JPS60251391A - Sealing mechanism for rotary regenerating type heat exchanging machine - Google Patents

Sealing mechanism for rotary regenerating type heat exchanging machine

Info

Publication number
JPS60251391A
JPS60251391A JP10752084A JP10752084A JPS60251391A JP S60251391 A JPS60251391 A JP S60251391A JP 10752084 A JP10752084 A JP 10752084A JP 10752084 A JP10752084 A JP 10752084A JP S60251391 A JPS60251391 A JP S60251391A
Authority
JP
Japan
Prior art keywords
radial
mounting plate
seal
heat exchanger
sealing mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10752084A
Other languages
Japanese (ja)
Inventor
Kiyohide Hisaji
久治 清秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gadelius KK
Original Assignee
Gadelius KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gadelius KK filed Critical Gadelius KK
Priority to JP10752084A priority Critical patent/JPS60251391A/en
Publication of JPS60251391A publication Critical patent/JPS60251391A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D19/00Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium
    • F28D19/04Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using rigid bodies, e.g. mounted on a movable carrier
    • F28D19/047Sealing means

Abstract

PURPOSE:To obtain the sealing mechanism for the rotary regenerating type heat exchanging machine capable of minimizing the leakage of liquid by permitting a seal mounting plate to expand linearly into the radial direction thereof. CONSTITUTION:The mounting plate 2 of integral structure is mounted between the radial partitioning wall 1 and the partitioning plate 7 of a heat accumulating body, rotated about the center of a rotary column 8, allover the whole length of the radial partitioning wall 1 from the side of the rotary column 8 to the side of the periphery thereof while the seal 4 of integral structure is attached to the partitioning plate 7. When the machine is operated, the partitioning wall 1 is expanded and is deformed thermally into a bow-like configuration, however, the mounting plate 2 can be expanded linearly by heat into the radial direction thereof from a starting point at the pin joint section of the side of rotary column 8 since both ends thereof are connected to the radial partitioning wall 1 through pins 12 while the intermediate section is connected to the same wall 1 through a loose fitting connecting device 13. The partitioning plate 7 is moved in parallel to the tip end of the inclined seal 4 keeping the linear condition as it is in accordance with the inclination of the mounting plate 2 and is regulated by a regulating rod 6 so that the gap between the tip end of the seal 4 and the partitioning plate 7 is maintained as the uniform minimum gap.

Description

【発明の詳細な説明】 (技術分野) この発明は、高温流体と低温流体との混合を防止するた
め両流体を誘導するケーシングの中間部分に装備された
仕切板と、この仕切板に接近して相対的に回転運動する
蓄熱体との間隙が、回転再生型熱交換機の熱膨張によっ
て拡大して、高低温両流体間の流体漏洩が増加すること
を防止するだめの相対運動面に装備する/−ル機構の改
良に関するものである。
Detailed Description of the Invention (Technical Field) The present invention provides a partition plate installed in the middle part of a casing that guides high-temperature fluid and low-temperature fluid to prevent mixing of both fluids, and The gap between the heat storage body and the heat storage body, which rotates relative to each other, expands due to the thermal expansion of the rotary regenerative heat exchanger, and fluid leakage between both high and low temperature fluids is prevented from increasing. This invention relates to improvement of the /-role mechanism.

(従来技術) 第1図は縦軸式再生回転型熱交換機の熱膨張前における
放射方向仕切壁の従来型シール機構の状態を示す側面図
で、放射方向仕切壁1の上端及び下端には、それぞれ、
分割型の取付板2がボルト・ナツト乙によって取付けら
れ、取付板2には、分割型のシール4が図示しないボル
ト・ナツトによって取付けられ、シール4の尖端は、僅
かな間隙を以って、ケーシング5に調整ロッド6を介し
て取付けられた仕切板7に対面して、仕切板7と相対的
に回転運動を行う−0 第2図は第1図の如くシール4が取付けられた縦軸式再
生回転型熱交換機の熱膨張後における放射方向仕切壁の
7一ル機構の熱変形の状態を示す側面図で、高温流体が
図面の上部から下方へ、低温流体が下部から上方へ向っ
て流通して、熱交換する場合に、放射方向仕切壁1の上
端は高温となり、下端は低温となるだめ、放射方向仕切
壁1は、回転子柱8側において、支持軸受9を起点とし
て上方へ熱膨1辰し、放射方向仕切壁1の周辺側におい
て、下方へ垂下して、全体的に、弓状に熱変形し、放射
方向仕切壁1の熱変形に従って、これに取付けられてい
る二数付板2及びシール4も、全体的に同様の弓状に熱
変形する。シール4の熱変形に応じて、シール4と仕切
壁7との間隙が増大するため、調整ロッド6を自動又は
手動で調整し、仕切壁7をシール4の尖端に沿わせるよ
うに移動して、間隙の増大を防止しようとするが、最終
的な調整においても、尚上部間隙10及び下部間隙11
の過剰な間隙の発生を防止することが不可能であり、こ
の間隙を通して、高低温両流体間の流体漏洩が増加する
ことを防止し得ない。
(Prior Art) FIG. 1 is a side view showing the state of the conventional sealing mechanism of the radial partition wall before thermal expansion of the vertical axis type regenerative rotary heat exchanger. Each,
A split-type mounting plate 2 is attached with bolts and nuts B, and a split-type seal 4 is attached to the mounting plate 2 with bolts and nuts (not shown). It faces a partition plate 7 attached to the casing 5 via an adjustment rod 6 and rotates relative to the partition plate 7. This is a side view showing the state of thermal deformation of the radial partition wall mechanism after thermal expansion of the regenerative rotary heat exchanger, with the high temperature fluid flowing downward from the top of the drawing and the low temperature fluid flowing upward from the bottom. When circulating and exchanging heat, the upper end of the radial partition wall 1 becomes high temperature and the lower end becomes low temperature. Therefore, the radial partition wall 1 moves upward from the support bearing 9 on the rotor column 8 side. Thermal expansion increases by 1, and on the peripheral side of the radial partition wall 1, the radial partition wall 1 hangs downward and is thermally deformed into an arched shape as a whole, and as the radial partition wall 1 thermally deforms, the The number plate 2 and the seal 4 are also thermally deformed into a similar arcuate shape as a whole. As the seal 4 thermally deforms, the gap between the seal 4 and the partition wall 7 increases, so the adjustment rod 6 is adjusted automatically or manually to move the partition wall 7 along the tip of the seal 4. , attempts to prevent the gap from increasing, but even in the final adjustment, the upper gap 10 and the lower gap 11 still increase.
It is impossible to prevent the formation of excessive gaps in the air, and it is impossible to prevent fluid leakage between the high and low temperature fluids from increasing through these gaps.

第ろ図は縦軸式再生回転型熱交換機の熱膨張前における
放射方向仕切壁の他の従来型シール機構の状態を示す側
面図で、放射方向仕切v1の上端及び下端には、分割型
の取付板2が取付けられ、取付板2には、シール4が、
放射方向の一部分では、仕切板7と僅かな間隙を以って
、又、他の部分では放射方向仕切壁1の熱膨張後の変形
を考慮して、過剰な間Is、10.11をあらかじめ付
与されて取付けられている。
Figure 5 is a side view showing the state of another conventional sealing mechanism of the radial partition wall before thermal expansion of the vertical axis type regenerative rotary heat exchanger. A mounting plate 2 is attached, and a seal 4 is attached to the mounting plate 2.
In one part of the radial direction, an excessive gap Is, 10.11 is provided in advance with a small gap from the partition plate 7, and in other parts, taking into consideration the deformation of the radial partition wall 1 after thermal expansion. Granted and installed.

第4図は第6図の如くシール4が取付けられた縦軸式回
転再生型熱交換機の熱膨張後における放射方向仕切壁の
7一ル機構の熱変形の状態を示す側面図で、放射方向仕
切壁1は熱膨張し、第2図で説明したと同様に全体的に
弓状に熱変形し、放射方向仕切壁1の熱変形に従って、
これに取付けられている取付板2及びシール4も、熱変
形するが、熱膨張前にあらかじめ付与されている過剰な
間隙10.11の影々シによって、シール4の尖端は直
線となるため、調整ロッド6で仕切板7を移動調整して
、シール4の尖端の放射方向の全長に亘って僅かな間隙
を以って沿わせることが可能となり、流体の漏洩が増加
することを防止している。
FIG. 4 is a side view showing the state of thermal deformation of the radial partition wall mechanism after thermal expansion of the vertical axis rotary regenerative heat exchanger to which the seal 4 is attached as shown in FIG. The partition wall 1 thermally expands and is thermally deformed in an arcuate manner as described in FIG. 2, and according to the thermal deformation of the radial partition wall 1,
The mounting plate 2 and seal 4 attached to this are also thermally deformed, but the tip of the seal 4 becomes straight due to the excessive gap 10.11 provided in advance before thermal expansion. By adjusting the movement of the partition plate 7 using the adjustment rod 6, it is possible to align the entire length of the tip of the seal 4 in the radial direction with a small gap, thereby preventing fluid leakage from increasing. There is.

第1図及び第2図で説明した従来型シール機構において
は、回転再生型熱交換機の熱膨張が少ない場合には、流
体の漏洩は少ないが、熱膨張が多くなると増加し、第6
図及び第4図で説明した他の従来型シール機構において
は、回転再生型熱交換機の熱膨張が少ない場合には、流
体の漏洩は多いが、あらかじめ付与されている過剰な間
隙分を埋めるだけの熱膨張を行った後には、少くなる。
In the conventional sealing mechanism explained in FIGS. 1 and 2, when the thermal expansion of the rotary regenerative heat exchanger is small, fluid leakage is small, but as the thermal expansion increases, the leakage increases.
In the other conventional sealing mechanisms explained in Fig. 4 and Fig. 4, if the thermal expansion of the rotary regenerative heat exchanger is small, there is a lot of fluid leakage, but only by filling the excess gap provided in advance. After thermal expansion of , it decreases.

以上の説明の如く、従来型のシール機構においては、回
転再生型熱交換機の熱膨張の前又は後のどちらかにおい
て、シール4と仕切板7との間隙が過剰とならざるを得
ないため、熱膨張の前後を通じて、常に両者の間隙を最
小に維持することができる回転再生型熱交換機のシール
機構の出現が要請されている。
As explained above, in the conventional seal mechanism, the gap between the seal 4 and the partition plate 7 must be excessive either before or after the thermal expansion of the rotary regenerative heat exchanger. There is a need for a sealing mechanism for a rotary regenerative heat exchanger that can always maintain the minimum gap between the two before and after thermal expansion.

(本発明の目的) この発明は上記要請に応えるためになされだもので、そ
の目的とする所は、回転再生型熱交換機の高低温両流体
を分離して誘導するケーシングに取付けられた仕切板と
、相対的に回転運動する蓄熱体との間隙即ち流体漏洩面
積を回転再生型熱交換機の熱膨張の前後を通じて、常に
最小にし、しかも簡単な構造であるシール機構を捺供す
ることにある。
(Object of the present invention) This invention was made in response to the above-mentioned request, and its purpose is to provide a partition plate attached to a casing that separates and guides both high and low temperature fluids of a rotary regenerative heat exchanger. The purpose of the present invention is to provide a sealing mechanism that always minimizes the gap between the heat storage body and the relatively rotating heat storage body, that is, the fluid leakage area, both before and after the thermal expansion of the rotary regenerative heat exchanger, and that has a simple structure.

(実施例の構成) 以下に本発明の実施例について、図面を参照しながら説
明する。
(Configuration of Examples) Examples of the present invention will be described below with reference to the drawings.

第5図は回転子柱8を中、Crとして回転する蓄熱体の
熱膨張前における放射方向仕切壁1の7一ル機構の状態
を示す側面図である。放射方向仕切壁1と仕切板7との
間に、放射方向仕切v1の回転子柱8側から周辺側まで
の全長に亘って、連続的な一体格造で構成された取付板
2を装着し、取付板2の仕切板7側には、一体構造型の
シール4を取付ける。この場合ノール4の構造は分割型
でも良い。取付板2の回転子柱8側では、取付板2を放
射方向仕切壁1にピン12によって接合し、取付板2の
放射方向の中間部では、取付板2と放射方向仕切壁1と
の密着性と遊動性とを兼備するだめ、取付板2を放射方
向仕切壁1に遊動式接合装置13によって接合し、取付
板2の周辺側では、取付板2が放射方向に沼って熱膨張
が許容されるように、取付板2に放射方向の長方型孔1
4を設け、取付板2を放射方向仕切壁1にピン12によ
って接合する。
FIG. 5 is a side view showing the state of the radial partition 1 mechanism before the thermal expansion of the heat storage body rotating with the rotor column 8 as Cr. Between the radial partition wall 1 and the partition plate 7, a mounting plate 2 constructed of a continuous integral structure is installed over the entire length of the radial partition v1 from the rotor column 8 side to the peripheral side. , an integral structure type seal 4 is attached to the partition plate 7 side of the mounting plate 2. In this case, the structure of the node 4 may be a split type. On the rotor column 8 side of the mounting plate 2, the mounting plate 2 is joined to the radial partition wall 1 by a pin 12, and at the radial intermediate part of the mounting plate 2, the mounting plate 2 and the radial partition wall 1 are in close contact with each other. In order to achieve both flexibility and flexibility, the mounting plate 2 is joined to the radial partition wall 1 by a floating type joining device 13, and on the peripheral side of the mounting plate 2, the mounting plate 2 is swamped in the radial direction and thermal expansion is prevented. Radial rectangular holes 1 in the mounting plate 2 as permissible.
4 are provided, and the mounting plate 2 is joined to the radial partition wall 1 by pins 12.

第6図は第5図のA−A矢視を示す図で、/−ル4は、
シール4の間にスペーサー15を挾み、ボルト16、ナ
ツト17によって、仕切板7と僅かな間隙を持つように
調整されて、取付板2に取付けられ、取付板2は放射方
向仕切壁1にボルト18、ワラ7.1.−19・スプリ
ング20・ナツト21で構成された遊動式接合装置13
によって、取付板2の遊動間隙22を利用して遊動式に
取付られる。
FIG. 6 is a diagram showing the A-A arrow view in FIG.
A spacer 15 is sandwiched between the seals 4, and the bolts 16 and nuts 17 are adjusted to have a slight gap with the partition plate 7, and the mounting plate 2 is attached to the radial partition wall 1. Bolt 18, straw 7.1. - Floating type joining device 13 composed of 19, spring 20, and nut 21
By using the floating gap 22 of the mounting plate 2, it is mounted in a floating manner.

第7図は回転子柱8を中心とし7て回転する蓄熱体の熱
膨張後における放射方向仕切壁1のシール機構の状態を
示す側面図である。放射方向仕切壁1は熱膨張し、第2
図で説明したと同様に全体的に弓状に熱変形するが、一
方散付板2は、その両端をピン12によって中間部を遊
動式接合装置13によって、放射方向仕切壁1に接合さ
れているため、回転子柱8側のビン接合部を起点として
、放射方向に、周辺側のピン接合部に向って直線状に熱
膨張することができ、取付板2に取付けられている7−
ル4の尖端も熱膨張前と同様の直線形状を維持すること
ができる。取付板2の傾斜に応じて、直線形状の状態の
ま1傾斜したシール4の尖端に平行し、シール4の尖端
と仕切板7との間隙を放射方向の全長に亘って、均一な
最小の間隙に維持するように、仕切板7は調整ロッド6
によって、自動又は手動で調整される。
FIG. 7 is a side view showing the state of the sealing mechanism of the radial partition wall 1 after the heat storage body rotating around the rotor column 8 has thermally expanded. The radial partition wall 1 thermally expands and the second
The scattering plate 2 is thermally deformed into an arched shape as a whole as explained in the figure, but the scattering plate 2 is joined to the radial partition wall 1 by pins 12 at both ends and by a floating joining device 13 at the middle part. Therefore, thermal expansion can occur linearly in the radial direction from the pin joint on the rotor column 8 side as a starting point toward the pin joint on the peripheral side.
The tip of the lever 4 can also maintain the same linear shape as before thermal expansion. Depending on the inclination of the mounting plate 2, the gap between the tip of the seal 4 and the partition plate 7 in the straight line state is parallel to the tip of the inclined seal 4, and the gap between the tip of the seal 4 and the partition plate 7 is uniformly maintained over the entire length in the radial direction. The partition plate 7 is connected to the adjustment rod 6 so as to maintain the gap.
Automatically or manually adjusted.

上記実施例のシール機構は、縦軸式回転再生型熱交換機
の放射方向仕切壁におけるソール機構の構成について説
明したものでちるが、本発明のシール機構は、これに限
定されるものではなく、例えば、横軸式回転再生型熱交
換機にも構成することが可能であり、取付板、取付板接
合のピン、遊動式接合装置についても、本発明の精神か
ら離れない範囲で、各種の変更がなされ得ることは明ら
かである。
Although the sealing mechanism of the above embodiment describes the configuration of the sole mechanism in the radial partition wall of a vertical axis rotary regenerative heat exchanger, the sealing mechanism of the present invention is not limited to this. For example, it can be configured as a horizontal axis rotary regenerative heat exchanger, and various changes can be made to the mounting plate, the pin for joining the mounting plate, and the floating joining device without departing from the spirit of the present invention. It is clear that what can be done.

(本発明の効果) 回転再生型熱交換機の従来型シール機構においては、放
射方向仕切壁の熱膨張に厄じて、/−ルの尖端の放射方
向の形状が変化するが、仕切板のシールに対向する放射
方向の面はその形状を変化し得ないため、熱膨張の前後
を通じて、シールの尖端と仕切板の対向面との放射方向
の形状を一致させることは不可能であり、仕切板を調整
移動しても/−ルの尖端と仕切板の対向面との間に過剰
間隙が生ずることを防止することはできない。
(Effects of the present invention) In the conventional seal mechanism of a rotary regenerative heat exchanger, the radial shape of the tip of the /-le changes due to thermal expansion of the radial partition wall, but the seal of the partition plate Since the radial surface facing the partition plate cannot change its shape, it is impossible to match the radial shape of the tip of the seal and the opposing surface of the partition plate before and after thermal expansion. Even if the holder is adjusted and moved, it is not possible to prevent an excessive gap from being formed between the tip of the lever and the facing surface of the partition plate.

本発明のシール機構においては、取付板の放射方向の熱
膨張を秒数することができる長方型孔を持ったピン接合
の手段によって、取細板の少なくとも一端部を放射方向
仕切壁に取付けるため、取付板は放射方向仕切壁の熱膨
張変形とは無関係に熱膨張前の放射方向の形状を、好ま
しくは、一般に直線で構成されている仕切板のシールに
対向する放射方向の面と同様の直線形状を一定に維持す
ることができる。従って、放射方向仕切壁の熱膨張後に
、仕切板を取細板に取付けられたシールの尖端に向って
、適切に近接移動調整することによって、シールの尖端
と仕切板との間隙を熱膨張の前後を通じて、常に、放射
方向の全長に亘って、均一で最小な間隙に維持すること
が可能となる。
In the sealing mechanism of the present invention, at least one end of the mounting plate is attached to the radial partition wall by means of a pin joint having a rectangular hole that can accommodate the radial thermal expansion of the mounting plate. Therefore, the mounting plate has a radial shape before thermal expansion independent of the thermal expansion deformation of the radial partition wall, preferably similar to the radial surface opposite the seal of the partition plate, which generally consists of a straight line. can maintain a constant linear shape. Therefore, after thermal expansion of the radial partition wall, by appropriately adjusting the proximity movement of the partition plate toward the tip of the seal attached to the thin plate, the gap between the tip of the seal and the partition plate can be adjusted to accommodate thermal expansion. It is possible to always maintain a uniform and minimum gap over the entire length in the radial direction from front to back.

取付板の両端のピン接合の中間部において、取付板を放
射方向仕切壁に接合する遊動式接合装置は、取付板と放
射方向仕切壁との接触の密着性を保ちながら、取付板と
放射方向仕 4゜切壁との放射方向仕切壁の熱膨張によ
る上下方向の変位を許容する効果を持っている。
The floating type joint device that connects the mounting plate to the radial partition wall at the intermediate part of the pin joints at both ends of the mounting plate maintains the tight contact between the mounting plate and the radial partition wall, and It has the effect of allowing vertical displacement due to thermal expansion of the radial partition wall with the 4° partition wall.

第8図は、従来型シール機構と本発明のシール機構とに
おける回転再生型熱交換機に掛る熱負荷と高低温両流体
間の流体漏洩量との関係を示すグラフで、曲線工は第1
図及び第2図で説明した従来型シール機構の流体漏洩曲
線であり、曲線■は第6図及び第4図で説明した他の従
来型/−ル機桟の流体漏洩曲線であり、曲線■は第5図
、第6図及び第7図で説明した本発明のシール機構の流
体漏洩曲線である。本発明のシール機構では、熱負荷の
変化の全期間を通じて、流体漏洩量が従来型の7一ル機
構での漏洩量より低り、シかも一定であるということを
示している。
FIG. 8 is a graph showing the relationship between the heat load applied to the rotary regenerative heat exchanger and the amount of fluid leakage between both high and low temperature fluids in the conventional seal mechanism and the seal mechanism of the present invention.
2 is a fluid leakage curve of the conventional seal mechanism explained in FIG. 6 and FIG. is a fluid leakage curve of the seal mechanism of the present invention explained in FIGS. 5, 6, and 7. The sealing mechanism of the present invention shows that the amount of fluid leakage is lower than that of the conventional 7-channel mechanism, and the fluid leakage rate remains constant throughout the period of change in thermal load.

以上の各効果により、熱負荷の変化の全期間を通じ、流
体の漏洩を最小に維持する簡単な構造の回転再生型熱交
換機の7一ル機構を提供することができる。
As a result of the above-mentioned effects, it is possible to provide a rotary regenerative heat exchanger mechanism with a simple structure that maintains fluid leakage to a minimum throughout the entire period of changes in heat load.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は熱膨張前における放射方向仕切壁の従来型シー
ル機構の状態を示す側面図、第2図は熱膨張後における
第1図に示すシール機構の熱変形の状態を示す側面図、
第6図は熱膨張前における放射方向仕切壁の他の従来型
シール機構の状態を示す側面図、第4図は熱膨張後にお
ける第6図に示すシール機構の熱変形の状態を示す側面
図、第5図は熱膨張前における放射方向仕切壁の本発明
のシール機構の状態を示す側面図、第6図は第5図のA
−A矢視を示す図、第7図は熱膨張後における第5図に
示すシール機構の熱変形の状態を示す側面図、第8図は
従来型シール機構と本発明のシール機構とにおける熱負
荷と流体漏洩量との関係を示すグラフである。 尚、図中の主要部の符号は次の通りである。 1・・・・・・放射方向仕切壁 2・・・・・・取付板
ろ・・・・・・ボルト・ナツト 4・・・・・・シール
5・・・・・・ケーシング 6・・・・・・調整ロッド
7・・・・・仕切板 8・・・・・・回転子柱9・・・
・・支持軸受 10.11・・・過剰間隙12・・・・
・・ビン 13・・・・・・遊動式接合装置14・・・
・・・長方型孔 15・・・・・スペーサー16・・・
・・・ボルト17・・・・・・ナツト18・・・・・・
ボルト19・・・・・・ワッシャー20・・・・・・ス
プリング 21・・・・・・ナツト22・・・・・・遊
動間隙 I 、 n、I[l・・・・・・流体漏洩曲線特許出願
人 ガデリウス株式会社 第6圓
FIG. 1 is a side view showing the state of the conventional sealing mechanism of the radial partition wall before thermal expansion, and FIG. 2 is a side view showing the state of thermal deformation of the sealing mechanism shown in FIG. 1 after thermal expansion.
FIG. 6 is a side view showing the state of another conventional sealing mechanism of the radial partition wall before thermal expansion, and FIG. 4 is a side view showing the state of thermal deformation of the sealing mechanism shown in FIG. 6 after thermal expansion. , FIG. 5 is a side view showing the state of the sealing mechanism of the present invention of the radial partition wall before thermal expansion, and FIG. 6 is A of FIG. 5.
7 is a side view showing the state of thermal deformation of the seal mechanism shown in FIG. 5 after thermal expansion, and FIG. 8 is a view showing the thermal deformation state of the seal mechanism shown in FIG. It is a graph showing the relationship between load and fluid leakage amount. Incidentally, the symbols of the main parts in the figure are as follows. 1... Radial partition wall 2... Mounting plate slot... Bolts and nuts 4... Seal 5... Casing 6... ... Adjustment rod 7 ... Partition plate 8 ... Rotor column 9 ...
...Support bearing 10.11...Excess gap 12...
... Bin 13 ... Floating type joining device 14 ...
... Rectangular hole 15 ... Spacer 16 ...
...Bolt 17...Natsuto 18...
Bolt 19...Washer 20...Spring 21...Nut 22...Idling gap I, n, I[l...Fluid leakage curve Patent applicant Gadelius Co., Ltd. No. 6

Claims (1)

【特許請求の範囲】 1)高温流体と低温流体とを分離して誘導するケーシン
グと、複数の放射方向仕切壁によって区画された区画室
に熱吸収兼放熱材を包含する蓄熱体とが、相対的に運動
する回転再生型熱交換機の相対運動面に装備されたシー
ル機構において、放射方向のシールの尖端の形状が、回
転再生型熱交換機の熱膨張に追従して変形することなく
、常に熱膨張前の形状を維持するために該シールの両端
部を支持することを特徴とする回転再生型熱交換機の7
一ル機構。 2)放射方向の7−ルの尖端の形状が直線であることを
特徴とする特許請求の範囲第1項記載の回転再生型熱交
換機のシール機構。 6)放射方向の7−ルを保持する取付板が連続的な一体
構造で、取付板の両端部が放射方向仕切板にピンによっ
て接合され、少なくとも一端のビンの接合が取付板の放
射方向の熱膨張を許容する機構であることを特徴とする
特許請求の範囲第1項乃至第2頌のいずれかに記載の回
転再生型熱交換機のシール機構。 4)放射方向の/−ルを保持する取付板のピン接合間の
中間部に、取付板を放射方向仕切壁に遊動的に接合する
遊動式接合装置を装備することを特徴とする特許請求の
範囲第6項記載の回転再生型熱交換機のシール機構。
[Claims] 1) A casing that separates and guides high-temperature fluid and low-temperature fluid, and a heat storage body containing a heat absorbing and heat dissipating material in a compartment partitioned by a plurality of radial partition walls, In a sealing mechanism installed on the relative motion surface of a rotary regenerative heat exchanger that moves cyclically, the shape of the tip of the radial seal does not deform following the thermal expansion of the rotary regenerative heat exchanger and always retains heat. 7 of a rotary regenerative heat exchanger characterized in that both ends of the seal are supported to maintain the shape before expansion.
A single mechanism. 2) The sealing mechanism for a rotary regenerative heat exchanger according to claim 1, wherein the shape of the tip of the radial direction is a straight line. 6) The mounting plate that holds the 7-rules in the radial direction has a continuous integral structure, and both ends of the mounting plate are joined to the radial partition plate by pins, and at least one end of the bin is connected to the radial direction of the mounting plate. A sealing mechanism for a rotary regenerative heat exchanger according to any one of claims 1 to 2, which is a mechanism that allows thermal expansion. 4) The patent claim is characterized in that an intermediate part between the pin joints of the mounting plate that holds the radial /-ru is equipped with a floating type joining device that freely joins the mounting plate to the radial partition wall. A sealing mechanism for a rotary regenerative heat exchanger according to scope 6.
JP10752084A 1984-05-29 1984-05-29 Sealing mechanism for rotary regenerating type heat exchanging machine Pending JPS60251391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10752084A JPS60251391A (en) 1984-05-29 1984-05-29 Sealing mechanism for rotary regenerating type heat exchanging machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10752084A JPS60251391A (en) 1984-05-29 1984-05-29 Sealing mechanism for rotary regenerating type heat exchanging machine

Publications (1)

Publication Number Publication Date
JPS60251391A true JPS60251391A (en) 1985-12-12

Family

ID=14461277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10752084A Pending JPS60251391A (en) 1984-05-29 1984-05-29 Sealing mechanism for rotary regenerating type heat exchanging machine

Country Status (1)

Country Link
JP (1) JPS60251391A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0497829A1 (en) * 1989-10-24 1992-08-12 Eagleair Inc Sealing of air heaters by deforming sector plates.
US5145011A (en) * 1989-07-19 1992-09-08 NGK Insulations, Ltd. Sealing members for use in gas preheater
US5234048A (en) * 1991-01-14 1993-08-10 Ngk Insulators, Ltd. Sealing members for gas preheaters, and sealing structures using such sealing members for gas preheaters
US5443113A (en) * 1992-11-26 1995-08-22 Howden Group Plc Heat exchangers
US5697619A (en) * 1996-04-01 1997-12-16 Abb Air Preheater, Inc. Radial seal for air preheaters
EP0933610A1 (en) * 1998-02-02 1999-08-04 ALSTOM Energy Systems SA Radial leakage reduction system for regenerative air preheater

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5145011A (en) * 1989-07-19 1992-09-08 NGK Insulations, Ltd. Sealing members for use in gas preheater
US5316072A (en) * 1989-07-19 1994-05-31 Ngk Insulators, Ltd. Sealing members for use in gas preheater
EP0497829A1 (en) * 1989-10-24 1992-08-12 Eagleair Inc Sealing of air heaters by deforming sector plates.
US5234048A (en) * 1991-01-14 1993-08-10 Ngk Insulators, Ltd. Sealing members for gas preheaters, and sealing structures using such sealing members for gas preheaters
US5443113A (en) * 1992-11-26 1995-08-22 Howden Group Plc Heat exchangers
US5697619A (en) * 1996-04-01 1997-12-16 Abb Air Preheater, Inc. Radial seal for air preheaters
EP0933610A1 (en) * 1998-02-02 1999-08-04 ALSTOM Energy Systems SA Radial leakage reduction system for regenerative air preheater
FR2774464A1 (en) * 1998-02-02 1999-08-06 Gec Alsthom Stein Ind RADIAL LEAK REDUCTION SYSTEM IN A REGENERATIVE AIR HEATER FOR THERMAL EQUIPMENT
US6091061A (en) * 1998-02-02 2000-07-18 Alstom Energy Systems Sa System for reducing radial leaks in a regenerative air heater for thermal equipment

Similar Documents

Publication Publication Date Title
JPS60251391A (en) Sealing mechanism for rotary regenerating type heat exchanging machine
JPH01118082A (en) Heat accumulator
KR950002624B1 (en) Insulation for stirling engine
US2055071A (en) Sealing means for heat exchangers
US4475587A (en) Heat exchanger
US3191666A (en) Regenerative fluid heater
JP3010380B2 (en) Adjustable installation of axial sealing plate for rotary regenerative air preheater
JPS5833474B2 (en) Expansion joint mounting device
US3785431A (en) Rotary regenerative heat exchangers
US3294156A (en) Rotary regenerator
US4040475A (en) Axially movable sector plate support for rotary regenerative heat exchanger
US5299535A (en) Furnace buckstay stirrup
CA1104554A (en) Static seal
US2892615A (en) Heat exchangers of the rotary regenerator type
US4540042A (en) Inclined thermal transfer enhancement system
KR920007297B1 (en) Seal mechanism of rotary regenerative type heat exchanger
KR820001621Y1 (en) Rotary regenerative heat exchanger
JPS6323437B2 (en)
CN211503780U (en) Heat preservation mechanism of chemical heat exchanger
JPH0450552B2 (en)
US20030197333A1 (en) Air preheater sector plate bypass seal
RU2716636C1 (en) Method of compensation of deformation of high-temperature rotary disc heat exchanger
JPH0419342Y2 (en)
KR820002349Y1 (en) Static seal
KR820001663B1 (en) Sector plate supprot