JPS60229677A - Dc power source - Google Patents

Dc power source

Info

Publication number
JPS60229677A
JPS60229677A JP59082844A JP8284484A JPS60229677A JP S60229677 A JPS60229677 A JP S60229677A JP 59082844 A JP59082844 A JP 59082844A JP 8284484 A JP8284484 A JP 8284484A JP S60229677 A JPS60229677 A JP S60229677A
Authority
JP
Japan
Prior art keywords
current
inverter
voltage
regenerative
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59082844A
Other languages
Japanese (ja)
Inventor
Toshitaka Yoshioka
吉岡 利隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59082844A priority Critical patent/JPS60229677A/en
Publication of JPS60229677A publication Critical patent/JPS60229677A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To reduce a current ripple and to eliminate a stepup transformer by composing a regenerative power inverter of a self-extinguishing element and dividing the ON and OFF of the inverter when the regenerative current increases. CONSTITUTION:The AC side of a transistor power inverter 31 is connected through an AC reactor 32 with an AC power source 10 without using a stepup transformer. A DC voltage is detected by a voltage detector 18, input to a current reference generator 34, and when the DC voltage exceeds the prescribed value, a current reference is generated to instruct a regenerative current. The regenerative current of the inverter 31 is detected through an AC unit 33 and a current detector 36, compared with a current reference by a comparator 35, and its output signal is input to a distributor 38. The output of a phase detector 37 and the output of a level detector 20 are further input to the distributor 38, thereby outputting base input signals of the phases of the inverter 31.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は交流電源を整流して直流電力を負荷に供給する
と共に負荷の直流電力を交流電源に回生可能な直流電源
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a DC power supply device that rectifies an AC power source to supply DC power to a load and is capable of regenerating the DC power of the load into an AC power source.

[発明の技術的背景とその問題点] 回生可能な滴流電源装置の従来の一例を第1図に示す。[Technical background of the invention and its problems] An example of a conventional drip current power supply device capable of regeneration is shown in FIG.

第1図において、交流電源10の交流電圧e1けダイオ
ード整流器1jおよび平滑コンデンサ12を介して直流
電圧edに変換されて負荷に供給される。
In FIG. 1, an AC voltage e1 of an AC power supply 10 is converted into a DC voltage ed via a diode rectifier 1j and a smoothing capacitor 12, and is supplied to a load.

一方面流電圧ed#−を直流リアクトル17を介してサ
イリスタ逆変換器16に接続され、その交流出力は交流
電源e1をe21:昇圧する昇圧トランス14の二次側
電圧e2.に接続されている。
On the other hand, the surface current voltage ed#- is connected to the thyristor inverter 16 via the DC reactor 17, and its AC output is the secondary side voltage e2 of the step-up transformer 14 that boosts the AC power source e1. It is connected to the.

ili+′流電圧edに電圧検出器18で検出されレベ
ル検出器20を介して位相制御装置22にフィードバッ
クされ、これによって逆変換器16の位相を制御して直
流電圧edを一定に制御している。
ili+' current voltage ed is detected by the voltage detector 18 and fed back to the phase control device 22 via the level detector 20, thereby controlling the phase of the inverter 16 to keep the DC voltage ed constant. .

交流電圧e1の実効値を”phi変換時の直流電圧ed
をEdとすると、一般に Ed= 1.35 Ep −−−−−一一一一−−(1
)となる。
The effective value of AC voltage e1 is converted to “DC voltage ed when phi is converted”
is Ed, then generally Ed= 1.35 Ep ------1111--(1
).

また回生時の直流電圧edをEd’とし、交流電圧e、
の実効値をE8とすると Ed’= 1.35 E8・邸β −−−−−−−−−
−−(21となる。
Also, let the DC voltage ed during regeneration be Ed', and the AC voltage e,
If the effective value of is E8, Ed'= 1.35 E8・House β −−−−−−−−−
--(It becomes 21.

ここにβはサイリスタの点弧制御角であり、転流のため
のβリミットが設けられ、90°≦β≦150゜(二制
御される。
Here, β is the firing control angle of the thyristor, and a β limit for commutation is provided, and 90°≦β≦150° (2 controlled).

回生時には負荷からの回生エネルギによってコンデンサ
ー2が充電されて直流電圧edに上昇しEd’) E(
1−−−−−−−−−−−−−(81となる。
During regeneration, capacitor 2 is charged by the regenerative energy from the load and the DC voltage ed rises to Ed') E(
1------------(It becomes 81.

従って回生を安定に行なうには式(1) 、 (2) 
、 (8+から が成立することが要求され、サイリスタ逆変換器16の
交流側電圧eβ11源富、圧e1より高いことが必要と
なり、昇圧トランス1411を省略できない。
Therefore, in order to perform regeneration stably, formulas (1) and (2) are used.
, (8+) is required to hold, and the AC side voltage eβ11 of the thyristor inverter 16 needs to be higher than the source voltage e1, so the step-up transformer 1411 cannot be omitted.

凍たサイリスクの転流条件により回生できる直流電圧は
(2)式およびβリミットによって電圧範囲が制限され
ている。
The voltage range of the DC voltage that can be regenerated according to the commutation conditions of the frozen silisk is limited by equation (2) and the β limit.

[発明の目的] 本発明け、逆変換器をトランジスタなど自己消弧可能な
素子で構成し、こねによって)0]生電源側の昇圧トラ
ンスを不用とすると共に回生可能な直流電圧の範囲を拡
大した小形高性能の回生可能泊流電源装置を提供するこ
とを目的としている。
[Purpose of the Invention] According to the present invention, an inverter is constructed of self-extinguishing elements such as transistors, and by kneading) a step-up transformer on the raw power source side is not required, and the range of DC voltage that can be regenerated is expanded. The purpose of the present invention is to provide a compact, high-performance regenerative current power supply device.

[発明の概要] 本発明は交流電源をダイオード整流器および平滑コンデ
ンサを介して直流に変換して負荷に供給すると共に負荷
電力を逆変換器を介して交流m源に回生できる回生可能
な直流電源装置において、逆変換器を自己消弧可能なス
イッチング素子で構成すると共に、回生電流が基準値を
超えたとき逆変換器のスイッチング素子のオンするタイ
ミングを正側の素子と負側の素子とがラップしないよう
に制御する分配回路を設け、これによって回生電流のリ
ップルをへらすと共に、(ロ)主用の昇圧トランスを不
用としたものである。
[Summary of the Invention] The present invention provides a regenerative DC power supply device that converts AC power into DC via a diode rectifier and a smoothing capacitor, supplies the DC power to a load, and regenerates the load power to an AC m source via an inverter. In this method, the inverter is configured with a switching element that can self-extinguish, and the positive side element and the negative side element overlap the timing at which the switching element of the inverter turns on when the regenerative current exceeds a reference value. A distribution circuit is provided to control the regenerative current so as to reduce the ripple of the regenerative current, and (b) eliminate the need for a main step-up transformer.

[発明の実施例] 本発明の一実施例を第2図に示す。[Embodiments of the invention] An embodiment of the present invention is shown in FIG.

第2図において、交流電源用、ダイオード整流器1]、
平滑コンデンサ12.を圧検出g%]8.レベル検出器
20Vi従来の第1図と同じである。
In FIG. 2, for AC power supply, diode rectifier 1],
Smoothing capacitor 12. Pressure detection g%]8. The level detector 20Vi is the same as the conventional one shown in FIG.

但し第2図に丸・いては、従来のサイリスタ逆変換器1
6の代りにトランジスタ逆変換器31を用い、その交流
側を昇圧トランスを用いることなく交流リアクトル32
を介して直接に焚流電混10に接続している。
However, the circles in Figure 2 indicate the conventional thyristor inverter 1.
6 is replaced by a transistor inverter 31, and its AC side is connected to an AC reactor 32 without using a step-up transformer.
It is directly connected to the firing current mixer 10 via.

直流電圧edは電圧検出器18で検出されて電流基準発
生回路34に入力され、直流電圧edに対応して第3図
であたえられる電流基準イg号lB*が出力され、直流
電圧edがed□を超えると電流基準より*が発生して
回生電流が指令される。
The DC voltage ed is detected by the voltage detector 18 and input to the current reference generation circuit 34, and the current reference signal IB* given in FIG. 3 is output corresponding to the DC voltage ed. When □ is exceeded, * is generated from the current reference and regenerative current is commanded.

位相検出器37Fi交流電源10の各相の電圧U、 V
Phase detector 37Fi voltage of each phase of AC power supply 10 U, V
.

Wを入力して第4図に示すよりな6相の位相信号+US
〜−W8を出力する。
Input W to obtain the six-phase phase signal +US shown in Figure 4.
~-W8 is output.

なお位相信号十US〜−W8はそれぞれ内蔵するフィル
タの影響によって数度遅れた位相で出力される。
Note that the phase signals 10US to -W8 are output with phases delayed by several degrees due to the influence of the built-in filters.

トランジスタ逆変換器31の回生電流IBVi変流器3
3および電流検出器36を介して検出され、比較器:う
5で電流制限基準■B9と比較され、その出方信号40
(電誇制限値以下でH1霜η「制限域で1・)は分配器
3δに入力さね、る。
Regenerative current of transistor inverter 31 IBVi current transformer 3
3 and the current detector 36, and is compared with the current limit reference B9 by the comparator 5, and the output signal 40
(H1 frost η "1 in the limit range below the electric limit value") is input to the distributor 3δ.

分配器38には、さらに位相検出器37の出力39(+
U8〜−WS)およびレベル検出器20の出力21(回
生制動域e(1> edlでH)も入力さね、これによ
ってトランジスタ逆変換器31の各相のベース入力信号
が出力される。
The distributor 38 further includes an output 39 (+
U8 to -WS) and the output 21 of the level detector 20 (regenerative braking area e (1>H at edl) are also input, and thereby the base input signal of each phase of the transistor inverter 31 is output.

分配器38の回路の詳細な鶴5図仁示す。A detailed diagram of the circuit of the distributor 38 is shown in Figure 5.

第5図において、6相の位相信号十US〜−WSはアン
ド素子ANDl〜AND3およびオア素子OR1を介し
て60°ずつに分割された’11− ’l 、’8〜1
5゜17〜t90位相信号41を出力する。
In FIG. 5, the 6-phase phase signals 0US to -WS are divided into 60° portions via AND elements ANDl to AND3 and OR element OR1.
A 5°17 to t90 phase signal 41 is output.

上記位相信号41およびこれをインバータINVを介し
て極性反転した位相信号42Viそ7″12ぞれオア菓
子OR2,OR3に入力され、それぞれ前記比較器出力
信号40(電流制限域でL)とのOR出力4:(、伺が
アンド素子A、ND4 、 AND5に入力される。
The above phase signal 41 and a phase signal 42 which is obtained by inverting the polarity of this via an inverter INV are input to OR2 and OR3, respectively, and are ORed with the comparator output signal 40 (L in the current limit region). Output 4: (, is input to AND elements A, ND4, and AND5.

AND4. AND5はそれぞれ信号43.44とレベ
ル検出器出力20(回生域でH)とのアンドを取り、そ
の出力45.46がそれぞれ前記+l−’ S + +
 V S + + W Sお工び−us、 −vs、−
wsと共にアンド素子AND6〜ANDIIに入力され
、そのアンド信号がトランジスタ+U〜−Wへのベース
信号として出力される。
AND4. AND5 takes the AND of the signal 43.44 and the level detector output 20 (H in the regeneration range), and the output 45.46 is the +l-' S + +, respectively.
V S + + W S work-us, -vs, -
It is input together with ws to AND elements AND6 to ANDII, and the AND signal is output as a base signal to transistors +U to -W.

第2図の分配回路38として第5図の回路を用いると、
回生時に回生筒、流が物流制限基準値以下のときは、上
記入力信号40および21が共にHになるのでAND4
. AND5の出力45.46は共にHになり、6相の
位相信号子〇S〜−WSに応じてトランジスタ+U〜−
Wが順次ペース入力をあたえられ、電力回生が行われる
When the circuit of FIG. 5 is used as the distribution circuit 38 of FIG. 2,
During regeneration, when the regenerative cylinder and flow are below the physical distribution limit reference value, both the input signals 40 and 21 become H, so the AND4
.. The outputs 45 and 46 of AND5 both become H, and the transistors +U~- correspond to the 6-phase phase signal 〇S~-WS.
W is sequentially given pace input and power regeneration is performed.

回生時に回生電流Inが増大して電流基準IB*を超え
ると比較器35の出力40がLとなり、この場合は第5
図におけるOR2,OR3#′1tOJの出力41およ
びINVの出力42によって60°ごとに交互にHとな
り、それぞれAND4およびAND5を介してAND5
〜A N D 8とAND9〜ANDIIとを交互にH
にし、これニ、lニッチ) ラフ’)スタ+Ll、 +
V、 +Wト−(J、 −V。
When the regenerative current In increases during regeneration and exceeds the current reference IB*, the output 40 of the comparator 35 becomes L, and in this case, the fifth
In the figure, the output 41 of OR2, OR3#'1tOJ and the output 42 of INV alternately become H at every 60°, and are connected to AND5 via AND4 and AND5, respectively.
~A N D 8 and AND9~ANDII alternately H
ni, this ni, l niche) rough') star + Ll, +
V, +Wt-(J, -V.

−Wを60′ずつ交互にオフにして電流を制限する。-W is alternately turned off in 60' increments to limit the current.

この場合第2図(−示すトランジスタ逆変換器31の+
側の素子と一側の素子が交互にオンオフするので回生電
流のリップルが小さくなる。
In this case, as shown in FIG.
Since the elements on one side and the elements on one side are turned on and off alternately, ripples in the regenerative current are reduced.

また第2図の回路ではトランジスタ逆変揄器31から交
流リアクトル32を介して的接交流沖、源10に回生で
きるので、従来のような昇圧トランスを必要としない。
Further, in the circuit shown in FIG. 2, since regeneration can be performed from the transistor inverter 31 to the direct AC source 10 via the AC reactor 32, there is no need for a step-up transformer as in the prior art.

尚上hピ実施911け逆変換器としてトランジスタ素子
を用いているが、GTOその他自己消弧b1能な素子を
用いることも可能である。
Although a transistor element is used as the h-pi implementation 911 inverse converter, it is also possible to use a GTO or other element capable of self-extinguishing b1.

[発明の効果] 以上目兄明したように本発明によれば、回生可能な直流
電源装置において1回生用逆変換器をトランジスタなど
自己消弧可能な素子で構ky、すると共に、回生電流が
大きくなったとき、回生用逆変換器のオンオフを分割し
て行わせているので、電流リップルをへらすと共に昇圧
トランスを省略することが可能となり、信頼性および紅
済性で有利な直流電源装置が実現できる。
[Effects of the Invention] As described above, according to the present invention, in a regenerative DC power supply device, the first regeneration inverter can be made of a self-extinguishing element such as a transistor, and the regenerative current can be When the size increases, the regenerative inverter is turned on and off separately, which reduces current ripple and eliminates the need for a step-up transformer, resulting in a DC power supply that is advantageous in terms of reliability and cost-effectiveness. realizable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の回生可能直流型、源装置の一例を示す系
統図、第2図は本発明の一実施例を示す161路図、第
3図は回生電流基準の特性を示す図、第4図は第2図に
おける位相検出回路37の動作を示す波形図、第5図は
第2図における分配回路あの詳細を示す回路図である。 10・・・交流電源 11・・・ダイオード整流器12
・・・平滑コンデンサ 14・・・昇圧トランス16・
・・サイリスタ逆変換器 17・・・直流リアクトル 18・・・電圧検出器20
・・・レベル検出器 22・・・位相制御装置31・・
・トランジスタ逆変換器 32・・・交流リアクトル 34・・・電流基準発生回
路35・・・比較器 3b・・・電流検出器37・・・
位相検出器 38・・・分配回路代理人 弁理士 則 
近 憲 佑(ほか1名)第 1 図 第 3 図 第′4 図
Fig. 1 is a system diagram showing an example of a conventional regenerative DC type source device, Fig. 2 is a 161 line diagram showing an embodiment of the present invention, Fig. 3 is a diagram showing the characteristics of the regenerative current reference, 4 is a waveform diagram showing the operation of the phase detection circuit 37 in FIG. 2, and FIG. 5 is a circuit diagram showing details of the distribution circuit in FIG. 2. 10... AC power supply 11... Diode rectifier 12
... Smoothing capacitor 14 ... Step-up transformer 16.
... Thyristor inverse converter 17 ... DC reactor 18 ... Voltage detector 20
... Level detector 22 ... Phase control device 31 ...
- Transistor inverse converter 32...AC reactor 34...Current reference generation circuit 35...Comparator 3b...Current detector 37...
Phase detector 38... Distribution circuit agent Patent attorney rules
Kensuke Chika (and 1 other person) Figure 1 Figure 3 Figure '4

Claims (1)

【特許請求の範囲】[Claims] 交流電源をダイオード整流器および平滑コンデンサを介
して直流に変換して負荷に供給すると共に負荷電力を逆
変換器を介して交流電源に回生ずる回生可能な直流電源
装置において、上記逆変換器を自己消弧可能なスイッチ
ング素子で構成すると共に5回生電流が基準値を超えた
とき上記逆変換器のスイッチング素子のオンするタイミ
ングを電源装置。
In a regenerative DC power supply device that converts AC power into DC via a diode rectifier and a smoothing capacitor and supplies the DC power to a load, and also regenerates the load power to the AC power via an inverter, the inverter is self-extinguished. 5. The power supply device is configured with a switching element that can be turned on, and the timing at which the switching element of the inverter is turned on when the regenerative current exceeds a reference value.
JP59082844A 1984-04-26 1984-04-26 Dc power source Pending JPS60229677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59082844A JPS60229677A (en) 1984-04-26 1984-04-26 Dc power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59082844A JPS60229677A (en) 1984-04-26 1984-04-26 Dc power source

Publications (1)

Publication Number Publication Date
JPS60229677A true JPS60229677A (en) 1985-11-15

Family

ID=13785695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59082844A Pending JPS60229677A (en) 1984-04-26 1984-04-26 Dc power source

Country Status (1)

Country Link
JP (1) JPS60229677A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005198385A (en) * 2004-01-06 2005-07-21 Muscle Corp Driving device of motor and method of controlling the same
JP2010220382A (en) * 2009-03-17 2010-09-30 Mitsubishi Electric Corp Power conversion apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005198385A (en) * 2004-01-06 2005-07-21 Muscle Corp Driving device of motor and method of controlling the same
JP2010220382A (en) * 2009-03-17 2010-09-30 Mitsubishi Electric Corp Power conversion apparatus

Similar Documents

Publication Publication Date Title
JP2884880B2 (en) Control device for power converter
US6542390B2 (en) System and method for regenerative PWM AC power conversion
US3659168A (en) Voltage control for a motor supply system
US4489371A (en) Synthesized sine-wave static generator
JPH0523040B2 (en)
GB1012025A (en) An inverter for producing an alternating current in a load from a direct current power supply
JP3237719B2 (en) Power regeneration controller
JPS60229677A (en) Dc power source
JP2001016798A (en) Charging/discharging device for battery or electric double-layered capacitor
JPS604654B2 (en) Short-circuit protection device for power converter equipment with DC circuit
JP2728682B2 (en) Uninterruptible power supply for computer
JPS6035892B2 (en) power converter
JP2663535B2 (en) Power supply for arc machining
JPH09163751A (en) Pwm controlled self-excited rectifier
JPS61273103A (en) Ac and dc electric railcar
JP2000125575A (en) Constant sampling type pwm device for sine wave input- output single-phase voltage doubler ac-dc converting circuit
JPS6362984B2 (en)
JP2996800B2 (en) Snubber regeneration device
JP3367312B2 (en) Control method of PWM control self-excited rectifier
JPH07288190A (en) Inverter high-voltage generator for x-ray
JPS6268023A (en) Controller for system interlock inverter
JPH0416637Y2 (en)
JPS5946007B2 (en) DC↓-AC converter
JPH05159893A (en) Inverter controlled x-ray high voltage generator
JPS6389069A (en) Dc power source device