electronic Materials Singapore Pte. Ltd. Manifold arrangement
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9868834B2 (en) 2012-09-14 2018-01-16 Evoqua Water Technologies Llc Polymer blend for membranes
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US11173453B2 (en) 2013-10-02 2021-11-16 Rohm And Haas Electronic Materials Singapores Method and device for repairing a membrane filtration module
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system

Similar Documents

Publication Publication Date Title
JPS60260628A (en) Thermoplastic resin molding coated with plasma polymer film
JP5111016B2 (en) Surface hydrophilic polyolefin molded body and method for producing the same
US5451468A (en) Packaging film comprising a sealing layer and a substrate layer
GB2051829A (en) In-mould thermoset coating of moulded foamed articles
EP0317359B1 (en) Modified polyolefin resin
US5286762A (en) Styrene-based polymer moldings and process for production thereof
US4576995A (en) Laminated article and production thereof
JPH032247A (en) Styrene-based polymer molded product and production thereof
US3075857A (en) Packaging products comprising coated polypropylene film
JP2008528314A (en) Multilayer structure
JPWO2004065119A1 (en) Laminated body and method for producing the same
US5318827A (en) Carbonate polymer laminate structure
JP2014240459A (en) Styrene-(meth)acrylic acid-based copolymer composition
US4806296A (en) Process of modifying polymers to produce a more readily paintable surface
JPS6123616A (en) Production of modified olefin polymer
JP3099899B2 (en) Molded article having fluorine-containing surface
JP5650774B2 (en) Thin film forming resin composition, masterbatch thereof, and plastic container or film having gas barrier property using the same, and method for producing the same
WO1991004287A1 (en) Slippery film and production thereof
JPH047139A (en) Laminated thin object
JP2564257B2 (en) Styrene resin sheet
JPS59221336A (en) Treatment of thermoplastic resin
JPH05112751A (en) Primer composition
JPH09278977A (en) Rubber-modified styrene-based resin composition excellent in transparency and flowability and molded product therefrom
JPH0753814A (en) Resin composition having antistatic property
JPH04277508A (en) Rubber-modified styrene resin excellent in strength and transparency