JPS6022942B2 - Manufacturing method for sterile storage containers - Google Patents

Manufacturing method for sterile storage containers

Info

Publication number
JPS6022942B2
JPS6022942B2 JP53051598A JP5159878A JPS6022942B2 JP S6022942 B2 JPS6022942 B2 JP S6022942B2 JP 53051598 A JP53051598 A JP 53051598A JP 5159878 A JP5159878 A JP 5159878A JP S6022942 B2 JPS6022942 B2 JP S6022942B2
Authority
JP
Japan
Prior art keywords
heat
inner layer
synthetic resin
film
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53051598A
Other languages
Japanese (ja)
Other versions
JPS54144281A (en
Inventor
猛雄 大平
義恭 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP53051598A priority Critical patent/JPS6022942B2/en
Publication of JPS54144281A publication Critical patent/JPS54144281A/en
Publication of JPS6022942B2 publication Critical patent/JPS6022942B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は滅菌保存用容器の製造法に係り、特に生理学
的溶液の長期保存用容器として好適な減菌保存用容器の
製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a sterile storage container, and particularly to a method for manufacturing a sterile storage container suitable as a container for long-term storage of physiological solutions.

従釆、血液等の生理学的溶液の保存用容器、たとえば輸
液バッグは塩化ビニル樹脂製のものが多く使用されてい
るが、添加された可塑剤の内容物への移行あるいは、銃
樹脂中の残脂中の残存塩化ピニルモノマによる毒性の懸
念等の問題がある。
Containers for storing physiological solutions such as blood, such as infusion bags, are often made of vinyl chloride resin, but the added plasticizer may migrate to the contents or remain in the gun resin. There are concerns about toxicity due to residual pinyl chloride monomer in the fat.

又、輸液バッグは内容液を充填したのち、たとえば12
100、20分の高圧蒸気滅菌をおこなうことがあるが
、塩化ビニル樹脂製バッグの場合、内圧を支えきれず、
破袋するおそれがあり、そのため、この滅菌処理時にこ
のバッグ全体をさらにポリエステルあるいはナイロン6
−6フィルム等耐熱性フィルムで密着包装する必要があ
るなどの問題もある。また、血液保存用バッグに関して
は、近年、4〜600、21日間の保存(ACD血液保
存)に代って赤血球を凍結して−80〜一8500等、
液低温で保存する技術の開発が進められ、この点からも
従来の塩化ビニル樹脂に替る低温特性の良好な材質の利
用が要望されている。
In addition, after filling the infusion bag with the contents, for example, 12
High-pressure steam sterilization is sometimes performed for 100 to 20 minutes, but in the case of vinyl chloride resin bags, the internal pressure cannot be supported.
There is a risk of the bag breaking, so the entire bag is further covered with polyester or nylon 6 during sterilization.
There are also problems such as the need for close packaging with a heat-resistant film such as -6 film. In addition, regarding blood storage bags, in recent years, instead of storing for 4 to 600 days or 21 days (ACD blood storage), red blood cells are frozen and stored for -80 to 18,500 days.
The development of technology for storing liquids at low temperatures is progressing, and from this point of view as well, there is a demand for the use of materials with good low-temperature properties in place of conventional vinyl chloride resins.

そのため、塩化ビニル樹脂の代替物として、予め架橋処
理を施し、耐熱性を改良させたポリエチレンフィルム、
エチレン−酢酸ビニル共重合体フィルムの採用が提案さ
れているが、ヒートシール温度が非常に高くなり、十分
なシール強度が得にくいといった問題がある。この発明
は上記事情に鑑みてなされたものであって、毒性性等の
おそれがなく生理学的溶液等の保存用容器として安全で
あり、十分なヒートシール強度が得られ「かつ高温およ
び低温特性の良好な滅菌保存用容器の製造法を提供する
ことを目的とする。
Therefore, as a substitute for vinyl chloride resin, polyethylene film that has been cross-linked in advance and has improved heat resistance,
Although it has been proposed to use an ethylene-vinyl acetate copolymer film, there are problems in that the heat sealing temperature becomes very high and it is difficult to obtain sufficient sealing strength. This invention was made in view of the above circumstances, and is safe as a storage container for physiological solutions, etc., without fear of toxicity, has sufficient heat-sealing strength, and has excellent high- and low-temperature characteristics. The purpose of the present invention is to provide a method for manufacturing a good sterile storage container.

すなわち「 この発明は200q○以下の温度でのヒー
トシール適性を有し、かつ2.5〜50Mradの範囲
の照射線量で架橋し、耐熱化効果を奏する熱可塑性合成
樹脂フィルム内層と「200qo以上の融点を有する耐
熱性合成樹脂フィルム外層とを貼り合せて積層体シート
とし、該積層体シートを内層フィルムが相接するように
して2枚重ね合せてその周辺を200oo以下の温度で
熱シールして容器体としたのち、空気中又は不活性ガス
雰囲気中で、内層フィルムの軟化、融着温度以下に保ち
つつ「片面又は両面から、2.5ないし50Mradの
範囲の電子線又はr線を照射しL内層フィルムを架橋、
耐熱化させると同時に滅菌することを特徴とする滅菌保
存用容器の製造法を提供するものである。
In other words, "This invention has an inner layer of a thermoplastic synthetic resin film that has heat sealability at a temperature of 200 q or less, is crosslinked at an irradiation dose in the range of 2.5 to 50 Mrad, and exhibits a heat-resistant effect, and 200 q or more. A heat-resistant synthetic resin film having a melting point and an outer layer are bonded together to form a laminate sheet, two of the laminate sheets are stacked so that the inner layer films are in contact with each other, and the periphery is heat-sealed at a temperature of 200 oo or less. After forming the container, it is irradiated with electron beams or r-rays in the range of 2.5 to 50 Mrad from one or both sides while keeping the inner layer film below the softening and fusing temperature in air or an inert gas atmosphere. Crosslink the L inner layer film,
The present invention provides a method for manufacturing a sterile storage container, which is characterized by being heat resistant and sterilized at the same time.

耐熱性を有し、かつ、2.5ないし50MMdの範囲の
照射線量で物性劣化等の影響を実質的に受けない合成樹
脂としてはたとえばポリエステル〜ポリィミド樹脂等が
あり、したがって、本発明における容器の外層として、
これら樹脂が用いられる。
Synthetic resins that have heat resistance and are not substantially affected by deterioration of physical properties at irradiation doses in the range of 2.5 to 50 MMd include, for example, polyester to polyimide resins. As the outer layer,
These resins are used.

これら内層用樹脂フィルムと、外層用樹脂フィルムとを
積層する場合、ポリエステル系、ポリウレタン系、ェポ
キシ系等の反応硬化型接着剤で、かつ耐熱性、耐低温性
を有するとともに、使用される線量の電子線、y線照射
に対して安定なものを用いて貼着すればよい。この積層
シート、2枚を各内層フィルムが相接するようにして重
ね合せ、同時に必要に応じ、注出口チューブあるいは注
入口チューブを挟着するか、又は一部を関口させた状態
で筒状または袋状に周囲を200℃以下の温度でヒート
シールして容器となし、その後、空気中又は必要に応じ
窒素等の不活性ガス雰囲気中で、内層フィルムの軟化、
葛虫着温度以下に保ちつ200oo以下の温度でヒート
シール可能で、かつ2.5なし、し50Mradの範囲
の照射線量で架橋し「耐熱化効果を奏する熱可塑性合成
樹脂としては、たとえば低密度ポリエチレン、中高密度
ポリエチレン〜アイソタクチツクポリブテン−1等のポ
リオレフィン系樹脂、エチレン−酢酸ビニル共重合体、
アィオノマー樹脂等である。他方、200午○以上の融
点を有し、20000以下では溶融分解しないつ、該容
器の片面又は両面から2.8Mmdないし50Mrad
の範囲の照射線量の電子線又はy線を照射して「内層樹
脂のみを架橋、耐熱化させると同時に容器全体の滅菌を
おこなう。ヒートシール温度を200午0以下にする理
由は使用合成樹脂材料との関係から要請されるものであ
り、また、内層フィルム材料として融点が20000以
下のものとする理由はヒートシールの安全性、容易性、
能率等製造技術上の観点から好ましいからである。電子
線あるいはy線による照射線量を2.5ないし5山Mr
adとする理由は2.9MMd以下の照射線量では滅菌
効果が十分でなく、50Mrad以上の照射線量では内
層樹脂および外層樹脂「あるいは接着剤の劣化などの問
題が生ずるおそれがあり好ましくないからである。
When laminating these resin films for the inner layer and the resin film for the outer layer, use a reaction-curing adhesive such as polyester, polyurethane, or epoxy, which has heat resistance and low temperature resistance, and is suitable for the dose used. A material that is stable against electron beam and y-ray irradiation may be used for attachment. These two laminated sheets are stacked so that the inner layer films are in contact with each other, and at the same time, if necessary, the spout tube or inlet tube is sandwiched between them, or a part of the laminated sheet is made into a cylindrical or Heat-seal the surrounding area in a bag shape to form a container at a temperature of 200°C or less, then soften the inner layer film in air or in an inert gas atmosphere such as nitrogen as necessary.
Examples of thermoplastic synthetic resins that can be heat-sealed at a temperature of 200 oo or less while maintaining the bonding temperature, and that can be cross-linked at an irradiation dose in the range of 2.5 to 50 Mrad to achieve a heat-resistant effect include, for example, low-density synthetic resins. Polyolefin resins such as polyethylene, medium-high density polyethylene to isotactic polybutene-1, ethylene-vinyl acetate copolymer,
Ionomer resins, etc. On the other hand, if it has a melting point of 200 pm or more and does not melt and decompose at a temperature of 20,000 or less, 2.8 Mmd to 50 Mrad from one or both sides of the container.
By irradiating electron beams or Y-rays with an irradiation dose in the range of 200 to 3000 yen, only the inner layer resin is crosslinked and made heat resistant, and at the same time the entire container is sterilized. This is required due to the relationship between
This is because it is preferable from the viewpoint of manufacturing technology such as efficiency. The irradiation dose by electron beam or y-ray is 2.5 to 5 Mr.
The reason for setting it as ad is that an irradiation dose of 2.9 MMad or less will not provide sufficient sterilization effect, and an irradiation dose of 50 MMad or more may cause problems such as deterioration of the inner layer resin and outer layer resin or adhesive, which is not preferable. .

なお「電子線、ッ線による樹脂の架橋化については、使
用樹脂の種類によって異なるから、個々の使用樹脂に対
応して適宜決定すればよい。この発明において内層とし
て用いられる合成樹脂の当然、被収容物に対し悪影響を
与えないものを選択することが必要である。
Note that cross-linking of resins with electron beams and electron beams varies depending on the type of resin used, so it should be determined appropriately depending on the individual resin used. It is necessary to select a material that does not have a negative impact on the contents.

この発明によれば容器の内層として未架橋状態の熱可塑
性合成樹脂フィルムを用い、これを耐熱性の合成樹脂フ
ィルム外層で保持させた状態でヒートシ−ルするため、
シーリングがきわめて容易、かつ確実におこなわれ〜
さらにシール後に架橋を受けることによって、内層フィ
ルム全体の引張り強度が上昇するとともに、シール強度
の向上を図ることができる。
According to this invention, an uncrosslinked thermoplastic synthetic resin film is used as the inner layer of the container, and this is heat-sealed while being held by the outer layer of the heat-resistant synthetic resin film.
Sealing is extremely easy and reliable.
Furthermore, by undergoing crosslinking after sealing, the tensile strength of the entire inner layer film increases, and the sealing strength can be improved.

また、この架橋化によって内層樹脂自体の耐熱性が向上
されるから容器全体の耐熱性はより一層向上する。さら
に強じんで、耐熱性のよい外層フィルムと積層された状
態で電子線等の照射を受けるため、この種フィルム単体
ではいよいよ問題となるフィルムのしわ発生、変形等の
問題もなく照射作業が容易となる。また、このような電
子線等による照射と同時に容器を密閉状態で滅菌処理が
おこなわれるので、製造工程上有利となる。実施例 1 片面をコロナ放電処理した厚さ0.06側の低密度ポリ
エチレンフイルムとポリエステルイソシアネート系接着
剤2.72/淋を塗布した厚さ0.025柳の芳香族ポ
リィミドフィルム(ピロメリット酸無水物と、ジアミノ
ジフェニルェーテルの縞重合物)を貼り合せ2層の積層
フィルムとし、これに変性高密度ポリエチレン製の注出
・注入用口部を取りつけた後、ポリエチレンフィルムを
内側にして周囲を150℃−0.79砂で熱封繊し50
0机容量の袋体を作製した。
In addition, this crosslinking improves the heat resistance of the inner layer resin itself, thereby further improving the heat resistance of the entire container. Furthermore, since it is irradiated with electron beams etc. while laminated with an outer layer film that is strong and has good heat resistance, the irradiation work is easy without problems such as wrinkles and deformation of the film, which would be problems with this type of film alone. becomes. Further, since the container is sterilized in a sealed state at the same time as the irradiation with such an electron beam or the like, it is advantageous in terms of the manufacturing process. Example 1 A low-density polyethylene film with a thickness of 0.06 that was treated with corona discharge on one side and a 0.025-thick willow aromatic polyimide film coated with a polyester isocyanate adhesive 2.72 / gono (pyromellitic acid) Anhydride and striped polymer of diaminodiphenyl ether) are pasted together to form a two-layer laminated film, and a spout/injection opening made of modified high-density polyethylene is attached to this, and then the polyethylene film is placed inside. Heat seal the surrounding area with 150℃-0.79 sand and 50℃
A bag with a capacity of 0 was produced.

この包装体を60午0以下に冷却しつつ袋体の両面より
照射線量3mMradの電子線を照射した。電子線を照
射した袋体(本発明品)と照射前の袋体(比較品)に生
理食塩水500肌を注入口部より充填した後密閉し、1
21℃−20分間の高圧蒸気滅菌を行なってその耐熱性
を評価した。
While cooling the package to below 60 pm, an electron beam was irradiated from both sides of the bag with an irradiation dose of 3 mmrad. The bag body irradiated with electron beam (inventive product) and the bag body before irradiation (comparison product) were filled with 500 skin of physiological saline through the injection port, and then sealed.
The heat resistance was evaluated by high-pressure steam sterilization at 21° C. for 20 minutes.

比較品はシール部から破袋して内容液が流出し、さらに
内層のポリエチレンフィルムが雛着したが、本発明品は
破袋・変形もなく良好であった。なお未架橋の比較品の
ヒートシール強度は3.4k9/15肌であったが、本
発明品は5.4k9ノ15肋と大中に向上しており、特
に12000では比較品がほとんどヒートシール強度を
示さないが、本発明品は3.1k9/15肋の強度を有
していた。
The bag of the comparative product was torn from the seal, the liquid inside leaked out, and the polyethylene film of the inner layer was stuck, but the product of the present invention was in good condition with no bag breakage or deformation. The heat seal strength of the non-crosslinked comparative product was 3.4k9/15 skin, but the inventive product has improved to 5.4k9/15 skin, and especially with 12000, the comparative product has almost no heat seal strength. Although it does not show strength, the product of the present invention had a strength of 3.1k9/15 ribs.

さらに予め架橋処理(30Mrad)した0.06側の
低密度ポリエチレンを同様に芳香族ポリィミドフィルム
と貼り合わせて積層シートとしたものにつきのヒートシ
ール性をチェックしたところ、150oo−0.79砂
では2.2k9/15側、ヒートシール温度を2200
0まで上げて最大2.7k9/15肋の強度しか得られ
ず、通常のポリエチレンとくらべても低いシール強度し
か得られなかった。なお「この実施例で得られた本発明
品について、蓑性試験(紬鍬毒性、綾皿性)、溶出物試
験、赤血球生存試験、血小板生存試験(リースェッカー
法)、血液凝固試験、血清保存試験、UV吸収試験等を
おこなった結果、全く異常は認められなかつた。
Furthermore, when we checked the heat sealability of a laminated sheet made by laminating 0.06-side low-density polyethylene that had been crosslinked in advance (30 Mrad) with an aromatic polyimide film, we found that 150oo-0.79 sand 2.2k9/15 side, heat seal temperature 2200
Even when the sealing strength was increased to 0, the maximum strength was only 2.7k9/15 ribs, which was lower than that of ordinary polyethylene. Furthermore, regarding the product of the present invention obtained in this example, the following tests were carried out: a cylindrical test (tsumugi toxicity, twill-dish property), an eluate test, an erythrocyte survival test, a platelet survival test (Riesecker method), a blood coagulation test, and a serum preservation test. As a result of UV absorption tests, etc., no abnormalities were observed.

Claims (1)

【特許請求の範囲】 1 200℃以下の温度でのヒートシー適性を有し、か
つ2.5〜50Mradの範囲の照射線量で架橋し、耐
熱化効果を奏する熱可塑性合成樹脂フイルム内層と、2
00℃以上の融点を有する耐熱性合成樹脂フイルム外層
とを貼り合せて積層体シートとし、該積層体シートを内
層フイルムが相接するようにして2枚重ね合せてその周
辺を200℃以下の温度で熱シールして容器体としたの
ち、空気中又は不活性ガス雰囲気中で、内層フイルムの
軟化、融着温度以下に保ちつつ、片面又は両面から、2
.5ないし50Mradの範囲の電子線又はr線を照射
し、内層フイルムを架橋、耐熱化させると同時に滅菌す
ることを特徴とする滅菌保存用容器の製造法。 2 熱可塑性合成樹脂フイルム内層が低密度ポリエチレ
ン、中高密度ポリエチレン、アイソタクチツクポリブデ
ン−1、エチレン−酢酸ビニル共重合体、アイオノマー
樹脂から選ばれる一種からなるものである特許請求の範
囲第1項記載の滅菌保存用容器の製造法。 3 耐熱性合成樹脂フイルム外層がポリエステル、ポリ
イミド樹脂から選ばれる一種である特許請求の範囲第1
項記載の滅菌保存用容器の製造法。
[Scope of Claims] 1. An inner layer of a thermoplastic synthetic resin film that has heat-sea suitability at a temperature of 200° C. or lower and is crosslinked at an irradiation dose in the range of 2.5 to 50 Mrad to exhibit a heat-resistant effect; 2.
A heat-resistant synthetic resin film outer layer having a melting point of 00°C or higher is laminated to form a laminate sheet, two of the laminate sheets are stacked so that the inner layer films are in contact with each other, and the surrounding area is heated to a temperature of 200°C or lower. After heat sealing to form a container body, it is heated in air or in an inert gas atmosphere from one or both sides while keeping the inner layer film below the softening and fusing temperature.
.. A method for producing a sterile storage container, which comprises irradiating an electron beam or r-ray in a range of 5 to 50 Mrad to crosslink and make the inner film resistant to heat, and at the same time sterilize it. 2. The inner layer of the thermoplastic synthetic resin film is made of one selected from low-density polyethylene, medium-high density polyethylene, isotactic polybutene-1, ethylene-vinyl acetate copolymer, and ionomer resin, as described in claim 1. Method for manufacturing sterile storage containers. 3. Claim 1, wherein the heat-resistant synthetic resin film outer layer is one selected from polyester and polyimide resin.
Method for producing sterile storage containers as described in Section 1.
JP53051598A 1978-04-28 1978-04-28 Manufacturing method for sterile storage containers Expired JPS6022942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53051598A JPS6022942B2 (en) 1978-04-28 1978-04-28 Manufacturing method for sterile storage containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53051598A JPS6022942B2 (en) 1978-04-28 1978-04-28 Manufacturing method for sterile storage containers

Publications (2)

Publication Number Publication Date
JPS54144281A JPS54144281A (en) 1979-11-10
JPS6022942B2 true JPS6022942B2 (en) 1985-06-05

Family

ID=12891335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53051598A Expired JPS6022942B2 (en) 1978-04-28 1978-04-28 Manufacturing method for sterile storage containers

Country Status (1)

Country Link
JP (1) JPS6022942B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100024A (en) * 1993-09-30 1995-04-18 Inax Corp Suspension rack or kitchen

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI71102C (en) * 1982-02-25 1986-11-24 Fluilogic Systems Oy REAGENSFOERPACKNING
JPS59181164A (en) * 1983-03-30 1984-10-15 藤森工業株式会社 Infusion liquid preserving method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100024A (en) * 1993-09-30 1995-04-18 Inax Corp Suspension rack or kitchen

Also Published As

Publication number Publication date
JPS54144281A (en) 1979-11-10

Similar Documents

Publication Publication Date Title
US5066290A (en) Sterilizable multi-layer plastic materials for medical containers and the like
US4892604A (en) Method of making a sterilizable multi-layer container
US4654240A (en) Laminate film for flexible containers
EP0875231B1 (en) Impermeable flexible multicompartment bag
EP0098312B1 (en) A container resistant to extremely low temperatures
JPS58169466A (en) Bag
US3298597A (en) Parenteral solution container
CA1333165C (en) Sterilizable multi-layer plastic materials for medical containers and the like
JPH021278A (en) Package unit for medical care
JPS58192551A (en) Package container for preserving medical container
JPS5918223B2 (en) Film laminate made of nylon and olefin polymer
JPS6022942B2 (en) Manufacturing method for sterile storage containers
JPS5873370A (en) Therapeutic container
JPS5950342B2 (en) Freezer storage bag
US2959280A (en) Sterile packages
JPH0638831B2 (en) Medical container
JPS6136942B2 (en)
JPH074407B2 (en) Bag-shaped container with cryogenic resistance
JPH0127789Y2 (en)
JPS6159738B2 (en)
JP3941091B2 (en) Cryopreservation method
JPS6136941B2 (en)
JP6930632B1 (en) Skin pack packaging
JPS6049429B2 (en) Cryogenic containers
JPS6226784B2 (en)