JPS60226406A - Preparation of beta-silicon carbide - Google Patents

Preparation of beta-silicon carbide

Info

Publication number
JPS60226406A
JPS60226406A JP59081454A JP8145484A JPS60226406A JP S60226406 A JPS60226406 A JP S60226406A JP 59081454 A JP59081454 A JP 59081454A JP 8145484 A JP8145484 A JP 8145484A JP S60226406 A JPS60226406 A JP S60226406A
Authority
JP
Japan
Prior art keywords
compound
powder
liquid
producing
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59081454A
Other languages
Japanese (ja)
Other versions
JPH0142886B2 (en
Inventor
Hidehiko Tanaka
田中 ▲ひで▼彦
Kichizo Inomata
猪股 吉三
Ikuo Kurachi
育夫 倉地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP59081454A priority Critical patent/JPS60226406A/en
Publication of JPS60226406A publication Critical patent/JPS60226406A/en
Publication of JPH0142886B2 publication Critical patent/JPH0142886B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prepare easily sinterable SiC powder with high efficiency, by firing a specific with high efficiency, by firing a specific precursor material containing Si, O and C in a nonoxidizing atmosphere. CONSTITUTION:(A) A liquid silicon compound, e.g. a compound prepared by dccomposing an aqueous solution of an alkali silicate with an acid or dealkalizing the solution, is incorporated with (B) a liquid organic compound, having functional group, and forming carbon by heating, e.g. a liquid phenolib resin with a high residual carbon ratio, at about 1<C/Si<10 ratio (atomic ratio, provided that C is expressed in terms of residual carbon content at 800-1,400 deg.C) and further with (C) a polymerization or crosslinking catalyst to give a mixture, which is then heat-treated at about 600-1,000 deg.C in an inert gas atmosphere to form a homogeneous amorphous material containing Si, O and C. The resultant amorphous material is then heat-treated at about 1,400-2,000 deg.C in a nonoxidizing atmosphere to prepare the aimed beta-silicon carbide.

Description

【発明の詳細な説明】 本発明は炭化けい素(以下SiCと記載する)の製造方
法に関する。更に詳しくは微細で3C,IA単−相の易
焼結性β型SiO粉末の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing silicon carbide (hereinafter referred to as SiC). More specifically, the present invention relates to a method for producing fine, 3C, IA single-phase, easily sinterable β-type SiO powder.

SiC焼結体は硬度と強度が大きく、耐熱性に優れ、化
学的に安定であるから、耐摩機械部品、撚造用材、耐熱
性材料等に広く利用されている。
SiC sintered bodies have high hardness and strength, excellent heat resistance, and are chemically stable, so they are widely used in wear-resistant mechanical parts, twisted materials, heat-resistant materials, and the like.

5i(3粉末にはα、βの2つの結晶形があり、β靭S
iO粉末の製造方法としては、従来、(1)S102と
Cの反応、(2) 5ki−とCの反応、(3)Si化
合物と炭化水素からの気相合成法が知られているが、工
業的には前記(1)の方法によって製造されている。こ
れは高温における次のいずれかの反応による。
5i (3 powder has two crystal forms, α and β, and β toughness S
Conventionally known methods for producing iO powder include (1) reaction of S102 and C, (2) reaction of 5ki- and C, and (3) gas phase synthesis from Si compounds and hydrocarbons. Industrially, it is produced by the method (1) above. This is due to one of the following reactions at high temperatures.

5in2+ 3C→SiC+ 2CO(9)N)ただし
、(2)はカス状物を表わす。
5in2+ 3C→SiC+ 2CO(9)N) However, (2) represents a scum-like substance.

前記(2)の反応は、不均一な肉体−気体反応であるた
め均質で粒径の均一な粉末が得難く、また2Hのα−8
iOが少敞混在してくる。このα−3iCは焼結に際し
粒成長を促し、繊密化に有害である。
Since the reaction (2) is a non-uniform body-gas reaction, it is difficult to obtain a homogeneous powder with a uniform particle size.
A small amount of iO is mixed in. This α-3iC promotes grain growth during sintering and is harmful to densification.

従って、前記(1)の反応が利用されるが、(1)の反
応を促すためには、5in2とCの混合を均一にするこ
とが必要であり、従来その混合法について種々枦案され
ている。
Therefore, the reaction (1) above is used, but in order to promote the reaction (1), it is necessary to uniformly mix 5in2 and C, and various methods of mixing have been proposed in the past. There is.

例えば、従来原料に用いられてきた固体のンリ力粉末の
代りにけい酸液を用い、炭素質粉末もしイ4き くは炭素前駆い物質を処理する方法、すなわち、液相で
混合することによって均一な漬金物を得、この混合物を
非酸化性雰囲気中で加熱してSiOを製造する方f(特
開昭59−88019号公報)が知らhでいる。
For example, if a silicic acid solution is used instead of the solid powder that has traditionally been used as a raw material, and a carbonaceous powder is used, it is possible to obtain a uniform carbonaceous material by treating the carbon precursor, i.e., by mixing it in the liquid phase. There is a known method (Japanese Unexamined Patent Publication No. 88019/1983) in which SiO is produced by obtaining a pickled metal and heating the mixture in a non-oxidizing atmosphere.

し2かし、この方法によると、物理的な均一状態のもの
が得られるが、シリカゾルが生成し、分子的には不均一
となり、SiOの製造の際、β型SiC粉末に2Hのα
−8iC相が数%以上混在し、単相のβ型SiCが得ら
れない問題点があった。
However, according to this method, although a physically homogeneous product is obtained, silica sol is generated and molecularly non-uniform, and when producing SiO, α of 2H is added to β-type SiC powder.
There was a problem in that several percent or more of the -8iC phase was present, making it impossible to obtain single-phase β-type SiC.

本発明はこの問題点を解決すべくなされたもので、その
目的は分子的に均一に混合された原料とし、単相のβ型
SiCを製造する方法を提供せんとするものである。
The present invention was made to solve this problem, and its purpose is to provide a method for producing single-phase β-type SiC using raw materials that are molecularly uniformly mixed.

本発明者らは前記目的を達成すべく研究の結果、液状け
い素化合物と炭素源として官能基を有し加熱により炭素
を生成する液状有機化合物を使用し、この混合物と触媒
を均一に溶化させた後、重合捷たは架橋反応させて砂化
させ、分子的に均一に混合されたSi 、 Ol及びC
を含むSiC前毀′体物質となし、これを原料とすると
、単相のβ型SiCが得られることを見出し、この知見
に基いて本発明を完成した。
As a result of research to achieve the above object, the present inventors used a liquid silicon compound and a liquid organic compound as a carbon source that has a functional group and produces carbon when heated, and uniformly dissolved this mixture and catalyst. After that, it is made into sand by polymerization or crosslinking reaction, and Si, Ol and C are molecularly uniformly mixed.
It was discovered that single-phase β-type SiC can be obtained by using this as a raw material, and based on this knowledge, the present invention was completed.

すなわち、本発明の要旨は、けい素質と炭素質を含む原
料を非酸化性雰囲気で加熱して炭化けい素を製造するに
あたり、原料として液状けい素化合物、簀能基を有し加
熱により炭素を生成する液状有機化合物及び重合または
架橋触媒を均一に溶化させた後、沖合または架橋反応さ
せて得られたSl、0及びCを含む前駆体物質を用いる
ことを特徴とするβ型炭化けい素の製造方法にある。
That is, the gist of the present invention is to produce silicon carbide by heating a raw material containing silicon and carbon in a non-oxidizing atmosphere, and to produce silicon carbide by heating a raw material containing a liquid silicon compound and a sulfuric functional group. A process for producing β-type silicon carbide characterized by using a precursor material containing Sl, 0, and C obtained by uniformly dissolving the produced liquid organic compound and polymerization or crosslinking catalyst, and then subjecting it to offshore or crosslinking reaction. It's in the manufacturing method.

本賢明において使用する液状けい素化合物としては、例
えば、(1)けい酸アルカリ水溶液を酸分解あるいは脱
アルカリして得られたもの例えば水ガラスの脱アルカリ
で得られたけい酸ポリマー、(2)OH基を持つ有機化
合物とけい酸のエステル、例えばけい酸ポリマーをトリ
メチルシリル化して得られる下記のような一群のポリマ
ー、 色)加水分解性けい酸化合物と有機化合物または有機金
属化合物とのエステル、例えばエチルシリケート C2H5 などが挙げられる。
Examples of liquid silicon compounds used in this study include (1) those obtained by acid decomposition or dealkalization of an aqueous alkali silicate solution, such as silicic acid polymers obtained by dealkalization of water glass, (2) Esters of organic compounds with OH groups and silicic acid, such as a group of polymers obtained by trimethylsilylation of silicic acid polymers, as shown below Color) Esters of hydrolyzable silicic acid compounds with organic or organometallic compounds, such as ethyl Examples include silicate C2H5.

炭素源としては、官能基を有し、加熱に炭素を生成する
液状有機化合物、特に残炭率が高く、触媒またはIJI
I熱によυ重合または架橋する有機化合物例えばフェノ
ール樹脂、フラン樹脂、ポリイミド、ポリウレタン、ポ
リアクリロニトリル、ポリビニルアルコール、ポリ酢酸
ビニル、等の樹脂が好tしく、その他セルロース、しよ
糖、ピッチ。
As a carbon source, liquid organic compounds that have a functional group and generate carbon when heated, especially those with a high residual carbon content, catalysts or IJI
Organic compounds that undergo υ polymerization or crosslinking by I heat, such as resins such as phenol resin, furan resin, polyimide, polyurethane, polyacrylonitrile, polyvinyl alcohol, and polyvinyl acetate, are preferred, and in addition, cellulose, sucrose, and pitch.

タール等も使用し得られる。Tar and the like can also be used.

前記液状けい素化合物と官能基を有し加熱によυ炭素を
生成する液状有機化合物、及び重合または架橋触媒を溶
化させ、加熱によυ重合、または架橋反応させて固体を
得る。
A liquid organic compound having a functional group and a polymerization or crosslinking catalyst is dissolved in the liquid silicon compound, and a polymerization or crosslinking reaction is carried out by heating to obtain a solid.

重合、寸たは架橋反応は、(1)官能基を有する有楢化
合物と液状けい素化合物の官能基間、(2)官能基を有
する液状有機化合物の官能基間において行われる。
Polymerization, crosslinking, or crosslinking reaction is carried out between (1) the functional group-containing organic compound and the liquid silicon compound, and (2) the functional group-containing liquid organic compound.

(2) けい酸ポリマー中のシラノール基と有機化合物
のメチロール基との反応 H の反応等により固体が形成される。
(2) Reaction between the silanol group in the silicic acid polymer and the methylol group of the organic compound A solid is formed by the reaction H2.

触媒としては重合または架橋反応に用いられる触媒から
選べばよく、例えば、塩酸、硫酸、はう酸等の鉱酸、ナ
トリウムエチラート等のアルカリ、有機過酸化物、有機
スルホン酸類などが挙げられる。
The catalyst may be selected from catalysts used in polymerization or crosslinking reactions, and includes, for example, mineral acids such as hydrochloric acid, sulfuric acid, and oxalic acid, alkalis such as sodium ethylate, organic peroxides, and organic sulfonic acids.

液状けい素化合物と官能基を有する液状有機化合物の混
合比は、800〜1400℃での有機化合物の残炭素量
で換算して、Cと81の原子比が1〈0 / SIL 
< 10、好ましくは(3/Si二3となるようにする
のがよい。合成した前駆体物質にCを残留させる場合は
C/Si > 3とする。
The mixing ratio of a liquid silicon compound and a liquid organic compound having a functional group is such that the atomic ratio of C and 81 is 1〈0/SIL, calculated by the amount of residual carbon in the organic compound at 800 to 1400°C.
<10, preferably (3/Si23). If C remains in the synthesized precursor material, C/Si>3.

前記比に混合したものに重合また架橋触媒を混合r〒?
、金物を不活性ガス雰囲気中で600〜1000″Cで
処理すると、Si、O,及びCを含有した均質な非品物
が得られる。
Add a polymerization or crosslinking catalyst to the mixture in the above ratio.
When a metal article is treated at 600-1000''C in an inert gas atmosphere, a homogeneous non-article containing Si, O, and C is obtained.

この非品物を非酸化性雰匣気、例えば真空、窒素、ヘリ
ウム、またはアルゴン中で、1400〜2000°Cに
加熱処理するとSiCが得られる。前記加熱処理温度は
1600’C前後が好ましく、1400°Cより低いと
反応がおそく、また2000°Cを超える温度を必要と
しないので1.そのような温度では経済的に不利となる
SiC is obtained by heat-treating this non-article at 1400 to 2000°C in a non-oxidizing atmosphere, such as vacuum, nitrogen, helium, or argon. The heat treatment temperature is preferably around 1,600°C; if it is lower than 1,400°C, the reaction is slow, and there is no need for a temperature exceeding 2,000°C, so 1. Such temperatures are economically disadvantageous.

得られたSiO粉末は微細で均一粒径分布を持ち、X線
分析の結果、2H等のα相は含まないβ−8iO粉末で
あった。
The obtained SiO powder was fine and had a uniform particle size distribution, and as a result of X-ray analysis, it was found to be β-8iO powder containing no α phase such as 2H.

また、原料でSi/Cのモル比を3とすると、残留炭素
のない純粋なβ型SiC粉末が得られ、脱炭精製処理を
必要としない。
Furthermore, when the Si/C molar ratio in the raw material is set to 3, a pure β-type SiC powder with no residual carbon can be obtained, and no decarburization purification treatment is required.

実施例1 液状けい素化合物として5in2を41重量%含むエチ
ルシリケートと官能基を持つ液状有機化合物として残炭
率が40%のレゾール型フェノール樹脂を用いた。
Example 1 Ethyl silicate containing 41% by weight of 5in2 was used as a liquid silicon compound, and a resol type phenol resin with a residual carbon content of 40% was used as a liquid organic compound having a functional group.

エチルノリケート62重量%と前記フェノール樹脂38
重量%の混合液を酸触媒下で硬化させ、透明な樹脂状固
体を得た。これを窒素雰囲気下で昇温速度10°C/ 
minで1000℃まで加熱した。
62% by weight of ethyl nosilicate and 38% of the phenolic resin
The weight percent mixture was cured under acid catalyst to obtain a transparent resinous solid. This was heated under a nitrogen atmosphere at a heating rate of 10°C/
It was heated to 1000°C at min.

得られた固体は均質でち密な固体で、CとSiの含有量
は残炭率からC/Si = 3と考えられる。この固体
の粉末X線回折線図は第1図の通りであった。
The obtained solid was a homogeneous and dense solid, and the content of C and Si was considered to be C/Si = 3 based on the residual carbon ratio. The powder X-ray diffraction diagram of this solid was as shown in FIG.

粉末X線回折分析では炭素系物質の非晶質特有の幅をも
つ回線のみ切れ、他の回折線が検出されなかった。これ
より、固体はSi 、 Oと0を含んだ非晶質固体であ
ることがわかる。さらにこれをアルゴン雰囲気下昇温速
度30°C/ minで1600°に加熱し、4時間保
持し、β−8iO粉末を得た。その粉末の性質は次に示
す通りであった。
In powder X-ray diffraction analysis, only a line with a width characteristic of amorphous carbon-based materials was broken, and no other diffraction lines were detected. This shows that the solid is an amorphous solid containing Si, O, and 0. Further, this was heated to 1600° under an argon atmosphere at a heating rate of 30°C/min and held for 4 hours to obtain β-8iO powder. The properties of the powder were as follows.

真比重 3.’19〜3.21 f/CI”結晶形 立
方晶(3C)単相 平均粒径 0.15−→−H=μm 不純物 At O,03重量% Fe O,03tT G O,51 色 黄色 また、その粉末の粉末xIIIj!回折線図は第2図、
粉末形状は第3図の通りであった。第2図から2H等の
α相SiGを含まないβ型SiCであること、また、第
3図から粒径の均一な微粉であることが分かる。
True specific gravity 3. '19~3.21 f/CI" Crystal form Cubic crystal (3C) single phase average particle size 0.15-→-H=μm Impurity At O,03% by weight Fe O,03tT G O,51 Color yellow The powder xIIIj! Diffraction diagram of the powder is shown in Figure 2.
The powder shape was as shown in Figure 3. It can be seen from FIG. 2 that it is β-type SiC that does not contain α-phase SiG such as 2H, and from FIG. 3 that it is a fine powder with a uniform particle size.

比較例1.(特開昭57−88019号実施例4)水ガ
ラス3号希釈水溶液(濃度; 5in2分8%)を陽イ
オン交換樹脂アンバーライ) 2000 (H+型)を
充填したカラムで脱ナトリウムをおこなったけい酸液(
濃度:5102分5重量%)1にデキストラン水溶液2
02(含デキストラン42)を添加。
Comparative example 1. (Example 4 of JP-A No. 57-88019) A water glass No. 3 diluted aqueous solution (concentration: 8% for 5 in 2 minutes) was desodium-removed in a column packed with cation exchange resin Amberly 2000 (H+ type). Acid solution (
Concentration: 5102 min (5% by weight) 1 to 2 parts of dextran aqueous solution
02 (dextran-containing 42) was added.

混合し、噴霧乾燥した。得られた白色粉末をヘリウム雰
囲気中で1440°C14時間加熱して5i(3粉末を
得た。
Mixed and spray dried. The obtained white powder was heated at 1440° C. for 14 hours in a helium atmosphere to obtain 5i(3 powder).

得られたSiC粉末は、粒径061〜0.2μ、結晶相
309Q%、2H2O%のSiGであった。
The obtained SiC powder was SiG with a particle size of 061 to 0.2 μ, a crystal phase of 309Q%, and 2H2O%.

実施例と比較例とから明らかなように、本発明の方法に
よると、高純度の単−相β型SiO粉末が得られるに対
し、比較例の方法においては結晶相に2Hのα相SiG
が混在したものとなる。この2Hのα相SiOけ高温で
転移し易く、焼結に際し粒成長を助長し、ち密化を阻害
する。
As is clear from the Examples and Comparative Examples, the method of the present invention yields a highly pure single-phase β-type SiO powder, whereas the method of the Comparative Example contains 2H α-phase SiG in the crystal phase.
It will be a mixture of. This 2H α-phase SiO is easily transformed at high temperatures, promotes grain growth during sintering, and inhibits densification.

本発明の方法で2Hのα相SiGが混在しないのは、重
合あるいは架橋反応によシ分子的に均一混合が達せられ
るためと考えられる。
The reason why 2H α-phase SiG is not mixed in the method of the present invention is considered to be that molecularly homogeneous mixing is achieved through polymerization or crosslinking reaction.

実施例2 水ガラス(けい酸4号)を塩酸とテトラヒドロフランで
公知の方法により脱アルカリと抽出を行って液状けい酸
化合物を得た。これとレゾール型フェノール樹脂および
酸触媒とをアルコール存在下で溶化し、加熱して固化さ
せた。液状けい酸化金物とフェノール樹脂の混合比は4
7153重量比である。得られた樹脂状固体を実施例1
と同様に1000″Cに加熱し、さらに1600℃で熱
処理した。1000℃処理後に得られた固体はSi 、
 QとOから成る均質な非晶質でO/Siユ3であった
Example 2 A liquid silicic acid compound was obtained by dealkalizing and extracting water glass (silicic acid No. 4) with hydrochloric acid and tetrahydrofuran by a known method. This, a resol type phenol resin, and an acid catalyst were dissolved in the presence of alcohol, and heated to solidify. The mixing ratio of liquid metal silicate and phenolic resin is 4.
The weight ratio is 7153. The obtained resinous solid was prepared in Example 1.
The solid obtained after the 1000°C treatment was heated to 1000″C in the same manner as above and further heat-treated at 1600°C.
It was a homogeneous amorphous substance composed of Q and O, and was O/Si Yu3.

1600°C処理後に得られたβ−8iO粉末は微粉で
あシ、粉末X線回折および粉末の形状は実施例1と同様
である。粉末の性質は次の通りであった。
The β-8iO powder obtained after the 1600°C treatment was a fine powder, and the powder X-ray diffraction and powder shape were the same as in Example 1. The properties of the powder were as follows.

真比重 3.19〜3.21?/cm3結晶形 立方晶
(3C)単相 粒 径 0.15〜0.20 μm 不純物 A4 Q、04重量% Fe O,02# Na O,12l G O,6’ 色 黄色 実施例3゜ 水ガラス(けい酸4号)を塩酸とテトラヒドロフランで
抽出し、公知の方法によってトリメチルシリル化して液
状けい酸化合物を得た。これとレゾール型フェノール樹
脂および酸触媒とを溶化し、硬化させ均質な固体とした
。液状けい酸化合物とフェノール樹脂の混合重量比は5
4/46である。
True specific gravity 3.19-3.21? /cm3 Crystal form Cubic (3C) single-phase grain Diameter 0.15-0.20 μm Impurities A4 Q, 04% by weight Fe O, 02# Na O, 12l G O, 6' Color Yellow Example 3゜Water glass (Silic acid No. 4) was extracted with hydrochloric acid and tetrahydrofuran, and trimethylsilylated by a known method to obtain a liquid silicic acid compound. This, a resol type phenolic resin, and an acid catalyst were dissolved and cured to form a homogeneous solid. The mixing weight ratio of liquid silicic acid compound and phenolic resin is 5
It is 4/46.

以下実施例1.2と同様の熱処理を行なった。得らハた
粉末ばβ−8iO単相の微粉であった。本実施例では炭
素源のフェノール樹脂を過剰に加えたので、生成したβ
−3iC粉末中に遊離炭素を約3%含有した。5i(l
i粉末の焼結には炭素を汐加する必敬があるから粉末に
遊離炭素が含有されることは焼結に有効である。粉末の
性質は以下の通りであった。
Thereafter, the same heat treatment as in Example 1.2 was performed. The obtained powder was a single-phase β-8iO fine powder. In this example, since an excessive amount of phenolic resin as a carbon source was added, the generated β
-3iC powder contained about 3% free carbon. 5i(l
Since it is necessary to add carbon to the sintering of the powder, it is effective for the powder to contain free carbon. The properties of the powder were as follows.

真比重 3.19〜3.20 f//cm’結晶形 立
方晶(3C)単相 粒 径 0.15〜0.20 μm 不純物 AI 0.03重量% Fe O,02x Na O,10# 遊離炭素 3.0重量% 以上のように、本発明の方法によると、2Hのα相5i
Ciの混在しないβ型SiCの均一微粉末が容易に得ら
れる。従って、この焼結体は焼結に際し粒成長がなく、
ち密なものとなる効果を有する。
True specific gravity 3.19-3.20 f//cm' Crystal form Cubic (3C) single phase grain Diameter 0.15-0.20 μm Impurity AI 0.03% by weight Fe O, 02x Na O, 10# Free Carbon 3.0% by weight As described above, according to the method of the present invention, 2H α phase 5i
A uniform fine powder of β-type SiC without any mixture of Ci can be easily obtained. Therefore, this sintered body has no grain growth during sintering, and
It has the effect of becoming denser.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法において用いる1000°C処理
したSiO前駆体物質の粉末X線回折図形(非晶質)、
第2図は本発明の方法で製造されたβ型SiC粉末の粉
末X線回折図形(β型SiC単−相)、第3図は本発明
の方法で製造されたβ型SiC粉末のSEM写真である
。 特許出願人 科学技術庁無機材質研究所長後 藤 優 1μm 千 続 補 正 ψ) 昭和9年に月22[J ] 事件の表示 昭和γ/年特許願第 ざ/≠にγ シj2 発明の名称 :3 補正をする者 を件との関係 特許出願人 氏名 羊1学技術庁無機祠質研究所IU、、”、、 、
 、”14 補、iE命令の]1イ4 己・・ q什ワ°1斗′/nづ(つ 5 補正の対象 明 細 書 1、発明の名称 β型炭化けい素の製造方法 2、特許請求の範囲 1、けい素質と炭素質とを含む原料を非酸化性雰囲気で
加熱して炭化けい素を製造するにあたり、原料として、
液状けい素化合物、官能基を有し加熱により炭素を生成
する液状有機化合物及び重合または架橋触婬を均一に溶
化させ、これを重合または架橋反応させて得られたSi
、O及びCを含む前重体物質を用いることを特徴とする
β型炭化けい素の製造方法。 2、液状けい素化合物がけい酸アルカリ水溶液の酸分解
または脱アルカリにより得られたものである特許請求の
範囲第1項記載のβ型炭化けい素の製造方法。 3、液状けい素化合物が水酸基を有する有機化合物とけ
い酸のエステルである特許請求の範囲第1項記載のβ型
炭化けい素の製造方法。 4、液状けい素化合物が加水分解性けい素化合物と有機
化合物または有機金属化合物とを反応させたエステルで
ある特許請求の範囲第1項記載のβ型炭化けい素の製造
方法。 5、重合または架橋反応が、官能基を有し加熱により炭
素を生成する有機化合物の触媒による重合反応または架
橋反応である特許請求の範囲第1項記載のβ型炭化けい
素の製造方法。 6、重合または架橋反応が、液状けい素化合物と官能基
を有し加熱により炭素を生成する有機化合物の触媒によ
る重合または架橋反応である特許請求の範囲第1項記載
のβ型炭化けい素の製造方法。 3、発明の詳細な説明 本発明は炭化けい素(以下SiCと記載する)の製造方
法に関する。更に詳しくは微細で3C(β)単−相の易
焼結性β型SiC粉末の製造方法に関する。 SiC焼結体は硬度と強度が大きく、耐熱性に優れ、化
学的に安定であるから、耐摩機械部品、構造用材、耐熱
性材料等に広(利用されている。 SiC粉末にはα、βの2つの結晶形があり、β咎1S
iC粉末の製造方法としては、従来、(1) 5ift
とCの反応、(2)Si&Cの反応、T3)Si化合物
と炭化水素からの気相合成法が知られているが、工業的
には前記(1)の方法によって製造されている。これは
高温における次のいずれかの反応による。 前記(2)の反応は、不均一な固体−気体反応であるた
め均質で粒径の均一な粉末が得難(、また2Hのα−8
iCが少量混存して(る。このa −3iCは焼結に際
し粒成長を促し、緻密化に有害である。 従って、前記(1)の反応が利用されるが、(1)の反
応を促すためには、SiQとCの混合を均一にすること
が必要であり、従来その混合法について種々提案されて
いる。 例えば、従来原料に用いられてきた固体のシリカ粉末の
代りにけい酸液を用い、炭素質粉末もしくは炭素前駆体
物質を処理する方法、すなわち、液相で混合することに
よって均一な混合物を得、この混合物を非酸化性雰囲気
中で加熱してSiCを製造する方法(特開昭50−88
019号公報)が知られている。 しかし、この方法によると、物理的な均一状態のものが
得られるが、シリカゾルが生成し、分子的には不均一と
なり、SiCの製造の際、β型SiC粉末に2Hのα−
8iC相が数%以上混在し、単相のβ型SiCが得られ
ない問題点があった。 本発明はこの問題点を解決すべ(なされたもので、その
目的は分子的に均一に混合された原料とし、単相のβ型
SiCを製造する方法を提供せんとするものである。 本発明者らは前記目的を達成すべ(研究の結果、液状け
い素化合物と炭素源として官能基を有し加熱により炭素
を生成する液状有機化合物を使用し、この混合物と触媒
を均一に溶化させた後、重合または架橋反応させて硬化
させ、分子的に均一に混合されたSi、 0、及びCを
含むSiC前駆体物質となし、これを原料とすると、単
相のβ型SiCが得られることを見出し、この知見に基
づいて本発明を完成した。 すなわち、本発明の要旨は、けい素質と炭素質を含む原
料を非酸化性雰囲気で加熱して炭化けい素を製造するに
あたり、原料として液状けい素化合物、官能基を有し加
熱により炭素を生成する液状有機化合物及び重合または
架橋触媒を均一に溶化させた後、重合または架橋反応さ
せて得られたSi、O及びCを含む前駆体物質を用いる
ことを特徴とするβ型炭化けい素の製造方法にある。 本発明において使用する液状けい素化合物としては、例
えば、(1)けい酸アルカリ水溶液を酸分解あるいは脱
アルカリして得られたもの例えば水ガラスの脱アルカリ
で得られたけい酸ポリマー、(2)OH基を持つ有機化
合物とけい酸のエステル、例えばけい酸ポリマーをトリ
メチルシリル化して得られる下記のような一群のポリマ
ー、 (3)加水分解性けい酸化合物と有機化合物または有機
金属化合物とのエステル、例えばエチルシリケート などが挙げられる。 炭素源としては、官能基を有し、加熱に炭素を生成する
液状有機化合物、特に残炭率が高(、触媒または加熱に
より重合または架橋する有機化合物例えばフェノール樹
脂、フラン樹脂、ポリイミド、ポリウレタン、ポリアク
リロニトリル、ポリビニルアルコール、ポリ酢酸ビニル
、等の樹脂が好ましく、その他セルロース、しょ糖、ピ
ッチ、タール等も使用し得られる。 前記液状けい素化合物と官能基を有し加熱により炭素を
生成する液状有機化合物、及び重合または架橋触媒を溶
化させ、加熱により重合、または架橋反応させて固体を
得る。 重合、または架橋反応は、(1)官能基を有する有機化
合物と液状けい素化合物の官能基間、(2)官能基を有
する液状有機化合物の官能基間において行われる。 例えば、フェノール慴り旨の重合反応 (2)けい酸ポリマー中のシラノール基と有機化合物の
メチロール基との反応 H 触媒としては重合または架橋反応に用いられる触媒から
選べばよ(、例えば、塩酸、硫酸、はう酸等の鉱酸、ナ
トリウムエチラート等のアルカリ、有機過酸化物、有機
スルホン酸類などが挙げられる。 液状けい素化合物と官能基を有する液状有機化合物の混
合比は、800〜1400°Cでの有機化合物の残炭素
量で換算して、CとStの原子比が1くC/Si<10
、好ましくはC/ Stご3となるようにするのがよい
。合成した前駆体物質にCを残留+1させる場合はC/
 Si > 3とする。 前記比に混合したものに重合また架橋触媒を混合し、硬
化させた該混合物を不活性ガス雰囲気中で600〜10
00℃で処理すると、Si、O,及びCを含有した均質
な非品物が得られる。 この非品物を非酸化性雰囲気、例えば真空、窒素、ヘリ
ウム、またはアルゴン中で、1400〜2000℃に加
熱処理するとSiCが得られる。前記加熱処理温度は1
600°C前後が好ましく、1400°Cより低いと反
応がおそく、また2000’Cを超える温度を必要とし
ないので、そのような温度では経済的に不利となる。 得られたSiC粉末は微細で均一粒径分布を持ち、X線
分析の結果、2H等のα相は含まないβ−3C留炭素の
ない純粋なβ型SiC粉末が得られ、脱炭精製処理を必
要としない。 実施例1゜ 液状けい素化合物として5insを41重量%含むエチ
ルシリケートと官能基を持つ液状有機化合物として残炭
率が4096のレゾール型フェノール樹脂を用いた。 エチルシリケート62重量%と前記フェノール樹脂38
重量%の混合液を酸触媒下で硬化させ、透明な樹脂状固
体を得た。これを窒素雰囲気下で昇温速度10℃/ m
inで1000まで加熱した。得□ られた固体は均質
でち密な固体で、CとStの含有量は残炭率からC/5
i=3と考えられる。この固体の粉末X線回折線図は第
1図の通りであった。 粉末X線回折分析では炭素系物質の非晶質特有の幅をも
つ回線のみ現れ、他の回折線が検出されなかった。これ
より、固体はSi、OとCを含んだ非し、4崎間保持し
、β−3iC粉末を得た。その粉末の性質は次に示す通
りであった。 真比重 3.19〜3.21 g/cf結 晶 形 立
方晶(3C)単相 平均粒径 0.15μm 不純物AA! 0.03重量% Fe O,03〃 C0,5〃 色 黄色 また、その粉末の粉末X線回折線図は第2図、粉末形状
は第3図の通りであった。第2図から2H等のα相Si
Cを含まないβ型SiCであること、また、第3図から
粒径の均一な微粉であることが分かる。 比較例1.(特開昭57−88019号実施例4)を陽
イオン交換樹脂アンバーライト200C(H′+型)を
充填したカラムで脱ナトリウムをおこなったけ混合し、
噴霧乾燥した。得られた白色粉末をヘリウム雰囲気中で
1440°C14時間加熱してSiC粉末を得た。 得られたSiC粉末は、粒径0.1〜0.2μ、結晶相
3C90%、2H1096のSiCであった。 実施例と比較例とから明らかなよう番ど、本発明の方法
によると、高純度の弔−相β型SiC粉末が得られる化
対し、比較例の方法においては結晶相に2Hのα相Si
Cが混在したものとなる。この2Hのα相SiCは高温
で転移し易く、焼結番ζ際し粒成長を助長し、ち密化を
阻害する。 本発明の方法で2Hのα相SiCが混在しないのは、重
合あるいは架橋反応により分子的に均一混合が達せられ
るためと考えられる。 実施例2゜ 水ガラス(けい酸4号)を塩酸とテトラヒドロフランで
公知の方法により脱アルカリと抽出を行って液状けい酸
化合物を得た。これとレゾール型フェノール樹脂および
酸触媒とをアルコール存在、下で溶化し、加熱して固化
させた。液状けい酸化合物とフェノール樹脂の混合比は
47153重量比である。得られた樹脂状固体を実施例
1と同様に1000℃に加熱し、さらに1600°Cで
熱処理した。1000℃処理後1こ得られた固体はSi
、CとOから成る均質な非晶質でC/ Si 上3であ
った。 1600℃処理後に得られたβ−3jC粉末は微粉であ
り、粉末X線回折および粉末の形状は実施例1と同様で
ある。粉末の性質は次の通りであった。 真比重 3.19〜3.21 g/c、111結 晶 
形 立方晶(3C)単相 粒 径 0.15〜0.20 ttm 不純物 7vO,04重量% Fe O,02” Na O,12〃 C0,6〃 色 黄色 実施例3゜ 水ガラス(けい酸4号)を塩酸とテトラヒドロフランで
抽出し、公知の方法によってトリメチルシリル化して液
状けい酸化合物を得た。これとレゾール型フェノール樹
脂および酸触媒とを溶化し、硬化させ均質な固体とした
。液状けい酸化合物とフェノール樹脂の混合重量比は5
4/46である。以下実施例1.2と同様の熱処理を行
った。得られた粉末はβ−3iC単相の微粉であった。 本実施例では炭素源のフェノール樹脂を過剰に加えたの
で、生成したβ−3iC粉米中に遊離炭素を約396含
有した。SiC粉末の焼結には炭素を添加する必要があ
るから粉末に遊離炭素が含有されることは焼結に有効で
ある。粉末の性質は以下の通りであった。 真比重 319〜3.20 g/ca 結 晶 形 立方晶(3C)単相 粒 径 0.15〜0.20 μm 不純物 Al 0.03重N96 Fe O,02〃 遊離炭素 3.0重量% 以上のように、本発明の方法によると、2Hのα相Si
Cの混在しないβ型SiCの均一微粉末が容易に得られ
る。従って、この焼結体は焼結に際し粒成長がな(、ち
密なものとなる効果を有する。 4図面の簡単な説明 第1図は本発明の方法において用いる1000°C処理
したSiC前駆体物質の粉末X線回折図形(非晶質)、
第2図は本発明の方法で製造されたβ型SiC粉末の粉
末X線回折図形(β型SiC単−相)、第3図は本発明
の方法で製造されたβ型SiC粉末特許出願人 科学技
術庁無機材質研究所長後 藤 優
Figure 1 shows the powder X-ray diffraction pattern (amorphous) of the SiO precursor material treated at 1000°C used in the method of the present invention;
Figure 2 is a powder X-ray diffraction pattern of β-type SiC powder produced by the method of the present invention (β-type SiC single-phase), and Figure 3 is an SEM photograph of β-type SiC powder produced by the method of the present invention. It is. Patent Applicant: Yu Goto, Director, Institute of Inorganic Materials, Science and Technology Agency (1 μm, 1,000 corrections ψ) Month 22, 1930 [J] Incident indication: Showa γ/Year patent application No.: ≠ γ 2 Name of the invention: 3. Relationship between the person making the amendment and the matter Patent applicant name Sheep 1 Science and Technology Agency Inorganic Agricultural Research Institute IU.
, "14 Supplement, iE instruction] 1 4 Self... q 佀wa °1 斗'/nzu (tsu 5 Specification subject to amendment Document 1, Name of the invention Process for producing β-type silicon carbide 2, Patent Claim 1: In producing silicon carbide by heating a raw material containing silicon and carbon in a non-oxidizing atmosphere, as a raw material,
Si obtained by uniformly dissolving a liquid silicon compound, a liquid organic compound having a functional group and generating carbon upon heating, and a polymerization or crosslinking agent, and then subjecting the mixture to a polymerization or crosslinking reaction.
, O, and C. 2. The method for producing β-type silicon carbide according to claim 1, wherein the liquid silicon compound is obtained by acid decomposition or dealkalization of an aqueous alkali silicate solution. 3. The method for producing β-type silicon carbide according to claim 1, wherein the liquid silicon compound is an ester of an organic compound having a hydroxyl group and silicic acid. 4. The method for producing β-type silicon carbide according to claim 1, wherein the liquid silicon compound is an ester obtained by reacting a hydrolyzable silicon compound with an organic compound or an organometallic compound. 5. The method for producing β-type silicon carbide according to claim 1, wherein the polymerization or crosslinking reaction is catalyzed by an organic compound having a functional group and generating carbon upon heating. 6. The β-type silicon carbide according to claim 1, wherein the polymerization or crosslinking reaction is a catalytic polymerization or crosslinking reaction of a liquid silicon compound and an organic compound having a functional group and producing carbon upon heating. Production method. 3. Detailed Description of the Invention The present invention relates to a method for producing silicon carbide (hereinafter referred to as SiC). More specifically, the present invention relates to a method for producing fine, 3C (β) single-phase, easily sinterable β-type SiC powder. SiC sintered bodies have high hardness and strength, excellent heat resistance, and are chemically stable, so they are widely used in wear-resistant mechanical parts, structural materials, heat-resistant materials, etc. SiC powder has α and β There are two crystal forms of
Conventionally, as a manufacturing method of iC powder, (1) 5ift
(2) Reaction of Si & C, T3) Gas phase synthesis method from Si compound and hydrocarbon are known, but it is industrially produced by the method (1) above. This is due to one of the following reactions at high temperatures. Since the reaction (2) above is a non-uniform solid-gas reaction, it is difficult to obtain a homogeneous powder with a uniform particle size (also, it is difficult to obtain a powder with a uniform particle size).
A small amount of iC (a-3iC) promotes grain growth during sintering and is harmful to densification. Therefore, the reaction (1) above is used; In order to promote this process, it is necessary to uniformly mix SiQ and C, and various methods have been proposed for this mixing method. A method of processing carbonaceous powder or a carbon precursor material using a method, that is, a method of producing SiC by mixing in a liquid phase to obtain a homogeneous mixture and heating this mixture in a non-oxidizing atmosphere (especially Kaisho 50-88
No. 019) is known. However, according to this method, although a physically homogeneous product is obtained, silica sol is generated and molecularly non-uniform, and when producing SiC, 2H α-
There was a problem in that several percent or more of the 8iC phase was mixed, making it impossible to obtain single-phase β-type SiC. The present invention has been made to solve this problem, and its purpose is to provide a method for producing single-phase β-type SiC using raw materials that are molecularly uniformly mixed. They achieved the above objective by using a liquid silicon compound and a liquid organic compound as a carbon source that has a functional group and generates carbon when heated, and after uniformly dissolving this mixture and the catalyst. , is cured by polymerization or crosslinking reaction to form a SiC precursor material containing a molecularly uniform mixture of Si, 0, and C, and when used as a raw material, single-phase β-type SiC can be obtained. The present invention was completed based on this finding.That is, the gist of the present invention is to produce silicon carbide by heating raw materials containing silicon and carbon in a non-oxidizing atmosphere, using liquid silicon as a raw material. After uniformly dissolving an elementary compound, a liquid organic compound having a functional group and generating carbon upon heating, and a polymerization or crosslinking catalyst, a precursor substance containing Si, O, and C obtained by a polymerization or crosslinking reaction is used. The present invention provides a method for producing β-type silicon carbide. Examples of the liquid silicon compound used in the present invention include (1) one obtained by acid decomposition or dealkalization of an aqueous alkali silicate solution; For example, silicic acid polymers obtained by dealkalization of water glass, (2) esters of silicic acid and organic compounds with OH groups, the following group of polymers obtained by trimethylsilylation of silicic acid polymers, (3) hydrated Examples include esters of decomposable silicic acid compounds and organic compounds or organometallic compounds, such as ethyl silicate.As a carbon source, liquid organic compounds that have a functional group and generate carbon when heated, especially those with a low residual carbon content. Preferred are organic compounds that polymerize or crosslink with catalysts or heat, such as phenol resins, furan resins, polyimides, polyurethanes, polyacrylonitrile, polyvinyl alcohol, polyvinyl acetate, and other resins such as cellulose, sucrose, pitch, tar, etc. The liquid organic compound having a functional group and a polymerization or crosslinking catalyst is dissolved in the liquid silicon compound, and a polymerization or crosslinking reaction is performed by heating to obtain a solid.Polymerization, Alternatively, the crosslinking reaction is carried out between (1) the functional group of an organic compound having a functional group and a liquid silicon compound, and (2) the functional group of a liquid organic compound having a functional group.For example, the polymerization of phenol Reaction (2) Reaction H between the silanol group in the silicic acid polymer and the methylol group of the organic compound The catalyst may be selected from catalysts used in polymerization or crosslinking reactions (for example, minerals such as hydrochloric acid, sulfuric acid, and oxalic acid). Examples include acids, alkalis such as sodium ethylate, organic peroxides, and organic sulfonic acids. The mixing ratio of the liquid silicon compound and the liquid organic compound having a functional group is such that the atomic ratio of C and St is 1 and C/Si<10, calculated by the amount of residual carbon in the organic compound at 800 to 1400°C.
, preferably every 3 C/St. When C remains +1 in the synthesized precursor material, C/
Let Si>3. A polymerization or crosslinking catalyst was mixed with the mixture in the above ratio, and the cured mixture was heated to a temperature of 600 to 100% in an inert gas atmosphere.
When treated at 00°C, a homogeneous non-article containing Si, O, and C is obtained. SiC is obtained by heat-treating this non-article at 1400 to 2000° C. in a non-oxidizing atmosphere, such as vacuum, nitrogen, helium, or argon. The heat treatment temperature is 1
The temperature is preferably around 600°C, and if it is lower than 1400°C, the reaction is slow, and since there is no need for a temperature higher than 2000°C, such a temperature is economically disadvantageous. The obtained SiC powder has a fine and uniform particle size distribution, and as a result of X-ray analysis, it was found that pure β-type SiC powder containing no α phase such as 2H and no β-3C carbon was obtained, and it was decarburized and purified. does not require. Example 1 Ethyl silicate containing 41% by weight of 5ins was used as a liquid silicon compound, and a resol type phenol resin with a residual carbon content of 4096 was used as a liquid organic compound having a functional group. 62% by weight of ethyl silicate and 38% of the phenolic resin
The weight percent mixture was cured under acid catalyst to obtain a transparent resinous solid. This was heated at a rate of 10°C/m under a nitrogen atmosphere.
Heated to 1000 in. □ The obtained solid is a homogeneous and dense solid, and the C and St content is C/5 from the residual carbon percentage.
It is considered that i=3. The powder X-ray diffraction diagram of this solid was as shown in FIG. In powder X-ray diffraction analysis, only a line with a width characteristic of amorphous carbon-based materials appeared, and no other diffraction lines were detected. From this, the solid contained Si, O and C, and was retained between four layers to obtain β-3iC powder. The properties of the powder were as follows. True specific gravity 3.19-3.21 g/cf Crystal form Cubic (3C) single phase average particle size 0.15 μm Impurity AA! 0.03% by weight Fe O,03〃 C0,5〃 Color Yellow The powder X-ray diffraction diagram of the powder was as shown in Figure 2, and the powder shape was as shown in Figure 3. From Figure 2, α-phase Si such as 2H
It can be seen from FIG. 3 that it is β-type SiC that does not contain C, and that it is a fine powder with a uniform particle size. Comparative example 1. (Example 4 of JP-A No. 57-88019) was mixed in a column filled with cation exchange resin Amberlite 200C (H'+ type) until sodium removal was performed,
Spray dried. The obtained white powder was heated at 1440° C. for 14 hours in a helium atmosphere to obtain SiC powder. The obtained SiC powder was SiC with a particle size of 0.1 to 0.2 μ, a crystal phase of 3C 90%, and 2H1096. As is clear from the Examples and Comparative Examples, the method of the present invention yields high-purity β-phase SiC powder, whereas the method of the Comparative Example contains 2H α-phase Si in the crystal phase.
It becomes a mixture of C. This 2H α-phase SiC is easily transformed at high temperatures, promotes grain growth during sintering, and inhibits densification. The reason why 2H α-phase SiC is not mixed in the method of the present invention is considered to be because molecularly homogeneous mixing is achieved by polymerization or crosslinking reaction. Example 2 Water glass (silicic acid No. 4) was dealkalized and extracted using hydrochloric acid and tetrahydrofuran by a known method to obtain a liquid silicic acid compound. This, a resol type phenol resin, and an acid catalyst were dissolved in the presence of alcohol, and heated to solidify. The mixing ratio of liquid silicic acid compound and phenol resin is 47153 weight ratio. The obtained resinous solid was heated to 1000°C in the same manner as in Example 1, and further heat-treated at 1600°C. The solid obtained after treatment at 1000°C is Si
, was homogeneous amorphous consisting of C and O and C/Si on 3. The β-3jC powder obtained after the 1600°C treatment is a fine powder, and the powder X-ray diffraction and powder shape are the same as in Example 1. The properties of the powder were as follows. True specific gravity 3.19-3.21 g/c, 111 crystals
Shape Cubic (3C) single-phase grain Diameter 0.15-0.20 ttm Impurities 7vO, 04% by weight Fe O, 02” Na O, 12〃 C0,6〃 Color Yellow Example 3゜Water glass (silicic acid 4 No.) was extracted with hydrochloric acid and tetrahydrofuran, and trimethylsilylated by a known method to obtain a liquid silicic acid compound.This was dissolved with a resol type phenol resin and an acid catalyst and hardened to form a homogeneous solid.Liquid silicic acid The mixing weight ratio of the compound and phenolic resin is 5
It is 4/46. Thereafter, the same heat treatment as in Example 1.2 was performed. The obtained powder was a single-phase β-3iC fine powder. In this example, since the phenolic resin serving as the carbon source was added in excess, the resulting β-3iC powdered rice contained about 396 free carbons. Since it is necessary to add carbon to sinter SiC powder, the inclusion of free carbon in the powder is effective for sintering. The properties of the powder were as follows. True specific gravity 319-3.20 g/ca Crystal shape Cubic (3C) single-phase grain Diameter 0.15-0.20 μm Impurities Al 0.03 weight N96 Fe O,02〃 Free carbon 3.0% by weight or more According to the method of the present invention, 2H α-phase Si
A uniform fine powder of β-type SiC without C mixed therein can be easily obtained. Therefore, this sintered body has the effect of causing no grain growth (and becoming denser) during sintering. Powder X-ray diffraction pattern (amorphous),
Fig. 2 is a powder X-ray diffraction pattern of β-type SiC powder produced by the method of the present invention (β-type SiC single-phase), and Fig. 3 is a powder X-ray diffraction pattern of β-type SiC powder produced by the method of the present invention. Masaru Gofuji, Director, Institute for Inorganic Materials, Science and Technology Agency

Claims (1)

【特許請求の範囲】 1 けい素質と炭素質とを含む原料を非酸化性界囲槃で
加熱して炭化けい素をル1シ造するにあたり、原料とし
て、液状けい素化合物、官能基を崩し加熱により炭素を
生成する液状有機化合物及び重合まメこは架橋触媒を均
一に溶化させ、これを重合または架橋反応させて得られ
たSl、0及びCを含む前駆体物質を用いることを性徴
とするβハリ炭化けい素の製造方法。 2 液状けい素化合物がけい酸アルカリ水溶液の酸分解
または脱アルカリによシ得らねたものである特許請求の
範囲第1項記載のβ型炭化けい素の製造方法。 3 液状けい素化合物が水酸基を有する有機化合物とけ
い醜のエステルである特許請求の範囲第1項記載のβ型
炭化けい素の製造方法。 4 液状けい素化合物が加水分解性けい素化合物と有機
化合物または有機金属化合物とを反応させたエステルで
ある特許請求の範囲第1項記載のβ型炭化けい素の製造
方法。 5 重合または架橋反応が、官計基を有し加熱により炭
素を生成する有機化合物の触媒による重合反応または架
橋反応である特許請求の範囲第1項記載のβ型炭化けい
素の製造方法。 6 重合または架橋反応が、液状けい素化合物と官能基
を有し加熱により炭素を生成する有機化合物の触媒によ
る重合または架橋反応である特許請求の範囲第1項記載
のβ型炭化けい素の製造方法。
[Claims] 1. In producing silicon carbide by heating a raw material containing silicon and carbon in a non-oxidizing atmosphere, the raw material is a liquid silicon compound, the functional group of which has been broken down. The liquid organic compound that generates carbon by heating and the polymerization material are characterized by the use of a precursor substance containing Sl, 0, and C obtained by uniformly dissolving a crosslinking catalyst and polymerizing or crosslinking it. A method for producing β-harisilicon carbide. 2. The method for producing β-type silicon carbide according to claim 1, wherein the liquid silicon compound is not obtained by acid decomposition or dealkalization of an aqueous alkali silicate solution. 3. The method for producing β-type silicon carbide according to claim 1, wherein the liquid silicon compound is an ester of silicon with an organic compound having a hydroxyl group. 4. The method for producing β-type silicon carbide according to claim 1, wherein the liquid silicon compound is an ester obtained by reacting a hydrolyzable silicon compound with an organic compound or an organometallic compound. 5. The method for producing β-type silicon carbide according to claim 1, wherein the polymerization or crosslinking reaction is a polymerization reaction or crosslinking reaction catalyzed by an organic compound having a government-funded group and producing carbon upon heating. 6. Production of β-type silicon carbide according to claim 1, wherein the polymerization or crosslinking reaction is a catalytic polymerization or crosslinking reaction of a liquid silicon compound and an organic compound having a functional group and generating carbon upon heating. Method.
JP59081454A 1984-04-23 1984-04-23 Preparation of beta-silicon carbide Granted JPS60226406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59081454A JPS60226406A (en) 1984-04-23 1984-04-23 Preparation of beta-silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59081454A JPS60226406A (en) 1984-04-23 1984-04-23 Preparation of beta-silicon carbide

Publications (2)

Publication Number Publication Date
JPS60226406A true JPS60226406A (en) 1985-11-11
JPH0142886B2 JPH0142886B2 (en) 1989-09-18

Family

ID=13746846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59081454A Granted JPS60226406A (en) 1984-04-23 1984-04-23 Preparation of beta-silicon carbide

Country Status (1)

Country Link
JP (1) JPS60226406A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616111A (en) * 1984-06-20 1986-01-11 Bridgestone Corp Manufacture of cabonaceous material
DE4223667A1 (en) * 1991-07-18 1993-01-21 Sumitomo Metal Ind METHOD OF PREPARING A (BETA) SILICON CARBIDE PULVER AND SEMICONDUCTOR ELEMENT PRODUCTION DEVICE
DE19737127B4 (en) * 1996-08-26 2013-04-04 Bridgestone Corp. Production process for silicon carbide particles
CN106187197A (en) * 2016-07-04 2016-12-07 浙江宇清热工科技股份有限公司 Carborundum plate goods and processing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3879813B2 (en) 2001-03-14 2007-02-14 信越化学工業株式会社 Method for producing β-silicon carbide fine powder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52150416A (en) * 1976-06-08 1977-12-14 Toyo Boseki Manufacture of silicon carbide containing mold articles
JPS5788019A (en) * 1980-11-13 1982-06-01 Asahi Chem Ind Co Ltd Manufacture of silicon carbide
JPS58185424A (en) * 1982-04-21 1983-10-29 Asahi Chem Ind Co Ltd Preparation of silicon carbide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52150416A (en) * 1976-06-08 1977-12-14 Toyo Boseki Manufacture of silicon carbide containing mold articles
JPS5788019A (en) * 1980-11-13 1982-06-01 Asahi Chem Ind Co Ltd Manufacture of silicon carbide
JPS58185424A (en) * 1982-04-21 1983-10-29 Asahi Chem Ind Co Ltd Preparation of silicon carbide

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616111A (en) * 1984-06-20 1986-01-11 Bridgestone Corp Manufacture of cabonaceous material
DE4223667A1 (en) * 1991-07-18 1993-01-21 Sumitomo Metal Ind METHOD OF PREPARING A (BETA) SILICON CARBIDE PULVER AND SEMICONDUCTOR ELEMENT PRODUCTION DEVICE
FR2679219A1 (en) * 1991-07-18 1993-01-22 Sumitomo Metal Ind PROCESS FOR THE PREPARATION OF SILICON CARBIDE POWDER FOR USE IN SEMICONDUCTOR EQUIPMENT.
DE4223667B4 (en) * 1991-07-18 2007-01-11 Bridgestone Corp. Process for producing a β-silicon carbide powder and its use for semiconductor device manufacturing equipment
DE19737127B4 (en) * 1996-08-26 2013-04-04 Bridgestone Corp. Production process for silicon carbide particles
CN106187197A (en) * 2016-07-04 2016-12-07 浙江宇清热工科技股份有限公司 Carborundum plate goods and processing method thereof

Also Published As

Publication number Publication date
JPH0142886B2 (en) 1989-09-18

Similar Documents

Publication Publication Date Title
US4818732A (en) High surface area ceramics prepared from organosilane gels
JPS58145700A (en) Production of silicon carbide whisker
JP3632222B2 (en) CaCO3 solidification method
JPS5850929B2 (en) Method for manufacturing silicon carbide powder
JPS5891005A (en) Production of silicon nitride powder
Preiss et al. Thermal treatment of binary carbonaceous/zirconia gels and formation of Zr (C, O, N) solid solutions
JPS60226406A (en) Preparation of beta-silicon carbide
WO1987001370A1 (en) Silica molding and process for its production
Krishnarao et al. Effect of acid treatment on the formation of SiC whiskers from raw rice husks
JPS58120599A (en) Production of beta-silicon carbide whisker
JPS6197125A (en) Manufacture of easily sinterable silicon carbide powder
KR100544892B1 (en) SPHERICAL SiC-BASED PARTICLES AND METHODS FOR PREPARING THE SAME
KR101549477B1 (en) Manufacturing Method of High Purity SiC Powder
JP4234800B2 (en) Method for producing silicon carbide powder
JPS5839764B2 (en) Method for producing aluminum nitride powder
JPS61132509A (en) Production of silicon carbide
JPH0662286B2 (en) Method for producing silicon carbide
JP2585506B2 (en) Silicon carbide sintered body and method for producing the same
JPH0383900A (en) Single-crystal silicon-carbide fiber and its manufacture
JPS5834427B2 (en) Manufacturing method of silicon nitride sintered body
JPH0421605B2 (en)
JPS5891027A (en) Manufacture of silicon carbide powder
JPS61168514A (en) Production of easily sinterable silicon carbide
JPH0248499A (en) Production of silicon carbide whisker
KR100477949B1 (en) SPHERICAL SiC-BASED PARTICLES AND METHODS FOR PREPARING THE SAME

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term