JPS60257738A - Cooling structure of underliquid rotary electric machine - Google Patents

Cooling structure of underliquid rotary electric machine

Info

Publication number
JPS60257738A
JPS60257738A JP59110834A JP11083484A JPS60257738A JP S60257738 A JPS60257738 A JP S60257738A JP 59110834 A JP59110834 A JP 59110834A JP 11083484 A JP11083484 A JP 11083484A JP S60257738 A JPS60257738 A JP S60257738A
Authority
JP
Japan
Prior art keywords
electric machine
rotor
liquid
rotary electric
rotor core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59110834A
Other languages
Japanese (ja)
Inventor
Kenzo Kajiwara
梶原 憲三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59110834A priority Critical patent/JPS60257738A/en
Publication of JPS60257738A publication Critical patent/JPS60257738A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

PURPOSE:To enhance the cooling efficiency by inclining an inlet or an outlet of a passage for alternately axially flowing in a rotor in a circumferential direction. CONSTITUTION:Rotor shaft direction passages 81, 82 provided in a rotor core 5 and a rotor core retainer 7 are alternately disposed, and liquid in a rotary electric machine flows in right and left shaft directions by inclining an inlet or an outlet in a circumferential direction. As a reult, in a loss generated in a rotary electric machine the efficiency for transmitting heat to the inner liquid is enhanced. Since the liquid is flowed to the rightward and leftward, the liquid is not stayed. Since the right and left sides are uniformly cooled, the temperatures are uniform, and cooling efficiency can be enhanced.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は液中で使用する回転電機に係り、特に、交互に
配置された軸方向通路をもつ回転電機の冷却構造に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a rotating electric machine used in liquid, and more particularly to a cooling structure for a rotating electric machine having alternating axial passages.

〔発明の背景〕[Background of the invention]

従来の液中形回転電機の構造を第1図に示す。 Figure 1 shows the structure of a conventional submerged rotating electric machine.

回転電機は固定子枠1で覆われており内部・外部共に液
中に浸されている。固定子枠1に取付られた固定子鉄心
2、および固定子鉄心2に配置された固定子巻線3をも
つ。また1回転子軸4に設置転子鉄心押え7および回転
子鉄心5に配置さ2した回転子巻線6をもつ回転電機に
おいて、固定子鉄心2、固定子巻線3、回転子鉄心5、
回転子巻線6に発生する損失、および、回転による撹拌
損失は固定子枠1に伝熱され、更に、固定子枠1より外
部に伝熱冷却される、ここで、発生損失部位が回転電機
の軸方向中央に多く発生するため、中央部で温度が高く
、結果として、全体の冷却効果が低く、温度の高い回転
電機となる欠点があった。
The rotating electric machine is covered with a stator frame 1, and both the inside and outside are immersed in liquid. It has a stator core 2 attached to a stator frame 1 and a stator winding 3 disposed on the stator core 2. In addition, in a rotating electric machine having a trochanter core presser 7 installed on one rotor shaft 4 and two rotor windings 6 arranged on the rotor core 5, the stator core 2, the stator winding 3, the rotor core 5,
The loss generated in the rotor winding 6 and the stirring loss due to rotation are transferred to the stator frame 1, and further cooled by heat transfer to the outside from the stator frame 1. Since most of the heat is generated in the axial center, the temperature is high in the center, resulting in a low overall cooling effect and a high-temperature rotating electrical machine.

この欠点を補うものとして、従来、第2図に示す構造の
回転電機がある。第1図に対し異なる所は回転子鉄心5
および回転子鉄心押え7に設ける回転子軸方向通路8を
もつ事である。回転子軸方向通路8を設ける事により前
述の軸方向中央部の温度を下げる効果がある。但し、こ
の構造では、軸方向に流れた液体が一方に於いて滞留す
るため、十分な冷却を出来ないという欠点があった。
To compensate for this drawback, there has conventionally been a rotating electric machine having the structure shown in FIG. The difference from Fig. 1 is the rotor core 5.
and a rotor axial passage 8 provided in the rotor core holder 7. Providing the rotor axial passage 8 has the effect of lowering the temperature at the axial center mentioned above. However, this structure has the drawback that sufficient cooling cannot be achieved because the liquid flowing in the axial direction stays on one side.

第2図の欠点を補うものに、従来、第3図に示す構造の
回転電機がある。第2図に対して異なる子連路管9を設
けた事である。この結果、第2図の欠点である一方への
滞留がなく、循環する冷体により冷却効率が向上する。
To compensate for the drawbacks shown in FIG. 2, there is a conventional rotating electric machine having a structure shown in FIG. 3. The difference is that a sub-connection pipe 9 different from that shown in FIG. 2 is provided. As a result, there is no stagnation in one side, which is a drawback in FIG. 2, and cooling efficiency is improved by the circulating cold body.

但し、この構造では、軸方向冷却であるため、軸方向の
温度差が大きく、最高温度が高くなる欠点がある。また
、固定子連絡管9が固定子枠1の外部に取付ため、構成
部品が多く配管破断等の確率が高く、信頼性が低くなる
欠点がある。
However, in this structure, since cooling is performed in the axial direction, there is a drawback that the temperature difference in the axial direction is large and the maximum temperature is high. Furthermore, since the stator communication pipe 9 is attached outside the stator frame 1, there are many components, and there is a high probability of pipe breakage, etc., resulting in low reliability.

更に、第2図及び第3図の欠点を補うものとして、従来
、第4図に示す構造の回転電機がある。
Furthermore, to compensate for the drawbacks of FIGS. 2 and 3, there is a conventional rotating electric machine having a structure shown in FIG. 4.

(実公昭14−1.056)第2図に対して異なる所は
、軸方向通路8を回転子鉄心5より内周側に設けたシャ
フトアームにより構成しており、端部には覆ぎ板10及
び冷却扇Ijをもち、内部流体を軸方向交互に流す事に
より、温度上昇を低減する効果がある。但し、この構造
では付属部品が多くなり、故障による事故の確率が高く
、また、軸方向通路8が回転子鉄心5の内周側にあるた
め、構成−トマシンサイズが大きくなる。更に、軸方向
通路がシャツ1へアームであるため、回転子巻線6およ
び回転子鉄心5に発生した損失を有効に冷却できないと
いう欠点があった。
(Japanese Publication No. 14-1.056) The difference from Fig. 2 is that the axial passage 8 is constituted by a shaft arm provided on the inner circumferential side of the rotor core 5, and a cover plate is provided at the end. 10 and a cooling fan Ij, and by flowing the internal fluid alternately in the axial direction, there is an effect of reducing temperature rise. However, in this structure, the number of attached parts increases, the probability of accidents due to failure is high, and since the axial passage 8 is located on the inner circumferential side of the rotor core 5, the construction and machine size become large. Furthermore, since the axial passage is an arm to the shirt 1, there is a drawback that loss occurring in the rotor winding 6 and the rotor core 5 cannot be effectively cooled down.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、冷却効率を高め、また、固定子連絡管
、覆ぎ板、冷却扇をなくし信頼性を向上させた液中形回
転電機の冷却構造を提供するにある。
An object of the present invention is to provide a cooling structure for a submerged rotating electrical machine that increases cooling efficiency and improves reliability by eliminating stator communication pipes, cover plates, and cooling fans.

〔発明の概要〕[Summary of the invention]

本発明の要点は、軸方向通路の入口または出口を円周上
に傾かせ、軸方向に交互に通す構造とし冷却性能の向上
と共に部品削減による信頼性の向上を図るにある。
The gist of the present invention is to provide a structure in which the entrances or exits of the axial passages are inclined on the circumference and pass through alternately in the axial direction, thereby improving cooling performance and improving reliability by reducing the number of parts.

〔発明の実施例〕[Embodiments of the invention]

本発明による実施例を第5図に示す。回転子鉄心5及び
回転子鉄心押え7に設けられた回転子軸方向通路(方向
A)8]、回転子軸方向通路(方向B)82を第6図に
示す展開図の通り交互に配置し入口または出口を円周方
向に傾かせる事により、回転電機の内部液体は左右の軸
方向に流れる。
An embodiment according to the invention is shown in FIG. The rotor axial passages (direction A) 8] and the rotor axial passages (direction B) 82 provided in the rotor core 5 and the rotor core holder 7 are arranged alternately as shown in the development diagram shown in FIG. By tilting the inlet or outlet in the circumferential direction, the internal liquid of the rotating electric machine flows in the left and right axial directions.

この結果、回転電機に発生する損失は内部液体に伝熱す
る効率が高くなり、また、内部液体は左右に流れるため
、一方向に滞留する事もなく、また、左右の温度が均等
に冷却されるため、温度が少なく冷却効率が優れる。ま
た、従来左右への内部液体の循環は固定子枠の外部に設
けられた固定子連、18管、または、覆ぎ板、冷却扇に
より実施していたが、この構成部品を無くする事により
、部品の破断による信頼性の低下を防ぐ事が出来る。
As a result, the loss generated in the rotating electric machine is transferred more efficiently to the internal liquid, and since the internal liquid flows from side to side, it does not stagnate in one direction, and the temperature on the left and right sides is cooled evenly. Therefore, the temperature is low and the cooling efficiency is excellent. In addition, conventionally, circulation of internal liquid from side to side was carried out using a stator chain, 18 tubes, cover plate, or cooling fan installed outside the stator frame, but by eliminating these components, , it is possible to prevent a decrease in reliability due to component breakage.

C発明の効果〕 本発明によれば、冷却効率を高め温度を下げる効果があ
り、また、部品破断等の事故を無くす事が出来るため、
信頼性が向上する。
C Effects of the Invention] According to the present invention, there is an effect of increasing the cooling efficiency and lowering the temperature, and it is also possible to eliminate accidents such as parts breakage.
Improved reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は従来の部分断面図、第5図は本発
明の一実施例の部分断面図、第6図は第5図の回転子軸
方向通路部の展開図である。 8・・回転子軸方向通路、9 固定子連絡管、81゜【 −I/ \、。 第 III 第2図 第3 図 )i=馳−夕
1 to 4 are partial sectional views of a conventional rotor, FIG. 5 is a partial sectional view of an embodiment of the present invention, and FIG. 6 is a developed view of the rotor axial passage portion of FIG. 5. 8... Rotor axial passage, 9 Stator communication pipe, 81° [-I/ \,. III Figure 2 Figure 3) i = Hase - Yu

Claims (1)

【特許請求の範囲】 1、液中で運転する回転電機の回転子の軸方向に交互に
流れる通路を設けた構造において。 前記軸方向通路のうち入口または/および出口を円周方
向に傾けることを特徴とする液中形回転電機の冷却構造
[Scope of Claims] 1. A structure in which passages are provided that alternately flow in the axial direction of a rotor of a rotating electric machine operating in liquid. A cooling structure for a submerged rotating electric machine, wherein the inlet and/or outlet of the axial passage is inclined in the circumferential direction.
JP59110834A 1984-06-01 1984-06-01 Cooling structure of underliquid rotary electric machine Pending JPS60257738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59110834A JPS60257738A (en) 1984-06-01 1984-06-01 Cooling structure of underliquid rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59110834A JPS60257738A (en) 1984-06-01 1984-06-01 Cooling structure of underliquid rotary electric machine

Publications (1)

Publication Number Publication Date
JPS60257738A true JPS60257738A (en) 1985-12-19

Family

ID=14545843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59110834A Pending JPS60257738A (en) 1984-06-01 1984-06-01 Cooling structure of underliquid rotary electric machine

Country Status (1)

Country Link
JP (1) JPS60257738A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63181644A (en) * 1987-01-22 1988-07-26 Mayekawa Mfg Co Ltd Cooler for rotor of sealed motor
EP1578007A2 (en) 2004-03-19 2005-09-21 Hamilton Sundstrand Corporation Fluid submerged electric motor
CN1315247C (en) * 2003-12-31 2007-05-09 中国科学院电工研究所 Internal cooling loop of rotary motor rotor
CN105471138A (en) * 2015-12-28 2016-04-06 天津中科华瑞电气技术开发有限公司 Rotor for submerged motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63181644A (en) * 1987-01-22 1988-07-26 Mayekawa Mfg Co Ltd Cooler for rotor of sealed motor
CN1315247C (en) * 2003-12-31 2007-05-09 中国科学院电工研究所 Internal cooling loop of rotary motor rotor
EP1578007A2 (en) 2004-03-19 2005-09-21 Hamilton Sundstrand Corporation Fluid submerged electric motor
EP1578007A3 (en) * 2004-03-19 2006-08-02 Hamilton Sundstrand Corporation Fluid submerged electric motor
US7352090B2 (en) 2004-03-19 2008-04-01 Hamilton Sundstrand Fluid-submerged electric motor
CN105471138A (en) * 2015-12-28 2016-04-06 天津中科华瑞电气技术开发有限公司 Rotor for submerged motor

Similar Documents

Publication Publication Date Title
US3733502A (en) Liquid cooled rotor for dynamoelectric machines
US4740711A (en) Pipeline built-in electric power generating set
US9525325B2 (en) Liquid-cooled rotary electric machine having axial end cooling
WO2018153001A1 (en) Motor cooling structure, power motor and electric drive system
JPS62260544A (en) Ac generator for vehicle
US20120091837A1 (en) Generator cooling arrangement of a wind turbine
US2706260A (en) Liquid cooled dynamo-electric machine
CN107994735B (en) Motor cooling system
JPS635230A (en) Method of cooling eddy current power brake and eddy current power brake executing said method
US3732029A (en) Compact heat exchanger
US20200313499A1 (en) End turn cooling
US3165655A (en) Dynamoelectric machines
JPS60257738A (en) Cooling structure of underliquid rotary electric machine
US3457439A (en) Device for the cooling of rotating electrical machines of completely closed design
JPS5983557A (en) Cooling structure in generator for vehicle
RU2742819C1 (en) Dynamo-electric machine
JP2002010575A (en) Totally closed motor
JPH10174369A (en) Totally-enclosed fan cooled heat exchange type dynamo-electric machine
JPS63245239A (en) Rotor for induction motor
WO2019165524A1 (en) Electric rotating machine and casing for an electric rotating machine
JPH0445679B2 (en)
WO2019165523A1 (en) Electric rotating machine with heat exchange channels for air and for liquid
JPH03143247A (en) Cooler of permanent magnet synchronous machine
JPS62178139A (en) Cooler for generator for car
JPH083767Y2 (en) Shaft seal device