JPS6025498B2 - Steel for drilling cutting edges with excellent hot workability - Google Patents

Steel for drilling cutting edges with excellent hot workability

Info

Publication number
JPS6025498B2
JPS6025498B2 JP4873082A JP4873082A JPS6025498B2 JP S6025498 B2 JPS6025498 B2 JP S6025498B2 JP 4873082 A JP4873082 A JP 4873082A JP 4873082 A JP4873082 A JP 4873082A JP S6025498 B2 JPS6025498 B2 JP S6025498B2
Authority
JP
Japan
Prior art keywords
steel
hot
hot workability
cutting edges
shows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4873082A
Other languages
Japanese (ja)
Other versions
JPS58167754A (en
Inventor
秀樹 中村
富啓 田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Sanyo Tokushu Seiko KK
Original Assignee
Komatsu Ltd
Sanyo Tokushu Seiko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd, Sanyo Tokushu Seiko KK filed Critical Komatsu Ltd
Priority to JP4873082A priority Critical patent/JPS6025498B2/en
Publication of JPS58167754A publication Critical patent/JPS58167754A/en
Publication of JPS6025498B2 publication Critical patent/JPS6025498B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Forging (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 本発明は土木建設機械などの掘削用刃先に用いる靭・性
および高温での耐摩耗性が良好で、かつ、その製造時の
熱間加工性の優れた掘削刃先用鋼に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an excavator cutting edge for use in civil engineering and construction machinery, etc., which has good toughness, toughness and wear resistance at high temperatures, and has excellent hot workability during manufacturing. Regarding steel.

土木建設機械の掘削刃先を代表する一例としてブルドー
ザのリツパーポィントがあるが、本発明はこれと同様の
条件が要求される各種の掘削刃先用鋼を対象とするもの
である。
The ripper point of a bulldozer is a typical example of an excavating cutting edge of a civil engineering construction machine, and the present invention is directed to various types of steel for excavating cutting edges that require similar conditions.

以下リッパーポィントを例に本発明を詳述する。第1図
にリツパーポイントの1例を示す。図において1はリツ
パーポイント、2はリツパーシャンクであって、これを
ブルドーザに特設した掘削機構にとりつけて岩盤に押し
込むものである。
The present invention will be explained in detail below using Ripper Point as an example. Figure 1 shows an example of a ripper point. In the figure, 1 is a ripper point, and 2 is a ripper shank, which is attached to an excavation mechanism specially installed on a bulldozer and pushed into bedrock.

従釆、このような掘削刃先に用いる鋼材の備えるべき機
械的性質としては、引張強さ150k9/協以上、硬さ
HRC50以上、シャルピー衝撃値5k9ナ′仇以上あ
ることが必要とされ、これを満足し、かつ他の面も併せ
て適切とされて広く用いられてきたのは、第4表のGに
1例を示す如き、Ni−Cr−Mo系低合金鋼であった
Accordingly, the mechanical properties of the steel material used for such drilling cutting edges are required to have a tensile strength of 150k9 or higher, a hardness of HRC of 50 or higher, and a Charpy impact value of 5k9 or higher. Ni-Cr-Mo based low alloy steel, as shown in G in Table 4, has been widely used as it satisfies the requirements and is suitable in other respects as well.

しかるに土木建設機械に求められる能力も、次第により
厳しくなり、それに伴って、刃先の使用条件もより荷酷
になり、従来の材料では使用に耐えられなくなりつつあ
る。
However, the capabilities required of civil engineering and construction machinery have gradually become more demanding, and the conditions under which cutting edges are used have also become more demanding, and conventional materials are no longer able to withstand use.

例えばブルドーザにおいて、硬い岩盤を掘削した時のり
ッパーポィント(刃先の一種)の温度分布の1例を示す
と、第2図の如くである。このような使用条件(高温度
)が繰返されると、従来のNi−Cr−Mo系低合金鋼
では第3図の波線(従来鋼G)で示す如く、硬さの低下
が大きく摩耗の進行が激しくなり、使用に耐えなくなる
。即ち、最近のこれらの刃先の備えるべき条件としては
、前述の機械的性質に加えて、耐摩耗性として、弾性波
速度3500m/sec以上の硬岩盤ブルドーザにて1
時間連続掘削した場合の摩耗量が700タ以下であるこ
とが求められて釆ている。
For example, in a bulldozer, an example of the temperature distribution at the lipper point (a type of cutting edge) when excavating hard rock is shown in FIG. When such usage conditions (high temperatures) are repeated, conventional Ni-Cr-Mo based low alloy steel suffers a significant decrease in hardness and progress of wear, as shown by the dotted line in Figure 3 (conventional steel G). It becomes so intense that it becomes unbearable to use. In other words, in addition to the above-mentioned mechanical properties, recent conditions that these cutting edges should have include wear resistance, which is 1.
It is required that the amount of wear during continuous excavation for hours is 700 ta or less.

これらをまとめて第1表に示す。第1表 (注1) 60000以上の焼戻し処理により、得られ
る硬さ。
These are summarized in Table 1. Table 1 (Note 1) Hardness obtained through tempering treatment of 60,000 or more.

(注2) 弾性速度 350の/sec以上の硬岩盤をlhr連続掘削した場
合の摩耗量。
(Note 2) Amount of wear when hard rock with an elastic velocity of 350/sec or more is continuously excavated for lhr.

そこで、この点もこ配慮した材料として、より合金元素
の多いSKD61や、Cr−Mo系あるいはCr−Mo
−V系の中合金鋼、あるいはより炭素量を高めて硬度を
上げた鋼等が用いられるようになってきている。
Therefore, materials that take this point into consideration include SKD61, which has more alloying elements, and Cr-Mo or Cr-Mo materials.
-V-based medium alloy steels, or steels with higher carbon content and increased hardness, have come to be used.

しかるに、これら鋼は、従来の低合金鋼に比べ高温にお
ける耐摩耗性は確保し得るものの、合金量が多くなった
だけ熱間加工性に劣り、熱間鍛造による刃先加工におい
て加工工数を増加させるという難点を有している。
However, although these steels can ensure wear resistance at high temperatures compared to conventional low-alloy steels, they are inferior in hot workability due to the increased amount of alloy, and increase the number of machining steps when machining the cutting edge by hot forging. It has a drawback.

本発明は上記に鑑みなされたもので、高温での耐摩耗性
が著しく良好で、高い鞠性を有すると同時に、熱間加工
性をも良くした鋼で、その要旨とするところは、重量比
でCO.35%超〜0.50%、Sio.50〜1.0
0%未満、Mno.80〜1.50%、Cro.35〜
1.00%未満、Moo.50〜1.50%、VO.2
5〜1.00%、残剖Geおよび不可避の不純物からな
ることを特徴とする熱間加工性のすぐれた±木蓮設機械
の掘削刃先用鋼である。
The present invention was made in view of the above, and is a steel that has extremely good wear resistance at high temperatures, high ballability, and also has good hot workability. At CO. More than 35% to 0.50%, Sio. 50-1.0
Less than 0%, Mno. 80-1.50%, Cro. 35~
less than 1.00%, Moo. 50-1.50%, VO. 2
This is a steel for excavating cutting edges of magnolia construction machines, which has excellent hot workability and is characterized by containing 5 to 1.00% residual Ge and unavoidable impurities.

すなわち本発明鋼は、従来鋼に比べMoを増すことによ
り糠房軟化抵抗性を持たせ、かつVを適量添加すること
により耐摩耗性を付与し、さらにC、Si、Mn、Cr
、Mo、Vをバランス良く配合して熱間加工性の低下を
最少限に抑えたものである。
In other words, the steel of the present invention has bran softening resistance by increasing Mo compared to conventional steel, wear resistance by adding an appropriate amount of V, and further contains C, Si, Mn, and Cr.
, Mo, and V are blended in a well-balanced manner to minimize deterioration in hot workability.

次に本発明鋼の個々の成分の限定理由を述べる。Next, the reasons for limiting the individual components of the steel of the present invention will be described.

C・・・…硬さと焼入性を確保するためには0.35%
を超える量が以上が必要で、また靭性と熱間加工性の劣
下を抑えるためには0.50%以下でなくてはならない
C: 0.35% to ensure hardness and hardenability
In addition, the amount must be 0.50% or less in order to suppress deterioration of toughness and hot workability.

各元素の熱間加工性におよぼす影響を熱間振り試験方法
にて確認したが、その評価は試験片が破断に至る換り回
数にて行なった。
The influence of each element on hot workability was confirmed using a hot shaking test method, and the evaluation was based on the number of times the test piece broke.

かかる試験において擦り回数の少ない程鍛造性が悪いと
いわれている。第4図に操り回数におよぼすC量の影響
を示すが、C量の増加と共に撲り回数が少なくなる。な
お、この場合の試験片の成分は0.8%Si−0.8%
Mn−0.9%Cfである。Si・・・・・・Siは素
地中に固溶し、素地強度を高めると共に焼戻し軟化抵抗
に有効であるが、0.5%未満では効果なく、熱間加工
性の低下を抑えるため、1.0%未満とした。第5図に
熱間換り回数に及ぼすSiの影響を示す。この場合の試
験片の成分は0.45%C、1.0%Mn、0.5%C
r、0.5%Moである。これより、Siが多くなると
、熱間擦り回数が低下することがわかる。Mh・…・・
Mnは、焼入性向上、及び熱間加工性に寄与するが、1
.5%を越えても暁入性向上に著しい効果はなく、0.
8%未満では熱間加工性向上の効果は僅少となる。
It is said that the smaller the number of times of rubbing in such a test, the worse the forgeability. Figure 4 shows the influence of the amount of C on the number of maneuvers, and as the amount of C increases, the number of hits decreases. In addition, the components of the test piece in this case are 0.8%Si-0.8%
Mn-0.9%Cf. Si...Si is solid dissolved in the base material and is effective in increasing the strength of the base material and resisting temper softening. However, if it is less than 0.5%, it is not effective, and in order to suppress the deterioration of hot workability, 1. It was set to less than .0%. FIG. 5 shows the influence of Si on the number of hot exchanges. The components of the test piece in this case are 0.45%C, 1.0%Mn, 0.5%C
r, 0.5% Mo. From this, it can be seen that as the Si content increases, the number of hot rubbings decreases. Mh...
Mn contributes to improving hardenability and hot workability, but 1
.. Even if it exceeds 5%, there is no significant effect on improving the dawn penetration property, and 0.
If it is less than 8%, the effect of improving hot workability will be slight.

第6図に熱間操り回数に及ぼすNhの影響を示す。この
場合の試験片の成分は0.40%C−0.5%Si−1
.0%Crである。
FIG. 6 shows the influence of Nh on the number of hot operations. The components of the test piece in this case are 0.40%C-0.5%Si-1
.. It is 0% Cr.

これより0.8%Mn以上で熱間振り回数向上に効果が
あることが判る。よってMm‘ま0.8〜1.5%に限
定する。Cr・・・・・Crは競入性確保及び暁房軟化
抵抗確保するためには、0.50%実満では不十分であ
り、1.00%を越えると、熱間加工性が低下すると共
に、材料切断、安全なガス切断が困難となる。第7図に
熱間換り回数に及ぼすCrの影響を示す。この場合の試
験片の成分は0.4%C−0.8%Si−0.8%Mn
である。これより、Crが増加すると共に高温(125
0℃)での熱間涙り回数が低下することがわかる。また
、同一供試片についてガス切断性を比較すると、第2表
のようになる。第2表 一般にCr量が増加するとガス切断が困難になるといわ
れているが、第2表のテスト結果からもCrを1.0%
以上とするとガス切断性が劣化することが判る。
This shows that 0.8% Mn or more is effective in increasing the number of hot shakes. Therefore, Mm' is limited to 0.8 to 1.5%. Cr... Cr: 0.50% is insufficient to ensure competitiveness and resistance to morning softening, and if it exceeds 1.00%, hot workability decreases. At the same time, material cutting and safe gas cutting become difficult. FIG. 7 shows the influence of Cr on the number of hot exchanges. The components of the test piece in this case are 0.4%C-0.8%Si-0.8%Mn
It is. From this, as Cr increases, high temperature (125
It can be seen that the number of hot tears at 0°C) decreases. Table 2 shows a comparison of the gas cutting properties of the same specimens. Table 2 It is generally said that gas cutting becomes difficult as the amount of Cr increases, but the test results in Table 2 also show that Cr at 1.0%
It can be seen that the gas cutting performance deteriorates when the temperature exceeds this value.

よってCrは0.5%〜1.0%未満に限定した。Mo
・・・・・・Moは焼入性向上、競房軟化抵抗の増大に
顕著であり、さらに籾性の向上にも効果がある。
Therefore, Cr was limited to 0.5% to less than 1.0%. Mo
...Mo has a remarkable effect on improving hardenability and increasing resistance to competitive softening, and is also effective in improving grain quality.

これらの効果を確保するためには、0.50%未満では
不十分であり、1.5%を越えると、競房軟化抵抗の効
果は飽和しい、轍性も低下し、さらに本発明の重要項目
の一つである熱間加工性が著しく劣化する。第8図に、
熱間振り回数に及ぼすMoの影響を示す。
In order to ensure these effects, less than 0.50% is insufficient, and if it exceeds 1.5%, the effect of competitive softening resistance is saturated, the rutting property is also reduced, and further, the important point of the present invention is One of the items, hot workability, deteriorates significantly. In Figure 8,
The influence of Mo on the number of hot shaking is shown.

この場合の試験片の成分は0.40%C−0.75%S
i−1.0%Mn−0.6%Crである。これよりMo
増加に伴い、熱間振り回数が低下することが判る。よっ
てMoは0.5〜1.5%に限定する。V・・・・・・
Vは暁房軟化抵抗の増大、結晶粒粗大化防止、耐摩耗性
向上に効果があるが、0.25%未満ではその効果は期
待できず、1.0%を越えると、熱間加工性の低下、被
削性、研削性の低下及び靭‘性の低下をきたす。第9図
に熱間振り回数に及ぼすVの影響について示す。この場
合のT.P.組成は0.4%C−0.9%Si一0.8
%Mnである。これより、V量が増加すると熱間嫁り回
数が低下することがわかる。
The composition of the test piece in this case is 0.40%C-0.75%S
i-1.0%Mn-0.6%Cr. From now on Mo
It can be seen that as the number of hot shakes increases, the number of hot shakes decreases. Therefore, Mo is limited to 0.5 to 1.5%. V...
V is effective in increasing resistance to softening, preventing grain coarsening, and improving wear resistance, but if it is less than 0.25%, no such effect can be expected, and if it exceeds 1.0%, hot workability This results in a decrease in hardness, machinability, grindability, and toughness. FIG. 9 shows the influence of V on the number of hot shakes. In this case T. P. Composition is 0.4%C-0.9%Si-0.8
%Mn. From this, it can be seen that as the V amount increases, the number of times of hot bonding decreases.

よってVは0.25〜1.0%に限定する。以上、各種
元素の成分限定範囲について述べたが、本発明の重要項
目である熱間加工性の良さを十分に発揮するにはC、S
i、Mh、Cr、Mo、Vがバランス良く、配合される
必要があるが、それらの影響を定量的に把握することは
困難である。
Therefore, V is limited to 0.25 to 1.0%. The limited ranges of various elements have been described above, but in order to fully demonstrate the good hot workability, which is an important item of the present invention,
Although i, Mh, Cr, Mo, and V need to be blended in a well-balanced manner, it is difficult to quantitatively understand their effects.

本発明では、そのバランスの良い配合を見し、出すため
に数多〈の各種のタイプの成分鋼について実験を行い成
分範囲を決定した。第3表はその一部を示す。第3表に
示す鋼について高温換り試験を行った結果を第10図に
示す。第3表 第10図から判るように実験鋼7が熱間湊り回数が最も
多く、かつ加工試験温度1000〜1250午○で広範
囲で加工性が良い、即ち熱間加工時の扱いも容易である
ことがわかる。
In the present invention, in order to find and find a well-balanced composition, experiments were conducted on numerous types of component steel to determine the component range. Table 3 shows some of them. FIG. 10 shows the results of high-temperature switching tests performed on the steels shown in Table 3. As can be seen from Table 3 and Figure 10, experimental steel 7 has the highest number of hot soaking cycles and has good workability over a wide range of working test temperatures of 1000 to 1250 pm, that is, it is easy to handle during hot working. I understand that there is something.

そこで本発明鋼は実験鋼7を基本として各成分範囲を先
述のとおり決定したものである。以上の如く、本発明で
は、個々の元素の熱間加工性に及ぼす影響を検討しさら
に、それらの相互作用までも検討して、熱間加工性が良
く、かつ、加工可能温度範囲も広いことを特徴とする掘
削刃先用鋼を開発したものである。
Therefore, the steel of the present invention is based on Experimental Steel 7, and the range of each component is determined as described above. As described above, in the present invention, we have studied the effects of individual elements on hot workability, and also their interactions, to achieve good hot workability and a wide range of processable temperatures. We have developed a steel for drilling cutting edges with the following characteristics.

次に本発明鋼の実験例について述べる。Next, experimental examples using the steel of the present invention will be described.

第4表に本発明鋼と従来鋼の成分例および主な機械的性
質、熱間加工性(ネジリ試験)及び岩盤掘削による摩耗
重量を示す。第4表 岩盤掘削による摩耗量は、第1図に示すようなリッパー
ポィントを製作し、弾性波速度3500の/秒以上の硬
岩盤にてプルドーザによる掘削作業を行なった結果であ
る。
Table 4 shows composition examples, main mechanical properties, hot workability (torsion test), and wear weight due to rock excavation of the steel of the present invention and the conventional steel. The amount of wear caused by rock excavation in Table 4 is the result of manufacturing a ripper point as shown in FIG. 1 and performing excavation work with a pulldozer in hard rock where the elastic wave velocity is 3500/sec or more.

更に第3図に本発明鋼と比較鋼の焼房軟化抵抗を示す。
第4表からわかるように、本発明鋼は、従来鋼の低合金
鋼(G)より耐摩耗性が格段にすぐれ、またSKD61
(H)や改良鋼(1)、(J)と同等又はそれ以上の耐
摩耗性を有しており、第1表の必要条件を満しているこ
とがわかる。このことは第3図に見る通り、本発明鋼の
耐晩戻軟化抵抗性が従来鋼(G)、(H)、(1)より
格段に優れていることからも首肯し得るところである。
Furthermore, FIG. 3 shows the oven softening resistance of the invention steel and comparative steel.
As can be seen from Table 4, the steel of the present invention has much better wear resistance than the conventional low-alloy steel (G), and also has SKD61
It can be seen that it has wear resistance equal to or higher than that of (H), improved steels (1), and (J), and satisfies the requirements in Table 1. This can be supported by the fact that, as shown in FIG. 3, the late-night reversion softening resistance of the steel of the present invention is significantly superior to that of conventional steels (G), (H), and (1).

また衝撃値で表わされる鞠性についても本発明鋼は従来
鋼(G)よりすぐれている。次に熱間加工性について熱
間握り試験でもつて比較した。
The steel of the present invention is also superior to the conventional steel (G) in terms of ballability expressed by impact value. Next, hot workability was compared using a hot grip test.

前述したように、熱間加工性の良否は加工温度における
嫁り回数及び高湊り回数の温度範囲が広いことで決定さ
れる。第5表には、1000℃及び1200qoにおけ
る熱間換り回数を示し、それによって高低温両方の頻り
回数でもつて比較した。本発明鋼は高低温ともに熱間擦
り回数24〜28回と従来鋼(G)の31回に近い値を
示し、従来の改良鋼(1)、(J)やSKD61(H)
の19〜24回に比べて格段に加工性が良好であり、低
温においても加工性の良好さを維持していることがわか
る。さらに、実際のリッパーポィントの鍛造において、
取り付け用孔の形成鍛造時の工数とポンチ寿命を第6表
に示す。第6表 第11図にその実際の鍛造の模様を示す。
As mentioned above, the quality of hot workability is determined by the wide temperature range of the number of bumps and high number of laps at the processing temperature. Table 5 shows the number of hot exchanges at 1000° C. and 1200 qo, thereby comparing the number of cycles at both high and low temperatures. The steel of the present invention shows a number of hot rubbings of 24 to 28 times at both high and low temperatures, which is close to 31 times of the conventional steel (G), and compared to the conventional improved steels (1), (J) and SKD61 (H).
It can be seen that the workability is much better than that of 19 to 24 times, and that good workability is maintained even at low temperatures. Furthermore, in the actual forging of ripper points,
Table 6 shows the man-hours and punch life during forging for forming the mounting holes. Table 6, Figure 11 shows the actual forging pattern.

図において、1′はリッパーポィントの粗成形材で、3
はポンチダィである。
In the figure, 1' is the rough formed material of Ripper Point, and 3
is ponchidai.

粗成形材を約1200℃に加熱し型(図示せず)に入れ
ポンチダィを押し込む。第6表に見るとおり熱間換り回
数が低い(H)鋼および(1)鋼は実際の鍛造において
も、加工工数が高みポンチの寿命も悪いことが判る。一
方本発明鋼に}は従来鋼(G)と同等の加工性を有して
いることがわかる。以上の如く本発明鋼は高温での耐摩
耗性が著しく良好で轍性も優れた厳しい掘削条件によく
耐えると共に熱間加工性もほぼ低合金鋼並で製造コスト
が安いという従来にない優れた特徴を有しており、建設
機械の掘削刃先用鋼として最適である。
The rough molded material is heated to about 1200° C., placed in a mold (not shown), and pressed with a punch die. As shown in Table 6, it can be seen that (H) steel and (1) steel, which have a low number of hot exchanges, require a high number of processing steps and have a short punch life even in actual forging. On the other hand, it can be seen that the steel of the present invention} has workability equivalent to that of the conventional steel (G). As described above, the steel of the present invention has extremely good wear resistance at high temperatures, excellent rutting resistance, can withstand severe excavation conditions, hot workability is almost the same as low alloy steel, and manufacturing cost is low. These characteristics make it ideal as a steel for excavating cutting edges of construction machinery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aはリッパーポィントとそのシャンクの斜視図、
第1図bはリッパーポィントをシャンクから外した斜視
図、第2図はリッパーポィントの使用時の温度分布の1
例を示す図、第3図は本発明鋼と比較鋼との暁房温度と
硬さの関係を示す図、第4図、第5図、第6図、第7図
、第8図、第9図は夫々C、Si、Mn、Cr、Mo、
Vの元素含有量と熱間操り回教の関係を示す図、第10
図は各種成分鋼(実験鋼)の熱間振り試験における温度
と擬り回数の関係を示す図、第IY図はリッパーポイン
トの取り付け用孔形成のための鍛造の模様を示す斜視図
である。 1……リツパーポイント、1′……リツパーポイントの
組成形材、2・・・・・・リッパ−シャンク、3”””
ポンチダイ。 第1図 第2図 第3図 第4図 第5図 第6図 第7図 第8図 第9図 第10図 第11図
Figure 1a is a perspective view of the ripper point and its shank;
Figure 1b is a perspective view of the ripper point removed from the shank, and Figure 2 is a diagram of the temperature distribution when the ripper point is in use.
Figures showing examples; Figure 3 is a diagram showing the relationship between the temperature and hardness of the steel of the present invention and comparative steel; Figures 4, 5, 6, 7, 8 and 8; Figure 9 shows C, Si, Mn, Cr, Mo,
Diagram showing the relationship between the elemental content of V and hot manipulation Islam, No. 10
The figure is a diagram showing the relationship between the temperature and the number of simulations in a hot shaking test of various component steels (experimental steels), and Figure IY is a perspective view showing a forging pattern for forming a hole for attaching a ripper point. 1... Ripper point, 1'... Ripper point composition shape, 2... Ripper shank, 3"""
Punch die. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11

Claims (1)

【特許請求の範囲】 1 重量%で C 0.35%超〜0.50% Si 0.50〜1.00%未満 Mn 0.80〜1.50% Cr 0.35〜1.00%未満 Mo 0.55〜1.50% V 0.25〜1.00% 残部Feおよび不可避の不純物 からなることを特徴とする熱間加工性の優れた建設機械
の掘削刃先用鋼。
[Claims] 1% by weight: C more than 0.35% to 0.50% Si 0.50 to less than 1.00% Mn 0.80 to 1.50% Cr 0.35 to less than 1.00% A steel for excavating cutting edges of construction machines with excellent hot workability, characterized by comprising Mo 0.55-1.50% V 0.25-1.00% with the remainder being Fe and unavoidable impurities.
JP4873082A 1982-03-26 1982-03-26 Steel for drilling cutting edges with excellent hot workability Expired JPS6025498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4873082A JPS6025498B2 (en) 1982-03-26 1982-03-26 Steel for drilling cutting edges with excellent hot workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4873082A JPS6025498B2 (en) 1982-03-26 1982-03-26 Steel for drilling cutting edges with excellent hot workability

Publications (2)

Publication Number Publication Date
JPS58167754A JPS58167754A (en) 1983-10-04
JPS6025498B2 true JPS6025498B2 (en) 1985-06-18

Family

ID=12811402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4873082A Expired JPS6025498B2 (en) 1982-03-26 1982-03-26 Steel for drilling cutting edges with excellent hot workability

Country Status (1)

Country Link
JP (1) JPS6025498B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5279002B2 (en) * 2008-04-25 2013-09-04 トピー工業株式会社 Method for manufacturing roller shell of lower traveling body of construction machine

Also Published As

Publication number Publication date
JPS58167754A (en) 1983-10-04

Similar Documents

Publication Publication Date Title
JP2003027181A (en) High-toughness, wear-resistant steel
WO2001042523A1 (en) Wear-resistant steel product and method for production thereof
JP3360687B2 (en) High-strength, high-toughness wear-resistant steel
KR100415626B1 (en) High Strength Wear Resistance Steel with Excellent Hardenability
JPS6025498B2 (en) Steel for drilling cutting edges with excellent hot workability
CN1422972A (en) High-strength alloy tool steel
CN103205639B (en) Shovel blade cutting edge of loader and method for manufacturing shovel blade cutting edge
JPS6048582B2 (en) Stainless steel for razor blades with high heat treatment hardness
JP2960496B2 (en) Cold tool steel
JPH08144009A (en) Wear resistant cast steel with high toughness
JPS5925957A (en) High toughness chisel for breaker
JP3205194B2 (en) Carbide dispersed carburized steel parts
JPS60215743A (en) Wear-resistant steel
JPS58171558A (en) Tough nitriding steel
JP7544489B2 (en) Alloy steel for machine structures with an excellent balance of hardness and toughness
JP6792934B2 (en) Chisel steel and chisel
JPH07179988A (en) Hot tool steel excellent in high temperature strength
JPS6254859B2 (en)
JPS621843A (en) High toughness carburizing steel
JPH0360903B2 (en)
JPS60248870A (en) Strong, tough and wear resistant cast steel material
GB2164057A (en) High carbon, low alloy steel comprising niobium
JPS5925027B2 (en) Wear-resistant, impact-resistant tool rope
JPH07207713A (en) Sediment excavation machine and tooth member for sediment excavation
JPH031370B2 (en)