JPS60211916A - Forming method of pattern - Google Patents

Forming method of pattern

Info

Publication number
JPS60211916A
JPS60211916A JP59067573A JP6757384A JPS60211916A JP S60211916 A JPS60211916 A JP S60211916A JP 59067573 A JP59067573 A JP 59067573A JP 6757384 A JP6757384 A JP 6757384A JP S60211916 A JPS60211916 A JP S60211916A
Authority
JP
Japan
Prior art keywords
film
monomolecular
pattern
substrate
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59067573A
Other languages
Japanese (ja)
Inventor
Yutaka Hirai
裕 平井
Yoshinori Tomita
佳紀 富田
Hiroshi Matsuda
宏 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59067573A priority Critical patent/JPS60211916A/en
Publication of JPS60211916A publication Critical patent/JPS60211916A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • H01L21/02285Langmuir-Blodgett techniques

Abstract

PURPOSE:To enable the control of two-dimentional arrangement of a monomolecular film or a monomolecular accumulated film, by scanning the surface of a substrate by means of ion beams without the presence of an ambient gas so as to form a pattern of the monomolecular film or the monomolecular accumulated film, and by applying thereto ultrasonic vibrations thereafter. CONSTITUTION:A glass plate 1-1 being used as a substrate, for instance, the surface of the substrate is scanned by using Si ion beams, and thereby a layer 1-2 of depth 50Angstrom in which Si ions are injected is formed in the shape of a pattern. Next, a monomolecular accumulated film of arachidic acid is formed according to the LB method by using a chloroform solution of the arachidic acid. More concretely, first the substrate is sunk in the water, a film is developed, the substrate is then drawn up, and thereby said film is formed. When ultrasonic vibrations are applied thereto in water thereafter, the monomolecular film 1-2 is exfoliated, and a monomolecular film 1-4 remains only in the part of a layer 1-3 in which no ions are injected, in accordance with the pattern.

Description

【発明の詳細な説明】 [技術分野] 本発明は新規なパターン形成方法に関する。更に具体的
には、単分子膜又は単分子累積膜のパターンを、下地上
に形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a novel pattern forming method. More specifically, the present invention relates to a method of forming a pattern of a monomolecular film or a monomolecular cumulative film on a substrate.

[背景技術] 従来、半導体技術分野並びに光学技術分野に於ける素材
利用はもっばら比較的取扱いが容易な無機物を対象にし
て進められてきた。これは有機化学分野の技術進展が無
機材料分野のそれに比べて著しく遅れていたことが一因
している。
[Background Art] Conventionally, the use of materials in the semiconductor technology field and the optical technology field has mainly focused on inorganic materials that are relatively easy to handle. One reason for this is that technological progress in the field of organic chemistry has lagged significantly behind that in the field of inorganic materials.

しかしながら、最近の有機化学分野の技術進歩には目を
みはるものがあり、又、無機物対象の素材開発もほぼ限
界に近づいてきたといわれている。そこで無機物を凌ぐ
新しい機能素材としての機能性有機材料の開発が要望さ
れている。有機材料の利点は安価かつ製造容易であるこ
と、機能性に富むこと等である。反面、これまで劣ると
されてきた耐熱性、機械的強度に対しても、最近これを
克服した有機材料が次々に生まれている。このような技
術的背景のもとで、論理素子、メモリー素子、光電変換
素子等の集積回路デバイスやマイクロレンズ・アレイ、
光導波路等の光学デバイスの機能を荷う部分(主として
薄膜部分)の一部又は全部を従来の無機薄膜に代えて、
有機薄膜で構成しようという提案から、はては1個の有
機分子に論理素子やメモリ素子等の機能を持たせた分子
電子デバイスや生体関連物質からなる論理素子(例えば
バイオ・≠ラプス)を作ろうという提案が最近、いくつ
かの研究機関により発表された。
However, recent technological advances in the field of organic chemistry have been remarkable, and it is said that the development of materials for inorganic substances has almost reached its limit. Therefore, there is a demand for the development of functional organic materials as new functional materials that surpass inorganic materials. The advantages of organic materials are that they are inexpensive, easy to manufacture, and highly functional. On the other hand, organic materials that have overcome heat resistance and mechanical strength, which have been thought to be inferior, have recently been created one after another. Under this technical background, integrated circuit devices such as logic elements, memory elements, photoelectric conversion elements, microlens arrays,
By replacing part or all of the functional parts (mainly thin film parts) of optical devices such as optical waveguides with conventional inorganic thin films,
The proposal to construct a structure using an organic thin film led to the creation of molecular electronic devices in which a single organic molecule has functions such as a logic element or memory element, and logic elements made of biologically related materials (e.g. bio-≠LAPS). Several research institutes have recently announced proposals to reduce the risk of cancer.

かかる有機材料を用いて上記の各種デ/へイス等を作成
する際の薄膜は公知の単分子累積法、すなわちラングミ
ュア−プロジェット法(LB法)(新実験化学講座 1
8巻 498頁〜507頁 丸首)によって形成するこ
とができる。
Thin films used to create the above various devices/heights using such organic materials are prepared using the known single molecule accumulation method, namely the Langmuir-Prodgett method (LB method) (New Experimental Chemistry Course 1).
Volume 8, pages 498 to 507 (round neck).

LB法は、例えば分子内に親木基と疎水基を有する構造
の分子において1両者のバランス(両親媒性のバランス
)が適度に保たれているとき、分子は水面で親木基を下
に向けて単分子の層になることを利用して単分子膜また
は単分子層の累積膜を作成する方法である。
In the LB method, for example, in a molecule with a structure that has a parent wood group and a hydrophobic group in the molecule, when the balance between the two (balance of amphiphilicity) is maintained appropriately, the molecule is placed with the parent wood group below at the water surface. This is a method of creating a monomolecular film or a cumulative film of monomolecular layers by utilizing the fact that the film becomes a monomolecular layer.

ところで、このような単分子膜又は単分子累積膜に光導
電性等の各種の機能を持たせ、前述の如き各種デバイス
等を作成するためには、単分子膜又は単分子累積膜の二
次元的な配置を制御する必要がある。しかしながら、上
記の方法では単分子膜又は単分子累積膜が基体全面に形
成されるため、単分子膜又は単分子累積膜の二次元的な
バターニングは、特殊な光、痕合性を利用したリングラ
フィ応用のフォトレジストの場合を除いて、すなわち単
分子膜又は単分子累積膜を構成する分子がフォトレジス
トとしての性状を有する場合を除いて制御できない欠点
があった。
By the way, in order to provide various functions such as photoconductivity to such a monomolecular film or a monomolecular cumulative film and to create various devices as described above, it is necessary to It is necessary to control the physical placement. However, in the above method, a monomolecular film or a monomolecular cumulative film is formed on the entire surface of the substrate, so two-dimensional patterning of a monomolecular film or a monomolecular cumulative film requires the use of special light and marking properties. There is a drawback that it cannot be controlled except in the case of photoresists applied to phosphorography, that is, except in cases where the molecules constituting the monomolecular film or the monomolecular cumulative film have properties as a photoresist.

[発明の開示] 本発明の目的は、単分子膜又は単分子累積膜の二次元的
な配置を制御することが可能な新規なパターン形成方法
を提供することにある。
[Disclosure of the Invention] An object of the present invention is to provide a novel pattern forming method that can control the two-dimensional arrangement of a monomolecular film or a monomolecular cumulative film.

本発明の目的は、以下のパターン形成方法によって達成
される。
The object of the present invention is achieved by the following pattern forming method.

すなわち、少なくとも下地表面を雰囲気ガス不存在下で
イオンど−ムを走査し、単分子膜又は単分子累積膜のパ
ターンを形成後、超音波振動を加えることを特徴とする
パターン形成方法によって達成される。
That is, it is achieved by a pattern forming method characterized by scanning an ion dome over at least the base surface in the absence of atmospheric gas to form a pattern of a monomolecular film or a monomolecular cumulative film, and then applying ultrasonic vibration. Ru.

本発明では、下地表面をイオンビームを走査させること
により改質する。ここで、下地とは、単分子膜または単
分子累積膜i膜が所定のパターンに従って積層される部
材を指称する。そのような部材としては、例えば、前述
した各種の半導体デバイス等に用いられるガラス、5i
02等の無機物からなる基板、ポリエチレン、ポリエチ
レンテレフタレート、ポリイミド等の有機物からなる基
板、AI、Ta、 W、In、 Cu等の金属やこれら
の合金等からなる基板、これ等の基板上に設けられた各
種の層(所定のパターンに従って形成されている)、例
えばA1、Ta、 W、 in、 Cu等の蒸着メタル
膜、シリコン、ゲルマニウム等のアモルファス、多結晶
あるいは単結晶半導体膜、5n02 、 ’I T O
(In203十5nO2)等の導電性酸化物ガラス膜、
等の分子性アモルファス半導体膜等が挙げられる。また
、このような基板、膜、あるいは膜が積層されている基
板上に、更に単分子膜又は単分子累積膜等が積層されて
いる部位等も利用し得るものとして挙げられる。
In the present invention, the underlying surface is modified by scanning with an ion beam. Here, the base refers to a member on which a monomolecular film or a monomolecular cumulative film is laminated according to a predetermined pattern. Such members include, for example, glass used in the various semiconductor devices mentioned above, 5i
A substrate made of an inorganic material such as 02, a substrate made of an organic material such as polyethylene, polyethylene terephthalate, or polyimide, a substrate made of a metal such as AI, Ta, W, In, Cu, or an alloy thereof, etc. various layers (formed according to predetermined patterns), such as evaporated metal films such as A1, Ta, W, In, Cu, amorphous, polycrystalline or single crystal semiconductor films such as silicon and germanium, 5n02, 'I T.O.
(In2035nO2) conductive oxide glass film,
Examples include molecular amorphous semiconductor films such as. Further, such a substrate, a film, or a portion where a monomolecular film, a monomolecular cumulative film, or the like is further laminated on the substrate on which the film is laminated can also be used.

特に好ましくは、ガラス、ポリイミド、AI、シリコン
のアモルファス、多結晶あるいは単結晶半導体JlN 
、単分子膜又は単分子累積〃り等がM層されている下地
等などが挙げられる。
Particularly preferably, an amorphous, polycrystalline or single crystal semiconductor of glass, polyimide, AI, silicon
, a base coated with M layers of a monomolecular film or a monomolecular accumulation, etc., and the like.

本発明に用いるイオンビームは集束して用い、波長が短
いので、数10〜数10OAの密度でパターン形成が可
能である。イオンビームによる表面の改質を行なうため
には、10ジユ一ル/cm2〜5 x 104ジユール
/ 0m2のエネルギーが必要である。
Since the ion beam used in the present invention is focused and has a short wavelength, it is possible to form a pattern at a density of several tens to several tens of OA. In order to modify the surface with an ion beam, energy of 10 joules/cm2 to 5 x 104 joules/0 m2 is required.

イオンビームによる表面の改質は、例えば、以下のよう
にして行われる。シリコン、単分子膜又は単分子累積膜
等の場合には、酸素、Ga、In等のイオンビームで走
査すると、注入イオンによる組成変化がおこり、表面が
疎水性であったのが親水性に変化する。また、ガラス、
石英の場合には、Si等のイオンビームで走査すると、
5i−0ポンドの一部が注入イオンで置き変ったり、5
i−0ポンドの間に注入イオンが入り込むなどして、表
面が親水性であったのが疎水性に変化する。あるいは両
親媒性が反転しないまでも親木性がより強くなったり、
疎水性がより強くなったりする。その他、表面をイオン
で削ったり、あるいは表面にあてられるイオンによって
生じる表面の反応性の差異などを利用して、表面の改質
を行うこともできる。上記の様に下地表面を改質するこ
とによってパターニングを行い、形成されたパターニン
に従って単分子膜又は単分子累積膜が下地上に形成され
る。
Surface modification using an ion beam is performed, for example, as follows. In the case of silicon, monomolecular films, monomolecular cumulative films, etc., when scanned with an ion beam of oxygen, Ga, In, etc., a composition change occurs due to the implanted ions, and the surface changes from hydrophobic to hydrophilic. do. Also, glass,
In the case of quartz, scanning with an ion beam of Si etc.
Some of the 5i-0 pounds are replaced by implanted ions,
The surface changes from hydrophilic to hydrophobic due to the introduction of implanted ions between i and 0 pounds. Or even if the amphiphilicity is not reversed, the parentness becomes stronger,
It becomes more hydrophobic. In addition, the surface can be modified by scraping the surface with ions or by utilizing differences in surface reactivity caused by ions applied to the surface. Patterning is performed by modifying the base surface as described above, and a monomolecular film or a monomolecular cumulative film is formed on the base according to the formed pattern.

単分子膜又は単分子累積膜が下地上に形成された後、超
音波振動を加えることは、分子間力が大きく膜が固体膜
に近いときあるいは膜が薄いときに特に有効である。す
なわち、超音波振動を加えることにより微細なパターニ
ングが可能となる。
Applying ultrasonic vibration after a monomolecular film or a monomolecular cumulative film is formed on a substrate is particularly effective when intermolecular forces are large and the film is close to a solid film or when the film is thin. That is, fine patterning becomes possible by applying ultrasonic vibration.

また、明瞭なパターンの形成が可能となる。超音波振動
を加えることは、エツチング工程を別に設けるよりも時
間の短縮も可能であるばかりではなく、エツチングが不
完全なことも生じない長所を有する。更に材料選択の範
囲もほとんど制限を受けない。
Further, it becomes possible to form a clear pattern. Applying ultrasonic vibrations has the advantage that it not only takes less time than providing a separate etching process, but also prevents incomplete etching. Furthermore, the range of material selection is hardly restricted.

なお1本発明における単分子膜又は単分子累積膜を構成
する分子は、その分子内に疎水性部分及び親水性部分を
有する分子であれば広く使用可能である。
Note that the molecules constituting the monomolecular film or monomolecular cumulative film in the present invention can be broadly used as long as they have a hydrophobic part and a hydrophilic part in the molecule.

このような分子の疎水性部分の構成要素として最も代表
的なものはアルキル基であって、炭素数5〜30.好ま
しくは、炭素数10〜25の直鎖状あるいは分校状のも
のが使用しうる。疎水性部分を構成する基としては、上
記アルキル基の他、例えばビニレン、ビニリデン、アセ
チレン等のオレフィン系炭化水素基、フェニル、ナフチ
ル、アントラニル等の如き縮合多環フェニル基、ビフェ
ニル、ターフェニル等の鎖状多環フェニル基等の疎水基
等が挙げられる。これらは各々単独であるいは組合され
て上記分子の疎水性部分を構成し、分子の末端や中間に
位置する。
The most typical component of the hydrophobic portion of such molecules is an alkyl group, which has 5 to 30 carbon atoms. Preferably, a linear or branched chain having 10 to 25 carbon atoms can be used. In addition to the above-mentioned alkyl groups, examples of groups constituting the hydrophobic moiety include olefinic hydrocarbon groups such as vinylene, vinylidene, and acetylene, condensed polycyclic phenyl groups such as phenyl, naphthyl, and anthranyl, biphenyl, and terphenyl. Examples include hydrophobic groups such as a chain polycyclic phenyl group. Each of these, alone or in combination, constitutes the hydrophobic portion of the molecule and is located at the end or in the middle of the molecule.

一方、親木性部分の構成要素として最も代表的なものは
、例えばカルボキシル基及びその金属塩並びにアミン塩
、スルホン酸基及びその金属塩並びにアミン塩、スルホ
ンアミド基、アミド基、アミノ基、イミノ基、ヒドロキ
シル基、4級アミン基、オキシアミノ基、オキシイミノ
基、ジアゾニウム基、グアニジン基、ヒドラジン基、リ
ン酸基、ケイ酸基、アルミン酸基等が挙げられる。これ
らも各々単独であるいは組合されて上記分子の親木性部
分を構成し、分子の末端や中間に位置する。
On the other hand, the most typical constituent elements of the wood-philic moiety are, for example, carboxyl groups and their metal salts and amine salts, sulfonic acid groups and their metal salts and amine salts, sulfonamide groups, amide groups, amino groups, imino group, a hydroxyl group, a quaternary amine group, an oxyamino group, an oxyimino group, a diazonium group, a guanidine group, a hydrazine group, a phosphoric acid group, a silicate group, an aluminate group, and the like. These also constitute the woody part of the above molecule either alone or in combination, and are located at the ends or in the middle of the molecule.

ここで、分子内に親木性部分及び疎水性部分を有すると
は、例えば分子が上記のような親木基及び疎水基の両者
を分子内に一つずつ有するか、又は分子内に一つ以上の
親木性基及び疎水基を有する場合には、分子全体の構成
においである部分が他の部分との関係において親水性で
あり、−劣後者の部分は前者の部分との関係において疎
水性の関係を有することをいう。
Here, having a woody group and a hydrophobic group in a molecule means, for example, that a molecule has both one woody group and a hydrophobic group as described above, or one in a molecule. When the above lignophilic groups and hydrophobic groups are present, one part in the overall structure of the molecule is hydrophilic in relation to other parts, and the latter part is hydrophobic in relation to the former part. It means having a sexual relationship.

本発明における単分子膜又は単分子累積膜を構成する分
子としては、下記の如き機能性を有することが所望され
る。
The molecules constituting the monomolecular film or monomolecular cumulative film in the present invention are desired to have the following functionality.

■所望の機能性を荷う部位、即ち機能性部分(例えばπ
電子系)が同時に強い親木性(又は強い疎水性)として
の性質を併有する分子、あるいは■機能性部分が特に親
水性、疎水性を有さず、上記の如き親木基、疎水基等を
導入することで、分子内に親木性部分と疎水性部位を構
成する分子、例えば、 イ0機能性部分が親水性部分の側にあるもの、例えば、
光導電性を有する長鎖アルキル置換のメロシアニン色素
等、 口0機能性部分が疎水性部分の側にあるもの、例えば、
ピレンに長鎖アルキルカルボン酸を結合したもの等、 ハ9機能性部分が中央付近、即ち疎水性部分と親水性部
分の中間にあるもの、例えば、アントラセン誘導体、ジ
アゾ色素の誘導体等、二0機能性部分がなく、疎水性部
分と親木性部分のみでできているもの、例えば、長鎖飽
和脂肪酸であるステアリン酸、アラキシン酸等が具体的
なものとして挙げられる。
■ Parts that carry the desired functionality, i.e., functional parts (for example, π
Molecules that have strong xylemophilicity (or strong hydrophobicity) at the same time (electronic system), or molecules in which the functional moiety does not have particular hydrophilicity or hydrophobicity, such as xylemophilic groups, hydrophobic groups, etc. By introducing a molecule that has a lignophilic part and a hydrophobic part in the molecule, for example, a molecule in which the functional part is on the side of the hydrophilic part, for example,
Those in which the functional moiety is on the side of the hydrophobic moiety, such as long-chain alkyl-substituted merocyanine dyes with photoconductivity, for example,
Products with a long-chain alkyl carboxylic acid bonded to pyrene, etc. Products with a 9-functional part located near the center, that is, between a hydrophobic part and a hydrophilic part, such as anthracene derivatives, derivatives of diazo dyes, etc. 20-functional products Specific examples include those that do not have a sexual moiety and are made only of a hydrophobic moiety and a woody moiety, such as long-chain saturated fatty acids such as stearic acid and alaxic acid.

特に好ましくは、長鎖アルキル置換のメロシアニン色素
、アントラセン誘導体、ステアリン酸などが挙げられる
Particularly preferred are long-chain alkyl-substituted merocyanine dyes, anthracene derivatives, stearic acid, and the like.

本発明を更に具体的に説明するために、以下に実施例を
示す。
EXAMPLES In order to explain the present invention more specifically, Examples are shown below.

実施例1 第1図に示す方法にてパターンを形成した。Example 1 A pattern was formed by the method shown in FIG.

下地をガラス基板1−1とし、該表面をSiのイオンビ
ーム(濃度I X 1015/ c m、加速電圧50
keV )を用いて走査し、深さ50AのSiのイオン
が注入された層1−2をパターン状に形成した。
The base is a glass substrate 1-1, and the surface is exposed to a Si ion beam (concentration I x 1015/cm, acceleration voltage 50
keV) to form a patterned layer 1-2 into which Si ions were implanted to a depth of 50 Å.

次に、アラキシン酸のクロロホルム溶液5 X 10−
3mo I/ lを用いて、LB法によりアラキシン酸
の単分子累積膜を形成した、。アラキシン酸の単分子膜
は、最初に下地を水中に沈めておき、膜を展開した後、
表面圧 45 dyne/cm、引き上げ速度 I C
ll1/minにて形成した。次に水中で出力100W
の超音波装置を用いて超音波振動を加えると約3分で1
−2の単分子膜は剥離して、イオン非注入層1−3の部
分のみに第1図(c)に示す様にパターンに従って、単
分子It! 1−4が残った。
Next, a solution of araxic acid in chloroform 5 x 10-
A monomolecular cumulative film of araxic acid was formed by the LB method using 3mol I/l. For a monomolecular film of araxic acid, the base is first submerged in water, and after the film is expanded,
Surface pressure 45 dyne/cm, pulling speed I C
It was formed at 11/min. Next, output 100W underwater
1 in about 3 minutes by applying ultrasonic vibration using an ultrasonic device.
The monomolecular film of -2 is peeled off, and only the non-ion-implanted layer 1-3 is covered with monomolecular It! according to the pattern as shown in FIG. 1(c). 1-4 remained.

以上のように、下地をイオンビームで改質することによ
り、下地表面にパターン状に単分子膜又は単分子累積膜
を形成することが可能である。
As described above, by modifying the base with an ion beam, it is possible to form a monomolecular film or a monomolecular cumulative film in a pattern on the surface of the base.

イオンビームを集光することにより微細なパターン形成
が可能である。従ってS1集積回路への応用も可能であ
る。また、イオンビームの強さを変化させ、下地表面へ
の単分子膜又は単分子累積膜の付着力を変えたり、同時
に単分子膜又は単分子累積膜の構成分子として親木部分
、疎水部分の強さの異なる分子を用いることによって、
種種の分子による二次元配置も可能である。また、これ
らの組合わせにより複雑な三次元構造のデバイスの製造
も可能である。
Fine patterns can be formed by focusing the ion beam. Therefore, application to S1 integrated circuits is also possible. In addition, by changing the intensity of the ion beam, the adhesion force of the monomolecular film or monomolecular cumulative film to the underlying surface can be changed, and at the same time, the parent part and hydrophobic part can be used as constituent molecules of the monomolecular film or monomolecular cumulative film. By using molecules with different strengths,
A two-dimensional arrangement of various molecules is also possible. Moreover, by combining these, it is also possible to manufacture devices with complicated three-dimensional structures.

【図面の簡単な説明】[Brief explanation of the drawing]

$1図は1本発明のパターン形成方法の実施態様を示す
。 1−1・・・ガラス基板 1−2・・・Siイオン注入層 1−3・・・S1イオン非注入層
Figure $1 shows an embodiment of the pattern forming method of the present invention. 1-1...Glass substrate 1-2...Si ion implantation layer 1-3...S1 ion non-implantation layer

Claims (1)

【特許請求の範囲】[Claims] 少なくとも下地表面を雰囲気ガス不存在下でイオンビー
ムを走査し、単分子膜又は単分子累積膜のパターンを形
成後、超音波振動を加えることを特徴とするパターン形
成方法。
1. A pattern forming method comprising scanning at least a base surface with an ion beam in the absence of an atmospheric gas to form a pattern of a monomolecular film or a monomolecular cumulative film, and then applying ultrasonic vibration.
JP59067573A 1984-04-06 1984-04-06 Forming method of pattern Pending JPS60211916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59067573A JPS60211916A (en) 1984-04-06 1984-04-06 Forming method of pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59067573A JPS60211916A (en) 1984-04-06 1984-04-06 Forming method of pattern

Publications (1)

Publication Number Publication Date
JPS60211916A true JPS60211916A (en) 1985-10-24

Family

ID=13348821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59067573A Pending JPS60211916A (en) 1984-04-06 1984-04-06 Forming method of pattern

Country Status (1)

Country Link
JP (1) JPS60211916A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5359270B2 (en) * 2006-06-30 2013-12-04 王子ホールディングス株式会社 Manufacturing method of fine structure using single particle film etching mask and manufacturing method of mold for nanoimprint or injection molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5359270B2 (en) * 2006-06-30 2013-12-04 王子ホールディングス株式会社 Manufacturing method of fine structure using single particle film etching mask and manufacturing method of mold for nanoimprint or injection molding

Similar Documents

Publication Publication Date Title
JPH0434818B2 (en)
US6943359B2 (en) Structured organic materials and devices using low-energy particle beams
US20020102428A1 (en) Fabrication of periodic surface structures with nanometer-scale spacings
TW302507B (en)
US6300149B1 (en) Integrated circuit device manufacture
JPS60211916A (en) Forming method of pattern
JPS60211826A (en) Pattern forming means
JPS60211830A (en) Forming method for pattern
JPS60211915A (en) Forming method of pattern
JPS60211924A (en) Method for formation of pattern
JPS60211917A (en) Forming method of pattern
JPS60211921A (en) Forming method of pattern
JPS60211829A (en) Pattern forming means
JPS60211922A (en) Forming method of pattern
JPS60211930A (en) Method for formation of pattern
JPS60211834A (en) Forming method for pattern
JPS60211931A (en) Method for formation of pattern
JPS60211836A (en) Forming method for pattern
JPS60211927A (en) Method for formation of pattern
JPS60211920A (en) Forming method of pattern
JPS60211923A (en) Method for formation of pattern
JPS60211835A (en) Forming method for pattern
JPS60211929A (en) Method for formation of pattern
JPS60211831A (en) Forming method for pattern
JPS60211827A (en) Pattern forming means