JPS60241633A - Method for detecting automatic focusing of electron beam apparatus - Google Patents

Method for detecting automatic focusing of electron beam apparatus

Info

Publication number
JPS60241633A
JPS60241633A JP9644484A JP9644484A JPS60241633A JP S60241633 A JPS60241633 A JP S60241633A JP 9644484 A JP9644484 A JP 9644484A JP 9644484 A JP9644484 A JP 9644484A JP S60241633 A JPS60241633 A JP S60241633A
Authority
JP
Japan
Prior art keywords
sample
signal
electron beam
automatic focusing
circular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9644484A
Other languages
Japanese (ja)
Inventor
Satoru Fukuhara
悟 福原
Shigemitsu Kiyofuji
繁光 清藤
Hideo Todokoro
秀男 戸所
Mikio Ichihashi
幹雄 市橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9644484A priority Critical patent/JPS60241633A/en
Publication of JPS60241633A publication Critical patent/JPS60241633A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/21Means for adjusting the focus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)

Abstract

PURPOSE:To realize automatic focusing with a high accuracy even for a sample which generates lesser amount of secondary electrons by adding the function to sequentially move the center point of circular scanning on the sample and detect automatically the position of sample which generates the maximum information signal. CONSTITUTION:A sample 5 is scanned in circular with the primary electron beam of a scanning type electron microscope by adding the signal sent from a circular scanning generator 7 and the signal of a stair case wave deflection signal part 11 in an addition circuit part 12 and giving it to the X and Y deflection coils 2, the secondary electrons generated are detected, it is processed by a control circuit 10 having a signal detecting part 9 and a memory in order to control an objective lens coil 4. Thereby automatic focusing and automatic astigmatism correction are carried out. Accordingly, the automatic focusing with good S/N can be realized by sequentially moving the center point of circular scanning on the sample 5 in the X and Y directions and searching the maximum value of detected signal. As a result, it can be utilized adequately for IC and LSI, etc.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、走査形電子顕微鏡等の電子線装置の自iIh
焦点合わせに係や、特に、二次電子発生量の少ないIC
やLSI等の半導体材料を、試料として用いる場合の自
動無点検出法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to
Focusing and especially ICs that generate a small amount of secondary electrons.
The present invention relates to an automatic pointless detection method when semiconductor materials such as or LSI are used as a sample.

〔発明の背景〕[Background of the invention]

従来の自動焦点合わせについて、第1図により説明する
。J陰極工から放出された1次電子ビームはX−Y偏向
コイル2によりX方向、Y方向に偏向され、非点補正コ
イル3により非点補正を受け。
Conventional automatic focusing will be explained with reference to FIG. The primary electron beam emitted from the J cathode is deflected in the X and Y directions by an X-Y deflection coil 2, and subjected to astigmatism correction by an astigmatism correction coil 3.

対物レンズコイル4によって、試料面上5に収束され最
適ビームスポット径を得る。X−Y偏向コイル2には円
走査発生部7より、X傷内コイルに余弦波電流が、Y偏
向コイルには正弦波電流が。
The objective lens coil 4 focuses the beam onto the sample surface 5 to obtain an optimum beam spot diameter. The X-Y deflection coil 2 receives a cosine wave current from the circular scanning generator 7 to the X intra-wound coil, and a sine wave current to the Y deflection coil.

任意の振幅、任意の周期で供給される。すると、1次電
子ビームは試料面上5を円形走査することになる。1次
電子ビームを試料に照射すると、試料から2次電子が発
生し、2次電子検出器6により捕捉され信号検出部9に
人力される。信号検出部9は試料面上を照射する1次■
子ビームの最小鱈乱円を検出する回路である。一般的に
は、1次電子ビームスポット径が小さくなればなるほど
、発生する2次゛或子信号の周波数成分が高くなる特性
を利用して、微分回路を用いて検出し、任意の時間その
出力信号を積分してその値を比較する微分値比較法や、
発生する2次電子信号波形のピーク値が1次電子ビーム
スポット径に依存して変化することを利用するピーク値
比較法等を用いている。対物レンズコイル4に任意の電
流■0(A)を焦点電流供給部8により供給し、1回あ
るいは数回円形走査した後、得られた信号検出部9の出
力電圧を制御回路10の中にあるメモリーに記憶する。
Supplied with any amplitude and any period. Then, the primary electron beam scans the sample surface 5 in a circular manner. When a sample is irradiated with a primary electron beam, secondary electrons are generated from the sample, captured by a secondary electron detector 6, and manually inputted to a signal detection section 9. The signal detection unit 9 is a primary beam that irradiates the sample surface.
This is a circuit that detects the minimum random circle of the child beam. Generally, the smaller the diameter of the primary electron beam spot, the higher the frequency component of the generated secondary electron signal. Differential value comparison method, which integrates the signal and compares its value,
A peak value comparison method that utilizes the fact that the peak value of the generated secondary electron signal waveform changes depending on the primary electron beam spot diameter is used. An arbitrary current of 0 (A) is supplied to the objective lens coil 4 by the focal current supply section 8, and after circular scanning is performed once or several times, the output voltage of the signal detection section 9 obtained is input to the control circuit 10. Store in some memory.

次に、対物レンズコイル4に供給する電流をΔ工だけ増
加(あるいは減少)させ同様の円形走査を実行する。そ
して、得られた信号検出部9の出力電圧と、前回のメモ
リーの内容を比較し大きい方を再度メモリーに記憶する
。対物レンズコイル′Mt流を順次Δ工だけ増加させ一
連の動作を繰り返す。メモリーの内容が最大となった値
及びその時の対物レンズコイルに供給した電流値を捜し
出しコイルに供給すると1次電子ビームスポット径は最
小となシ厳小錯乱円が得られる。
Next, the current supplied to the objective lens coil 4 is increased (or decreased) by .DELTA. to perform a similar circular scan. Then, the obtained output voltage of the signal detection section 9 is compared with the previous memory contents, and the larger one is stored in the memory again. The flow of the objective lens coil 'Mt is sequentially increased by Δt and the series of operations is repeated. When the value at which the content of the memory becomes maximum and the current value supplied to the objective lens coil at that time are found and supplied to the coil, the primary electron beam spot diameter is minimized and a small circle of confusion is obtained.

しかじな!がら、このような方法は1次電子ビーム照射
を実行する円形走査線上に、試料上の形状変化や、物質
の差等の2次電子発生効率を変化させる要因が存在する
場合のみ有効であった。例えばICやLSI等の半導体
試料はパターンがある一定の領域にしか存在せず、円形
走査線上に2次電子発生量を変化せしめる要因が無い場
合が多い。
That's right! However, this method was effective only when there were factors that changed the secondary electron generation efficiency, such as changes in the shape of the sample or differences in materials, on the circular scanning line used for primary electron beam irradiation. . For example, in semiconductor samples such as ICs and LSIs, patterns exist only in a certain area, and there are often no factors that change the amount of secondary electron generation on a circular scanning line.

−例として、第3図(a)に示す様な半導体試料は。- For example, a semiconductor sample as shown in FIG. 3(a).

同一材質でラインとスペースのパターンが形成されてい
る。図上に示す矢印の円形走査を実行しても対物レンズ
電流の変化に対応して検出される信号電圧の変化は無い
か、あるいは雑音にうもれてしまう。この事は焦点合わ
せの自動化ができない結果となる。
A pattern of lines and spaces is formed from the same material. Even if the circular scan indicated by the arrow shown in the figure is executed, there is no change in the signal voltage detected in response to the change in the objective lens current, or the change is lost in noise. This results in the inability to automate focusing.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、1次電子ビームに対して、2次電子発
生量の少ない試料に関して、試料から発生する2次電子
発生量の最も大きくなる試料位置を自動的に検出して、
自動焦点合わせや自動非点収差補正を可能ならしめる電
子線装置の自動熱漬検出法を提供することにある。
An object of the present invention is to automatically detect a sample position where the amount of secondary electrons generated from the sample is the largest with respect to a sample with a small amount of secondary electrons generated with respect to the primary electron beam,
An object of the present invention is to provide an automatic thermal immersion detection method for an electron beam device that enables automatic focusing and automatic astigmatism correction.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、本発明では、電子ビームを
電子レンズによって細く収束し試料上に照射する手段、
前記試料上で電子線を円形走査するための電子線偏向手
段、前記試料から発生する情報信号を検出して電子線の
スポット形状を判定する信号処理手段、そして、前記信
号処理の結果によって前記電子レンズの励磁電流を制御
して自動焦点合わせを行なう手段を具備した電子縁装置
において、前記円形走査の中心点を試料上で順次移動さ
せ、最大の情報信号を生じる試料位置を自動的に検出す
る機能を設けたことを特徴とする。
In order to achieve the above object, the present invention includes means for narrowly converging an electron beam using an electron lens and irradiating the sample onto the sample;
an electron beam deflection means for circularly scanning the electron beam on the sample; a signal processing means for detecting an information signal generated from the sample to determine the spot shape of the electron beam; In an electronic edge device equipped with means for automatic focusing by controlling the excitation current of the lens, the center point of the circular scan is sequentially moved over the sample, and the sample position that produces the maximum information signal is automatically detected. It is characterized by the addition of functions.

〔発明の冥施例〕[Example of invention]

以下、不発明の一実施例を第2図により説明する。従来
の構成に加えて1階段波偏向値号部11と加算回路部1
2を新たに設呟、従来の円走査発生部7の信号と階段波
偏向信号部11の信号とを加算回路部12でX−Y各々
加算してX−Y偏向コイル2に供給する。各部の信号波
形を第4図に示す。X偏向コイルには、余弦波信号Xc
と階段波偏向信号部からの波形Xsとを加算して供給し
、Y偏向コイルには、正弦波信号Ycと階段波偏向信号
部からの波形Y8とを加算して供給する。
Hereinafter, one embodiment of the invention will be described with reference to FIG. In addition to the conventional configuration, one staircase wave deflection value unit 11 and an adder circuit unit 1 are added.
2 is newly installed, and the signal from the conventional circular scan generating section 7 and the signal from the staircase wave deflection signal section 11 are added to each of X and Y in an adder circuit section 12 and supplied to the XY deflection coil 2. FIG. 4 shows signal waveforms at each part. The X deflection coil receives a cosine wave signal Xc
and the waveform Xs from the staircase wave deflection signal section are added and supplied, and the sine wave signal Yc and the waveform Y8 from the staircase wave deflection signal section are added and supplied to the Y deflection coil.

今、一連の自動焦点合わせを実施する前に、対物レンズ
コイルに任意の電流Ioを供給する。その状態で試料上
を任意の振幅で円形走査し、そこから発生する2次電子
信号を自動焦点合わせと同様の検出系を使用して、メモ
リーに記憶する。次に1円形走査する中心点’ThX方
向に移動させ円形走査を実施する。例えば第3図(b)
に示す様に、試料面上の左端から順次右の方向に移動し
、検出される信号電圧の値を比較し大きいほうをメモリ
ーに記憶する。X方向を任意回例えば0回移動したら、
X方向を原点に戻し、Y方向に移動させ同様に検出信号
を比較し大きい方をメモリーに記憶する。試料上の全面
にわたって順次繰シ返し実行し検出信号の最大値及びに
最大値を与えるX8・YmO値を捜す。
Now, before performing the autofocusing series, supply an arbitrary current Io to the objective lens coil. In this state, the sample is scanned circularly with an arbitrary amplitude, and the secondary electron signals generated therefrom are stored in a memory using a detection system similar to automatic focusing. Next, the center point of one circular scan is moved in the 'ThX direction, and a circular scan is performed. For example, Fig. 3(b)
As shown in , the sample surface is moved sequentially from the left end to the right, the detected signal voltage values are compared, and the larger one is stored in the memory. After moving in the X direction any number of times, for example 0 times,
Return the X direction to the origin, move it to the Y direction, compare the detection signals in the same way, and store the larger one in the memory. This is carried out sequentially and repeatedly over the entire surface of the sample to search for the maximum value of the detection signal and the X8·YmO value that gives the maximum value.

このようにして、試料上で最も信号の大きい位置を捜し
、自動焦点合わせを実行すれば半導体材料等においても
確実に自動焦点合わせが可能となる。
In this way, by searching for the position on the sample where the signal is greatest and performing automatic focusing, automatic focusing can be reliably achieved even for semiconductor materials.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、自動的に信号の
多いパターンを捜すためにS/Nの良い自動焦点合わせ
、自動非点収差補正が可能となり、従来、困難であった
2次電子発生量の少ない試料、例えば半導体材料に関し
ても高精度で自動焦点合わせ、非点収差補正が実現でき
る。
As explained above, according to the present invention, automatic focusing with good S/N and automatic astigmatism correction can be performed in order to automatically search for patterns with many signals, and secondary electron Highly accurate automatic focusing and astigmatism correction can be achieved even for samples with a small amount of generation, such as semiconductor materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の自動焦点合わせを行なうブロック構成図
、第2図は本発明の一実施例を示すブロック構成図、第
3図は試料面上を円形走査する電子ビームの軌跡を衣わ
す模式図であり、(a)は従来法、(b)は本発明によ
る模式図、第4図はX−Y偏向コイルに供給する電流波
形を示す図である。 l・・・陰極、2・・・X−Y偏向コイル、3・・・ス
ティグマコイル、4・・・対物レンズコイル、5・・・
E料、6・・・二次電子検出器、7・・・円走査発生部
、8・・・焦点電流供給部、9・・・信号検出部、10
・・・制御回路部、11・・・階段波偏向信号部、12
・・・加算回路部。 %; l 図 Zz図 ■ 3 図 (L) (b) 第 4 図
Fig. 1 is a block diagram showing a conventional automatic focusing system, Fig. 2 is a block diagram showing an embodiment of the present invention, and Fig. 3 is a schematic diagram showing the trajectory of an electron beam circularly scanning over a sample surface. 4A is a diagram showing a conventional method, FIG. 4B is a schematic diagram according to the present invention, and FIG. 4 is a diagram showing a current waveform supplied to an XY deflection coil. l...Cathode, 2...X-Y deflection coil, 3...Stigma coil, 4...Objective lens coil, 5...
E material, 6... Secondary electron detector, 7... Circular scanning generating section, 8... Focus current supplying section, 9... Signal detecting section, 10
. . . Control circuit section, 11 . . . Staircase wave deflection signal section, 12
...Addition circuit section. %; l Figure Zz diagram ■ 3 Figure (L) (b) Figure 4

Claims (1)

【特許請求の範囲】[Claims] ゛1子ビームを電子レンズによって細く収束し試料上に
照射する手段、前記試料上で電子線を円形走査するため
の電子線偏向手段、前記試料から発生する情報信号を検
出して電子線のスポット形状を判定する信号処理手段、
そして、前記信号処理の結果によって前記電子レンズの
励磁電流を制御して自動焦点合わせを行なう手段を具備
した電子線装置において、前記円形走査の中心点を試料
上で順次移動させ、最大の情報信号を生じる試料位置を
自動的に検出する機能を設けたことを特徴とする電子線
装置の自動焦点検出法。
゛Means for narrowly converging the single beam using an electron lens and irradiating it onto the sample; electron beam deflection means for circularly scanning the electron beam on the sample; detecting information signals generated from the sample to spot the electron beam; signal processing means for determining the shape;
In an electron beam apparatus equipped with means for automatic focusing by controlling the excitation current of the electron lens according to the result of the signal processing, the center point of the circular scan is sequentially moved on the sample to obtain the maximum information signal. 1. An automatic focus detection method for an electron beam device, characterized by having a function of automatically detecting a sample position that causes .
JP9644484A 1984-05-16 1984-05-16 Method for detecting automatic focusing of electron beam apparatus Pending JPS60241633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9644484A JPS60241633A (en) 1984-05-16 1984-05-16 Method for detecting automatic focusing of electron beam apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9644484A JPS60241633A (en) 1984-05-16 1984-05-16 Method for detecting automatic focusing of electron beam apparatus

Publications (1)

Publication Number Publication Date
JPS60241633A true JPS60241633A (en) 1985-11-30

Family

ID=14165186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9644484A Pending JPS60241633A (en) 1984-05-16 1984-05-16 Method for detecting automatic focusing of electron beam apparatus

Country Status (1)

Country Link
JP (1) JPS60241633A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0332140A2 (en) * 1988-03-09 1989-09-13 Hitachi, Ltd. Focusing apparatus of electron microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0332140A2 (en) * 1988-03-09 1989-09-13 Hitachi, Ltd. Focusing apparatus of electron microscope

Similar Documents

Publication Publication Date Title
US8304725B2 (en) Charged particle beam system
US4219731A (en) Method for detecting object picture by electron beam
CA1103813A (en) Apparatus for electron beam lithography
JPH0513037A (en) Charged particle beam device and control thereof
US4937458A (en) Electron beam lithography apparatus including a beam blanking device utilizing a reference comparator
JP3713457B2 (en) Substrate inspection method and substrate inspection apparatus
TWI384216B (en) Checking method of charged particle line and inspection method of charged particle
US7732763B2 (en) Pattern inspection method, pattern inspection apparatus, semiconductor device manufacturing method, and program
JPS60241633A (en) Method for detecting automatic focusing of electron beam apparatus
US5032725A (en) Focussing an electron beam
JPH05234555A (en) Automatic focusing and astigmatism correcting method of electron beam device
US4605860A (en) Apparatus for focusing a charged particle beam onto a specimen
JP2000260380A (en) Electron beam inspection device
JPH05296754A (en) Edge detecting method
JPS6231931A (en) Electron beam radiation device and test and measurement by said device
JPS6378443A (en) Electron beam focusing device
JPH07306028A (en) Pattern inspection device
JPS62183514A (en) Ion beam lithography equipment
JPH11237230A (en) Method and equipment for specimen measuring in electron microscope
JPH0135340B2 (en)
JPH05114378A (en) Scanning electron microscope
JP3114335B2 (en) Focusing method in scanning electron microscope
JP3194986B2 (en) Mark detection method and device, and electron beam drawing method and device using the same
JPH07286842A (en) Method and device for inspecting dimension
JP3450437B2 (en) Electron beam exposure method, developing method and apparatus