JPS60196091A - Video signal transmission system - Google Patents

Video signal transmission system

Info

Publication number
JPS60196091A
JPS60196091A JP59053147A JP5314784A JPS60196091A JP S60196091 A JPS60196091 A JP S60196091A JP 59053147 A JP59053147 A JP 59053147A JP 5314784 A JP5314784 A JP 5314784A JP S60196091 A JPS60196091 A JP S60196091A
Authority
JP
Japan
Prior art keywords
signal
color difference
color
time
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59053147A
Other languages
Japanese (ja)
Inventor
Seisuke Hirakuri
平栗 晴介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Nippon Victor KK
Original Assignee
Victor Company of Japan Ltd
Nippon Victor KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd, Nippon Victor KK filed Critical Victor Company of Japan Ltd
Priority to JP59053147A priority Critical patent/JPS60196091A/en
Publication of JPS60196091A publication Critical patent/JPS60196091A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the color noises of a fixed pattern produced on a screen and to disable detection of those noises by changing the transmission order of chrominance (color difference) signals for each frame. CONSTITUTION:The vertical synchronizing signal separated and delivered from a vertical synchronizing separator circuit 14 is supplied to an EO14 via FF16 and FF17. The EO15 delivers a line sequential switching signal which is inverted every H and every frame and supplies it to a control pulse generator 7 and a switch circuit 18. The circuit 18 delivers the color difference signals R-Y and B-Y supplied from a decoder 4 in the form of a line sequential color difference signal which is switched every H together with its transmission order switched every frame. Therefore the circuit 18 delivers the sequential color difference signals in the orde or R-Y, B-Y, R-Y - in the first frame and then in the order of of B-Y, R-Y, B-Y - in the 2nd frame respectively.

Description

【発明の詳細な説明】 (産業上の利用分野〉 本発明は映像信号伝送方式に係り、特にカラー映像信号
の輝度信号及び色差信号を夫々時間軸圧縮した後、時分
割多重し、これを周波数変調して記録媒体(例えば磁気
テープ)に記録し、再生し1=被周波数変調波をFM復
調した後夫々時間軸伸長して再生カラー映像信号を得る
記録再生装置等に用いられる映像信号伝送方式に関する
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a video signal transmission system, and in particular, the luminance signal and color difference signal of a color video signal are compressed in time axis, and then time division multiplexed and A video signal transmission method used in recording and reproducing devices, etc., which modulates, records on a recording medium (for example, magnetic tape), and reproduces it. 1 = FM demodulates the frequency-modulated wave and then expands the time axis to obtain a reproduced color video signal. Regarding.

(従来技術) 現在のカラー映像(言号の記録再生装置(例えばVTR
)のうり主流を占める記録再生lた1fijiは、(開
型方式(例えばNTSC方式)の複合カラー映[色信号
から輝度信舅ど低域変換搬送色信器とを大々分囚tし、
iY’li1q信号は周波数変調し−C彼周波数変調波
とし、搬送色信号は低域へ周波数変換して低域変換’j
Q3′A色信号としIζ後上記被周波数変調波に周波数
分割多重して記録し、再生時には記録11.1ど11、
逆の信号処理を行なってもとの標準方式にil++拠し
た複合カラー映像信5号を1qる、いわゆる低域変換記
録再生方式の記録再生装置であることは周知の通りr:
″ある。かかる低域変換記録再生方式の記録■生装置は
、■輝度信号の帯域を任意に選ぶことができるので記録
再生し得る帯域が比較的秋い民生用VTRに適用j)で
特に好適であり、■復調色信号が\/l’Rの再生時間
軸変動の影響を受()にくく、■FM変復変復全系るの
は輝1衰信号のみであり、またパイロン1−伯号を記録
再生し・ないからビート妨害が少なく、ざらに■被周波
@変調輝度信号が高周波バイアス的な働きをして搬送口
信号を直線性良く記録することができる等の利点を有す
る。
(Prior art) Current color video (word recording and reproducing devices (e.g. VTR)
) The mainstream recording and reproducing technology is (open format (for example, NTSC format) composite color projection, which largely separates luminance signals from color signals and other low-frequency conversion carriers,
The iY'li1q signal is frequency-modulated to become a −C frequency-modulated wave, and the carrier color signal is frequency-converted to a low frequency band and converted to a low-frequency conversion wave.
It is recorded as a Q3'A color signal by frequency division multiplexing on the above frequency modulated wave after Iζ, and during reproduction, recording 11.1, 11,
As is well known, this is a recording and reproducing apparatus using the so-called low-frequency conversion recording and reproducing method, which performs reverse signal processing and generates a composite color video signal 5 based on the original standard method.
A recording/playback device using such a low-frequency conversion recording/playback method is particularly suitable for use with consumer VTRs, where the band of the luminance signal can be arbitrarily selected, and the band that can be recorded and played back is relatively limited. , ■ The demodulated color signal is not easily affected by the reproduction time axis fluctuation of \/l'R, ■ Only the radiance 1 attenuation signal is involved in the FM modulation/demodulation system, and the pylon 1 - Since no signal is recorded or reproduced, there is less beat disturbance, and the following advantages include: (1) The frequency @ modulated luminance signal acts like a high frequency bias, and the transport port signal can be recorded with good linearity.

しかしその反面、上記の低域変換記録再生方式の記録装
置は、にり高画質化を図るためには■輝度信号及び搬送
色信号の記録再生帯域が制限されてやや不足であり、■
低域変換搬送色信号は、NTSC方式カラー映像信号記
録時には平衡変調波であり、テープヘッド間の接触むら
に起因して再生低域変換搬送色信号のAMノイズが生じ
S/N(信号対雑音比)が悲化し、更に■相隣るビデ第
1〜ラツクを記録再生する2個のヘッドが互いにアジマ
ス角度を異ならしめられてガートバンド無くビデ第1・
ランクを記録形成する、いわゆるアジマス記録再生方式
を適用された記録再生装置では、アジマス損失効果が低
域周波数に対して十分でないことから、再生信号中に隣
接トラックの低域変換搬送色(、ffi号がクロスト−
り成分として混入されてしまうために、記録再生時に、
NTSC方式の低域変換搬送色信号の色副搬送波周波数
の位相を1水平走査期間(1H)旬に略90度推移させ
たり(例えば、特公昭56−9073号公報、特公昭5
5−32273号公報参照)、あるいは相隣るビデオト
ラックの一方の低域変換搬送色信うのみその位相を1ト
1毎に反転させる、などのクロストーク対策処理が必要
であるなどの問題点があった。
However, on the other hand, the above-mentioned recording device using the low frequency conversion recording and reproducing method is somewhat insufficient in achieving high image quality due to the limited recording and reproducing bands for luminance signals and carrier color signals.
The low-pass conversion carrier color signal is a balanced modulation wave when recording the NTSC color video signal, and AM noise in the reproduced low-pass conversion carrier color signal occurs due to uneven contact between the tape heads, resulting in S/N (signal to noise). (ratio) has worsened, and in addition, the two heads that record and playback the adjacent bidet numbers 1 to 3 are set at different azimuth angles, resulting in the absence of a guard band.
In recording and reproducing apparatuses that use the so-called azimuth recording and reproducing method that records and forms ranks, the azimuth loss effect is not sufficient for low frequencies. The issue is cross
During recording and playback,
The phase of the color subcarrier frequency of the low frequency conversion carrier color signal of the NTSC system is shifted by approximately 90 degrees in one horizontal scanning period (1H) (for example, Japanese Patent Publication No. 56-9073, Japanese Patent Publication No. 56-9073,
(Refer to Publication No. 5-32273), or it is necessary to perform crosstalk countermeasure processing such as reversing the phase of one low-frequency conversion carrier color of one of the adjacent video tracks for each tone. there were.

一方、近年の半導体技術、精密加工技術、小形部品技術
などの飛躍的な進歩発展もあって、記録再生装置の画質
や高品位化や装置の小形軽量化の実現が可能になってぎ
た。装置の小形軽量化のためには力、レフ1〜サイズや
ドラム径の縮小化が大きく影゛費し、小型カセットに所
要の記録時間を確保づ゛るためには、テープ走行を遅<
”I’る必要があり、このような小形軽鎖化の記録再生
装置にJ5いて、高品位の画質を得るために、前記した
低域変換記録再生方式以外の新しい記録再生方式が要求
されるに到った。
On the other hand, recent dramatic advances in semiconductor technology, precision processing technology, and small component technology have made it possible to improve the image quality and quality of recording and reproducing devices, and to make devices smaller and lighter. In order to reduce the size and weight of the device, reductions in power, reflex size, and drum diameter have a large impact, and in order to secure the necessary recording time for small cassettes, tape running must be slowed down.
In order to obtain high image quality in such a compact light chain recording and reproducing device, a new recording and reproducing method other than the above-mentioned low frequency conversion recording and reproducing method is required. reached.

そこで、上記の要求を満づため各種の記録再生方式が提
案されているが、その中の一つとして搬送色信号を復調
して得た2種の色差信号を肋間軸圧縮すると共に輝度信
号も時間軸圧縮し、これらの信号を時分割多重し、この
時分割多重信号を周波数変調して記録媒体に記録し、再
生時は記録時とは逆の信号処理を行なってもとのIf方
式のカラー映像信号の再生出力を得る構成の記録再生装
置があった(例えば特開昭53−5926号公報参照)
。この記録再生装置は、輝度信号と色差信号の両帯域の
相違を勘案し、帯域が狭い方の信号である色差信号の方
を水平動Ml消去期間内で伝送することができるように
、1H期間内で伝送される−の色差信号を1(−1の約
20%の期間に時間軸圧縮し、また帯域利用率などの点
から有利なように輝度信号については時間軸圧縮色差信
号と同じ程度の帯域を占めるように1H期間の約80%
の期間に時間軸圧縮して伝送し、更に2つの色差信号に
ついては1F(毎に交互に伝送する線順次信号として時
分割多重し、この信号をFM変調器に供給し、このFM
変調器の出力信号を磁気テープ等に記録し、再生時は記
録時とは逆の信号処理を行なって再生カラー映像信号を
得る記録再生方式(以下、これをタイムブレックス方式
と呼ぶものとする)基づいて構成されていた。
Therefore, various recording and reproducing methods have been proposed to meet the above requirements, one of which is to compress the intercostal axis of two types of color difference signals obtained by demodulating the carrier color signal, and also to compress the luminance signal. The time axis is compressed, these signals are time-division multiplexed, and this time-division multiplexed signal is frequency-modulated and recorded on a recording medium. During playback, signal processing is performed in the opposite manner to that during recording, resulting in the original If method. There was a recording and reproducing device configured to obtain a reproduced output of a color video signal (for example, see Japanese Patent Application Laid-Open No. 53-5926).
. This recording/reproducing device takes into consideration the difference between the bands of the luminance signal and the color difference signal, and transmits the color difference signal, which is a signal with a narrower band, within the horizontal motion Ml erasure period. The - color difference signal transmitted within the 1 (-1) time axis is compressed to a period of about 20% of 1 (-1), and the luminance signal is compressed to the same degree as the time axis compressed color difference signal to be advantageous in terms of bandwidth utilization. Approximately 80% of the 1H period to occupy the band of
The two color difference signals are time-division multiplexed as line-sequential signals that are transmitted alternately every 1F, and this signal is supplied to an FM modulator.
A recording/reproducing method in which the output signal of a modulator is recorded on a magnetic tape, etc., and during playback, signal processing is performed in the opposite direction to that during recording to obtain a reproduced color video signal (hereinafter referred to as the time brex method). It was structured based on

かかる時分割多重信号を伝送Jるタイムプレックス方式
によれば、輝度信号と色差信号とが同時に伝送される期
間は存在しないので、N、TSC方式カラー映像信号の
如く輝度信号と搬送色信号とを夫々帯域共用多重化して
伝送する場合に生ずることがある輝度信号と色差信号と
の間での相互干渉やモアレを生ずることはなく、またN
TSC方式カラー映像信号のいずれの場合もアジマス記
録再生方式の記録再生装置により相隣るビデオトラック
の艮手方向に対して直交する方向(トラックの幅方向)
に水平同期信号の記録位置を整列して記録する、いわゆ
るト1並びでないトラックに記録されたとしても、相隣
るトラックには時分割多重信号がアジマス損失効果が大
である高周波数の搬送派を周波数変調して得られ被周波
数変調信号形態で記録されているから、アジマス損失効
果にJ、ってクロストークをほとんど生ずることはなく
、前記したクロストーク対策は不要となり、高品位の再
生画質が得られる。
According to the time-plex method for transmitting such time-division multiplexed signals, there is no period during which the luminance signal and the color difference signal are transmitted simultaneously. There is no mutual interference or moiré between the luminance signal and the color difference signal, which can occur when transmitting them by band-sharing multiplexing, and the N
In both cases of TSC color video signals, the azimuth recording and reproducing device records data in a direction perpendicular to the direction of the adjacent video tracks (track width direction).
Even if the horizontal synchronization signal is recorded on tracks that are not aligned in a so-called 1-aligned track, the time-division multiplexed signal is recorded on adjacent tracks due to high-frequency carriers with a large azimuth loss effect. Since it is obtained by frequency modulating the signal and recorded in the form of a frequency modulated signal, there is almost no crosstalk caused by the azimuth loss effect, eliminating the need for the above-mentioned crosstalk countermeasures, and achieving high playback image quality. is obtained.

更に、タイムプレックス方式における上記の時間軸圧縮
計度信号及び時間軸圧縮色差信号は、共に低周波数帯域
ではエネルギが大で、高周波数帯域でエネルギが小とな
るエネルギ分布をもつこととなり、周波数変調に適した
信号形態であるから、変調指数が人さくとれS、’Nを
大幅に改善することができ、また更に時間軸伸長する際
に再生時間軸変動を略完全に除去することができ、以上
から再生画質を低域変J矢記録再生方式のそれに比し大
幅に改善することができる。
Furthermore, both the time-domain compressed measurement signal and the time-domain compressed color difference signal in the time-plex method have an energy distribution in which the energy is large in the low frequency band and small in the high frequency band, and thus frequency modulation is performed. Since the signal form is suitable for the modulation index, it is possible to greatly improve the distortion S,'N, and when the time axis is expanded, it is possible to almost completely eliminate reproduction time axis fluctuations. From the above, the reproduced image quality can be significantly improved compared to that of the low frequency J-arrow recording and reproduction method.

(発明が解決しようとりる問題点) しかるに、従来のタイムプレックス方式の記録再生装置
、特にNTSC方式の映像信号を記録再生ずるタイムプ
レックス方式の記録再生装置は、NTSC方式の複合映
像信号を低域フィルタ(以下、LPI:と記ずこともあ
る)、デコーダ等を用いて第1図(△)に示す輝度侶t
m(Y信3)成分及び第1図(1’3)及び(C)に示
1色差信号(R−Y、[3−Y色差信号)成分、あるい
は輝度信号(Y信号)成分及び色信号(1,Q伯母)成
分に分離し、この2種類の色差信号成分を第1図(D)
に示すように1日毎に交互に伝送する線順次信号とし、
第1図(A>に示寸評度信号成分を1H1期間の約80
%の期間に時間軸圧縮すると共に、第1図(D>に示す
線順次色差信号成分を1H期間の約20%に時間軸圧縮
し、色佐信号の伝送ラインを識別するために第1図(E
)に示すにうなパルス幅が異なり、レベルが一定レベル
(アクロマチイックレベル)のパルス信号(アクロマチ
イック信号)を付加した後、時分割多重して第1図(F
)に示すようなタイムプレックス信号として伝送し、記
録再生する。
(Problems to be Solved by the Invention) However, conventional time-plex recording and reproducing apparatuses, especially time-plex recording and reproducing apparatuses that record and reproduce NTSC video signals, record and reproduce NTSC composite video signals in low frequencies. Using a filter (hereinafter sometimes referred to as LPI), decoder, etc., the brightness level t shown in Fig. 1 (△) is
m (Y signal 3) component and one color difference signal (R-Y, [3-Y color difference signal) component shown in FIG. 1 (1'3) and (C), or luminance signal (Y signal) component and color signal (1, Q aunt) components, and these two types of color difference signal components are shown in Figure 1 (D).
The line sequential signal is transmitted alternately every day as shown in
Figure 1 (A> shows the indicated rating signal components at approximately 80% during the 1H1 period.
In order to identify the transmission line of the color signal, the line sequential color difference signal components shown in FIG. (E
). After adding pulse signals (achromatic signals) with different pulse widths and constant levels (achromatic levels) as shown in Figure 1 (F), time division multiplexing is performed.
) is transmitted as a timeplex signal and recorded and played back.

上記の伝送を模式的にあられずと第1表のようになる。A schematic representation of the above transmission is shown in Table 1.

第1表は従来のタイムブレックス信号の伝送を説明Jる
ための図である。なお、第1表中でラインとは走査線の
順番を示し、色信号とは色差信号がR−Y色差信号であ
るのかく第1表中にRと記す)、B−Y色差信号である
のか(第1表中にBと記す)を示し、極性とは搬送色信
号の搬送波(又は搬送色信号の搬送波で固定した輝度(
711号の高域成分を同期検波したときに色差信号出力
端子に1!7られる輝度(iM号高域成分)の位相を示
しである。
Table 1 is a diagram for explaining the transmission of a conventional time plex signal. Note that in Table 1, line indicates the order of scanning lines, and color signals are R-Y color difference signals (referred to as R in Table 1) and B-Y color difference signals. (denoted as B in Table 1), and polarity refers to the carrier wave of the carrier color signal (or the brightness fixed with the carrier wave of the carrier color signal).
This figure shows the phase of the luminance (high frequency component of No. iM) which is outputted to the color difference signal output terminal by 1!7 when the high frequency component of No. 711 is synchronously detected.

また、第1表から明らかなように線順次信号として伝送
される色差信号成分にはライン相関性が失われる。さら
に、色差信B中の輝度信号成分f(取り去るのは、13
P「や、くし形フィルタによっても困難で、完全には取
り切れず、色差信号成分中に輝度信号成分が残る。この
結末、画面」に固定したパターンの色ノイズが生じ、非
常に兄ずらい画面どなってしまうという問題Jjaを有
していた。
Further, as is clear from Table 1, line correlation is lost in the color difference signal components transmitted as line sequential signals. Furthermore, the luminance signal component f in the color difference signal B (removed is 13
P: Even with a comb filter, it is difficult and cannot be removed completely, and the luminance signal component remains in the color difference signal component.As a result, a fixed pattern of color noise is generated on the screen, which is very difficult to remove. I had a problem with Jja where the screen would go blank.

第1図(A)〜([)は従来のタイムブレックス信号に
J:る信8を説明するための波形図である。
FIGS. 1(A) to 1([) are waveform diagrams for explaining the input signal 8 to the conventional time plex signal.

そこで本発明はフレーム毎に色(色差)信弓の伝送順序
を入替えることににり画面上に生ずる固定パターンの色
ノイズを打15’6’Jシ検知できなく−4る映像信号
伝送方式を提供りることを日向どり゛る。
Therefore, the present invention proposes a video signal transmission method that eliminates the fixed pattern of color noise that occurs on the screen by changing the transmission order of color (color difference) signals for each frame, making it impossible to detect 15'6'J. Hinata is determined to provide the following.

(問題点を解決するだめの手段) 本発明は上述した問題点を解消りるためにカラー映像信
号の輝度信号成分及び線順次色差信号成分をそれぞれ時
間軸圧縮した後、■1分t!+!I多子した信号として
伝送する映像信号伝送方式であって、1)0記線順次色
差信号成分を椙成りる色差fii号成分成分送順序をフ
レーム毎に入替えて伝送JるIl!l!像信号伝送方式
を提供りるものである。
(Means for solving the problem) In order to solve the above-mentioned problem, the present invention compresses the luminance signal component and the line-sequential color difference signal component of the color video signal in time axis, and then performs ■1 minute t! +! This is a video signal transmission method in which 1) color difference signal components are transmitted sequentially on line 0, and the order in which color difference signal components are transmitted is changed for each frame. l! This provides an image signal transmission system.

(実施例) 以下に、本発明になる映伝イご号伝送方式の一実施例を
説明するにあたって、上記方式を記録再生装置に適用し
た例を第2図(△)〜(1)及び第2人を参照して説明
する。
(Example) In explaining an example of the Eiden Igogo transmission system according to the present invention, an example in which the above system is applied to a recording/reproducing device will be shown in Figs. 2 (△) to (1) and This will be explained with reference to two people.

第2図(Δ)〜(1)は本発明になる映像信号伝送方式
の一実施例を説明するための波形図である。また、第2
表は本発明になる映像信号伝送方式の一実IM例を31
明するための図である。%J3、第2表中でラインとは
走査線の順番を示し、色信号とは色差信号がR−Y色差
信号であるのかく第2表中にRど記す)、B−Y色差信
号であるのかく第2表中にBと記す)を示し、極性とは
色副搬送波でほぼ固定したパターンの輝度(iff月の
高域成分を同期検波したときに色差信号として1輩られ
る輝度信号の高域成分の位相(又は色副搬送波の位相)
を示しである。
FIGS. 2 (Δ) to (1) are waveform diagrams for explaining one embodiment of the video signal transmission system according to the present invention. Also, the second
The table shows 31 actual IM examples of the video signal transmission system according to the present invention.
FIG. %J3, in Table 2, line indicates the order of scanning lines, and color signal indicates that the color difference signal is an R-Y color difference signal, so R is written in Table 2), and B-Y color difference signal. The polarity is the brightness of a nearly fixed pattern in the color subcarrier (if the brightness signal is output as a color difference signal when the high-frequency component of the moon is synchronously detected). Phase of high frequency component (or phase of color subcarrier)
is shown.

NTSC方式のカラー映像信8(これは複合映像信号で
ある)をLPF、デー1−ダ笠をt6いて第2図(Δ)
に示す輝度化ε0′信号)成分及び第2図(B)及び(
C)に示ず邑く色差)信号(R−Y、B−Y各信号)成
分(あるいは輝度信号(Y信号)成分及び色信号(1,
Q信号)成分)に分離し、この2種類の色差信g成分を
最初(第1)のフレームに83いて第2図(D)及び?
t52表に示すように11−1fEに交互に(R−y、
smY。
The color video signal 8 of the NTSC system (this is a composite video signal) is passed through the LPF, and the data 1-da cap is set at t6 as shown in Fig. 2 (Δ).
The luminance ε0' signal) component shown in Figure 2 (B) and (
(color difference) signal (R-Y, B-Y signals) component (or luminance signal (Y signal) component and color signal (1,
The two types of color difference signal (g) component are separated into the (Q signal) component), and these two types of color difference signal (g) component are placed in the first (first) frame.
As shown in the t52 table, (R-y,
smY.

R−Y、・・・の順)伝送する線順次信号とし、第2図
(A)に示す輝度信号成分を111期間の約80%の期
間に時間軸圧縮りると八に、第2図(D>に示す線順次
色差信号成分を111期間の約20%に時間軸圧縮し、
第2図(E)に示゛リ−J、うなアクロマチイック信号
を付加した後、時分割多重して第2図(「)に示り゛よ
うなタイムブレックス信号として伝送する。以上は(M
決すべぎ問題点)の項で第1図(A)〜(「)を参照し
て説明したタイムプレックス方式の(fi号と同一であ
る。
If the luminance signal component shown in Fig. 2 (A) is compressed on the time axis into approximately 80% of the 111 periods, the result as shown in Fig. 2 (The line-sequential color difference signal components shown in D> are time-axis compressed to about 20% of the 111 periods,
After adding an achromatic signal such as the one shown in FIG. 2(E), it is time-division multiplexed and transmitted as a time plex signal as shown in FIG. 2(E). M
This is the same as the time-plex method described in the section ``Issues to be resolved'' with reference to FIGS.

次(第2)のフレームにおいては線順次色差信号を第2
図(G)及び第2表に示り−ように上述した最初(第1
)のフレームの伝送順序を入替えた伝送順序(B−Y、
R−Y、B−Y、・・・の順)の線順次色差信号とし、
以下、最初(第1)のフレームと同様に第2図(A>に
示す輝度信号成分を111期間の約8096の期間に1
1.1間軸圧縮りると共に、第2図(G)に示づ線順次
色差信号成分を1H期間の約20%に116間軸圧縮し
、第2図([I)に示すj、うなアクロマフ(ツク信号
を付加した後、時分割多重り、て第2図(I)に示すよ
うなタイムブレックス信号として伝送する。
In the next (second) frame, the line-sequential color difference signal is
As shown in Figure (G) and Table 2, the first
), the transmission order (B-Y,
(in the order of RY, B-Y, ...) as a line-sequential color difference signal,
Hereinafter, similarly to the first (first) frame, the luminance signal components shown in FIG.
1. In addition to the 1-axis compression, the line-sequential color difference signal components shown in FIG. After adding an achromatic signal, the signal is time-division multiplexed and transmitted as a time plex signal as shown in FIG. 2(I).

次(第3)のフレームにおい(は呵び最初のフレームと
同様に伝送リーる。
The next (third) frame is then transmitted in the same way as the first frame.

上述したにうに色差信号をフレーム毎にその伝゛送順序
を入替えた線順次信号として伝送りれば、第2表から明
らかなようにフレーム毎に色副搬送波でほぼ固定したパ
ターンの輝度信号の高域成分を同期検波しlことぎに色
信号として得られる輝度信号の高域成分の位相(又(よ
色副搬送波の位相)の位相が反転して伝送されるので前
述した固定パターンの色ノイズがは打ち消さ1゛1倹知
1さなく1なる・[ 1: 以下に、本発明になる映像信号伝送方式の一実;゛;、
If the color difference signal is transmitted as a line sequential signal whose transmission order is changed for each frame as described above, as is clear from Table 2, a luminance signal with an almost fixed pattern of color subcarriers will be transmitted for each frame. The high-frequency components are synchronously detected and the phase of the high-frequency components of the luminance signal (or (the phase of the chromatic subcarrier)) of the luminance signal obtained as a color signal is inverted and transmitted, so the color of the fixed pattern described above is transmitted. The noise is canceled out and becomes 1 without being 1.
.

、LJ7Cn’i2L’に0>、−IM(!−m3゜。, LJ7Cn'i2L' 0>, -IM(!-m3°.

1照して説明する。ヨ 第3図は本発明になる映像侶8伝送り式の一大施例を用
いた記録再生装置の一例のブロック系統図を示す。
I will explain with reference to 1. FIG. 3 shows a block system diagram of an example of a recording and reproducing apparatus using a large-scale embodiment of the video transmitter 8 transmission type according to the present invention.

まず、記録時の動作につぎ説明り′る。第3図において
、入力端子1に入来した例えばNTSC方式カラー映像
信号(これは複合映像信子〕である〉は、端子R側に切
換えられているスイッチ回路2を通して低域フィルタ3
に供給され、ここ−で輝度15号が分N1される一方、
7′」−ダ4に供給されるデコーダをは帯域フィルタ(
図示1.!!1″)にj、すNTSC方式カラー映像信
号から直角二相変調波でB’>る搬送色イ50を:分離
して取り出し、直角二相変調波〈第3図中に図示せず)
にJ、り色差信号(R−)/)と(B−)/)どが(あ
るいは■どQとが)分離されて出ツノされる。
First, the operation during recording will be explained. In FIG. 3, for example, an NTSC color video signal (this is a composite video signal) inputted to an input terminal 1 is passed through a low-pass filter 3 through a switch circuit 2 which is switched to the terminal R side.
is supplied to , and here the luminance No. 15 is divided by N1, while
7' - The decoder supplied to the decoder 4 is a bandpass filter (
Illustration 1. ! ! From the NTSC color video signal, the carrier color A 50 is separated and extracted as a quadrature two-phase modulated wave (not shown in Figure 3).
Then, the color difference signals (R-)/) and (B-)/) (or (or)) are separated and output.

一方、低域フィルタ3からは入力NTSC方式カラー映
像イJ号から分離し!、:輝疫信gが取り出され、この
輝1良イg月は同期分離1回路6にJ、り同期信号が分
離抽出される一方、へ〇変]矢器5によりアナ[Jグー
アジタル変1%された後、ランダム・アクヒス・メモリ
(RAM)8及び9に大々供給される。コントロールパ
ルス発生装置7には同期分比11回路6J、りの同期信
8が供給され、かつ、後述する線順;J(切換化量が供
給され、′−]ント1コールパルス発生回路7は上記信
号により、AD変194器5゜20、スイッチ回路10
.12、DA変換器11’、23へ夫々生成した制御パ
ルスを供給し、また約4.8μs程度の幅の水平同期信
号や各種のパルスを発生し、更にRAM8..9及び2
1へ出さ込みクロックと読み出しクロックどを夫々所定
のタイミングで、かつ、所定の繰り返し周波数で発生出
力する。
On the other hand, the low-pass filter 3 separates the input NTSC color video from IJ! , : The bright signal g is taken out, and this bright signal is sent to the synchronous separation 1 circuit 6, and the synchronization signal is separated and extracted. % and then supplied to random access memories (RAM) 8 and 9 in bulk. The control pulse generator 7 is supplied with a synchronous ratio 11 circuit 6J and a synchronous signal 8, and is supplied with a line order; By the above signal, AD converter 194 5°20, switch circuit 10
.. 12, supplies the generated control pulses to the DA converters 11' and 23, and also generates horizontal synchronizing signals and various pulses with a width of approximately 4.8 μs, and further supplies the RAM 8. .. 9 and 2
The output clock and the read clock are respectively generated and outputted at predetermined timings and at a predetermined repetition frequency.

すなわち、コントロールパルス発生装置7は、RAM8
及び9の一方には、例えば、16.11MHzの書き込
みクロックパルスを供給して映像期間63.56μsで
伝送される11−1分の輝度信号をその一方のRAMに
出ぎ込ま−V1これと同1時に、例えば20.14MI
NZの読み出しクロックパルスを、1H1期間から後述
する水平同期信号と114分の部間軸圧縮色差信号の直
列伝送期間とを除く期間だけ1H分(63,56μs〉
の0.1間軸圧縮色差侶丹の伝送終了直後から他方のR
AMに供給して他方のR,AMに記憶されている1H前
の1H1分の輝度(ff1号を読み出させる。このRA
M8及び9の読み出し動作と書き込み動作とは11−1
毎に交互に切換えられ、またRAM8及び9の出力側の
スイッチ回路10はコントロールパルス発生装置7より
の=」ントロールパルスによって読み出し動作を行なっ
ている側のRAM8又は9の出力信号を選択するように
切1襲えられるので、スイッチ回路10より1H期間の
80%の期間に時間軸圧縮された輝度信号が情報の欠落
なく間欠的に取り出される。この時間軸圧縮輝度信号は
DΔ変換器11J、リゾシタルーアナログ変操されてス
イッチ回路12に供給される。
That is, the control pulse generator 7 uses the RAM 8
For example, a 16.11 MHz write clock pulse is supplied to one of the RAMs 1 and 9, and a luminance signal of 11-1 minutes, which is transmitted in a video period of 63.56 μs, is sent to one of the RAMs. 1 o'clock, for example 20.14 MI
The NZ readout clock pulse is set for 1H (63,56μs) for a period excluding the horizontal synchronization signal and the serial transmission period of the partial axis compressed color difference signal of 114 minutes, which will be described later, from the 1H1 period.
Immediately after the transmission of the 0.1 interval compression color difference, the other R
The other R is supplied to the AM, and the brightness for 1H1 of the previous 1H (ff1) stored in the AM is read out.This RA
11-1 What are the read and write operations of M8 and 9?
The switch circuit 10 on the output side of the RAMs 8 and 9 selects the output signal of the RAM 8 or 9 on the side performing the read operation by the control pulse from the control pulse generator 7. 1H, the time-base compressed luminance signal is intermittently extracted from the switch circuit 10 during 80% of the 1H period without missing any information. This time-base compressed luminance signal is subjected to resolution-to-analog conversion by a DΔ converter 11J and then supplied to a switch circuit 12.

同期分離回路6より分離された同期信号はフリップフロ
ップ回路(以下、FFと記す)13及び垂直同期分離回
路14に供給される。
The synchronization signal separated by the synchronization separation circuit 6 is supplied to a flip-flop circuit (hereinafter referred to as FF) 13 and a vertical synchronization separation circuit 14.

[「13は同期分離回路6J、り供給される同期信号中
J、り等価パルスを除去した水平同期信号により作動ザ
る「Fで、FIi3の出ツノ信号はエクスクル−シブオ
ア(排他的論理和)回路(Jメ下、EOど記J)15に
供給される。
[13 is a synchronization separation circuit 6J, which is operated by a horizontal synchronization signal from which J and equivalent pulses are removed from the supplied synchronization signal. It is supplied to the circuit (J, EO, J) 15.

垂直同期分離回路14は同期分離回路6にり供給される
同期信号中にり垂直同期信号を分離し、出力する。垂直
同期分離回路14で分離出力された垂直同期信号はFF
1[3,FF17を介して[O15に供給される。
The vertical synchronization separation circuit 14 separates a vertical synchronization signal from the synchronization signal supplied by the synchronization separation circuit 6 and outputs it. The vertical synchronization signal separated and output by the vertical synchronization separation circuit 14 is an FF
1[3, supplied to [O15 via FF17.

従って、EO15からはHfaに反転し、かつ、フレー
ム毎に反転りる線順次切換信号が出力される。
Therefore, the EO 15 outputs a line sequential switching signal which is inverted to Hfa and which is inverted for each frame.

この線順次切換信号はコン1−ロールパルス発生装置7
及びスイッチ回路18に供給さ4する。
This line sequential switching signal is the controller 1-roll pulse generator 7.
and is supplied to the switch circuit 18.

スイッチ回路18ハデコーダ4から供給される色差信号
R−YとB−YとをH毎に切操えた線順次色差信号とし
て出力すると」いS、フレーム毎にその伝送順序を入替
えた線順次色差信号として出力する。
When the switch circuit 18 outputs the color difference signals R-Y and B-Y supplied from the decoder 4 as a line-sequential color-difference signal that can be switched for each H, a line-sequential color-difference signal whose transmission order is switched for each frame is output. Output as .

従って、スイッチ回路18からは最初(第1)のフレー
ムにおいては、第2図(D)及び第2表に示すような[
−Y、B−Y、R−Y、・・・の順序の順次色差信号が
出力され、次(第2)のフレームにおいては、第2図(
G)及び第2表に示すようZJBY、RY、[3Y、・
=(Dk1序(DvAk1次色差信号が出力される。
Therefore, in the first (first) frame from the switch circuit 18, [
-Y, B-Y, R-Y, . . . color difference signals are sequentially output in the order of
G) and as shown in Table 2, ZJBY, RY, [3Y, ・
=(Dk1 order (DvAk primary color difference signal is output.

スイッチ回路18から出]jされる上述した線順次色差
信号は端子R側に切換えられているスイッチ回路19を
介してAD変挽器20に供給される。
The line-sequential color difference signal outputted from the switch circuit 18 is supplied to the AD transformer 20 via the switch circuit 19 which is switched to the terminal R side.

他方スイッチ回路19から出ノjされる線順次色差信号
は、AD変換器20によりアナログ−デジタル変換され
た後、RAIVI21に供給される。RAM21はIH
(G3,56μs)内では53μsの映像期間に伝送さ
れる線順次色差信号を、コン1〜ロールパルス発生装置
7J:りの例えば4.03〜ll−1zの出き込みクロ
ックパルスで山き込み、書ぎ込み終了後一定期間(例え
ば1.611s)おいてから例えば20.14MHzの
読み出しクロックパルスにより1H期間の20%の期間
に時間軸圧縮された色差信号を読み出−T)°(従って
、1回の読み出し期間は10.3μsとなる)。
On the other hand, the line sequential color difference signal output from the switch circuit 19 is analog-to-digital converted by the AD converter 20 and then supplied to the RAIVI 21. RAM21 is IH
(G3, 56 μs), the line-sequential color difference signal transmitted during the 53 μs video period is input to the controller 1 to the roll pulse generator 7J by input and output clock pulses of, for example, 4.03 to ll-1z. , After a certain period of time (for example, 1.611 s) after the end of writing, the time-axis compressed color difference signal is read out during 20% of the 1H period using a 20.14 MHz read clock pulse (-T)° (therefore, , one read period is 10.3 μs).

RAM21より読み出された時間軸圧縮線順次色−差信
号はスイッチ回路22を介してl)A変換器23へ供給
され、DA変li器23でデジタル−アナログ変換され
た後、スイッチ回路12へ供給される。なお、記録時に
おいて、スイッチ回路22はRAM21より読み出され
た時間軸圧縮線順次色差信号をDA変換器23へのみ供
給り゛るように切換えられている。
The time-base compressed line sequential color-difference signal read out from the RAM 21 is supplied to the A converter 23 via the switch circuit 22, digital-to-analog converted by the DA converter 23, and then sent to the switch circuit 12. Supplied. Note that during recording, the switch circuit 22 is switched so as to supply only the time-base compressed line-sequential color difference signal read out from the RAM 21 to the DA converter 23.

スイッチ回路12は上記の時間軸圧縮輝度信号と、コン
トロールパルス発生器w7から取り出された約4.8μ
s幅の水平同期信号とを人々上記装置7の出力コン1−
ロールパルスに基づいて、時分割多重するJ、うにスイ
ッヂング制陣される。このスイッチ回路12J:り取り
出された時分割多重信号は、判別用タイミング信り付加
回路24に供給され、ここでコントロールパルス発生装
置7の出力コントロールパルスに塁づいて判別用タイミ
ング信号発生器25で発生された判別用タイミング倍量
がイ1加される。この判別用タイミング信号(アク[」
ンティック信号)は、色差信号R−)′とB−Yとの伝
送ラインを判別さU“るためのタイミング信号で、例え
ば色差信号R−Y及びB−Yの人ノ2の発生器る直前に
付加される人々パルス幅の異なる一定レベル(アクロマ
チrツクレベル)のパルスf88である。
The switch circuit 12 receives the above-mentioned time-base compressed luminance signal and the approximately 4.8μ signal extracted from the control pulse generator w7.
s width horizontal synchronization signal and the output of the above device 7 1-
Based on the roll pulse, time-division multiplexing and switching are performed. The time-division multiplexed signal extracted from the switch circuit 12J is supplied to the discrimination timing signal addition circuit 24, where it is processed by the discrimination timing signal generator 25 based on the output control pulse of the control pulse generator 7. The generated discrimination timing multiplication amount is added by 1. This determination timing signal (A
The timing signal (Tick signal) is a timing signal for determining the transmission line of the color difference signals R-)' and B-Y. A pulse f88 of a constant level (achromatic level) with different pulse widths is added to the pulse f88.

このようにして、入力端子1にNTSC方式カラー映像
信号が入来した場合は、判別用タイミング信号付加回路
24からは、第2図(E)′:4.たは第2図(1」)
に示す如く、IH(63,56μs)毎に異なるパルス
幅の判別、用タイミング信号が重畳され、また、水平同
期信号と時間軸圧縮色差@号R−9又はB−Yの一方と
、時間軸圧縮輝度信号とが夫々時分割多重され、更に時
間軸圧縮色差信号は第2図(F)または第2図(I)に
示すような線順次で伝送される時分割多重信号が取り出
される。この時分割多重信号は、プリエンファシス回路
2G、ホワイトピークレベルのクリップ回路27゜クラ
ンプ回路28.FM変調器29.高域通過フィルタ30
及びi′iil!録増幅器31J:りなるVTR等の記
録再生装置において公知の記録信号処理回路を通して記
録ヘッド32に供給され、これにより磁気テープ33に
記録される。
In this way, when an NTSC color video signal is input to the input terminal 1, the discrimination timing signal adding circuit 24 outputs the signal as shown in FIG. 2(E)': 4. or Figure 2 (1")
As shown in , a timing signal for different pulse width discrimination is superimposed on each IH (63, 56 μs), and a horizontal synchronization signal, time axis compression color difference @ one of R-9 or B-Y, and a time axis The compressed luminance signals are time-division multiplexed, and the time-axis compressed color difference signals are extracted as time-division multiplexed signals that are transmitted line-sequentially as shown in FIG. 2(F) or FIG. 2(I). This time division multiplexed signal is processed by a pre-emphasis circuit 2G, a white peak level clip circuit 27, a clamp circuit 28. FM modulator 29. High pass filter 30
and i′iil! Recording amplifier 31J: In a recording/reproducing apparatus such as a VTR, the signal is supplied to the recording head 32 through a known recording signal processing circuit, and thereby recorded on the magnetic tape 33.

次に再生時の動作について説明するに、このときはスイ
ッチ回路2.19は大々端子P側に接続される。再生ヘ
ッド34により磁気テープ33上に被周波数変調波の信
号形態で記録されている時分別条m信号が再生され、こ
の再生被周波数変調波は再生増幅r535.イコライザ
36.高域フィルタ37゜FM復調器38及びディエン
ファシス回路39よりなる公知の再生信号処理回路を通
して第2図(F)−または第2図(1)に示すような回
生時分割多重信号とされる。この再生時分割多重信号は
端子Pに接続されているスイッチ回路2及び低域フCル
タ3を夫々経てAD変換器5.同期分離回路6゜タイミ
ング信号検出器42に夫々供給されると共に、端子Pに
接続されているスイッチ回路19を通してAD’a挟凶
器20供給される。
Next, the operation during reproduction will be explained. At this time, the switch circuit 2.19 is connected to the terminal P side. The reproduction head 34 reproduces the time-separated signal m recorded on the magnetic tape 33 in the form of a frequency-modulated wave, and this reproduced frequency-modulated wave is subjected to reproduction amplification r535. Equalizer 36. The signal is passed through a known reproduction signal processing circuit comprising a high-pass filter 37° FM demodulator 38 and a de-emphasis circuit 39 to produce a regenerative time division multiplexed signal as shown in FIG. 2(F)- or FIG. 2(1). This reproduced time-division multiplexed signal passes through a switch circuit 2 and a low-pass filter 3 connected to a terminal P, respectively, to an AD converter 5. The synchronization separation circuit 6° is supplied to the timing signal detector 42, and the AD'a pincer weapon 20 is supplied through the switch circuit 19 connected to the terminal P.

AD変換器5.RAM8及び9.スイッチ回路10及び
DA変換器11よりなる回路部は、コントロ′2−ルバ
ルス発生装置7の出力信号に基づいて時間軸伸長されて
もとの時間軸に戻された再生輝麿信、i、 号を生成する。ここで、RAM8及び9の一方が゛。
AD converter5. RAM8 and 9. A circuit section consisting of a switch circuit 10 and a DA converter 11 generates a reproduced signal whose time axis is extended and returned to the original time axis based on the output signal of the control pulse generator 7. generate. Here, one of RAM8 and RAM9 is ``.

「 再生時分割多重信号の時間軸圧縮輝1立信とに対す゛る
書き込み動作を行なっているどきは、他プjが読み出し
動作を行ない、またRAM8及び9は11」毎に交互に
読み出し動作と書き込み動作とを行な゛うことは記録時
と同じであるが、記録時とは異なり書き込みクロックパ
ルスの繰り返し周波数は、例えば、20.14MHZで
、読み出しクロックパルスの繰り返し周波数は例えば1
6.11MHZであり、よって11−1期間に時間軸伸
長された(1なわち時間軸圧縮分だり時間軸伸長された
)再生輝度信号力RAM8及びOから1ト1毎に交互に
スイッチ回路10を介して取り出される。スイッチ回路
10から取り出された再生輝度信号のデジタル信号はD
A変換器11でγシタルーアノーログ変換された後、混
合回路40に供給される。
``When a write operation is being performed for the time axis compressed signal 1 of the reproduction time division multiplexed signal, the other memory card performs a read operation, and RAMs 8 and 9 perform read and write operations alternately every 11''. The operations are the same as during recording, but unlike during recording, the repetition frequency of the write clock pulse is, for example, 20.14 MHz, and the repetition frequency of the read clock pulse is, for example, 1 MHz.
6.11 MHZ, therefore, the reproduction luminance signal power whose time axis has been expanded in the 11-1 period (that is, the time axis has been compressed or expanded by 1) is switched from the RAM 8 and O to the switch circuit 10 alternately every 1 to 1. is retrieved via. The digital signal of the reproduced luminance signal taken out from the switch circuit 10 is D.
After being subjected to γ-cital-to-analog conversion in the A converter 11, it is supplied to the mixing circuit 40.

一方、AD変換器20.RAM21よりなる回路部は、
上記装置7の出ノj信号に基づいて再生時分割多重信月
中の8、r間軸圧縮色差信号をRAM21に書き込んだ
後、読み出し動作を行なって時間軸がもどに戻された線
順次色差信号を得る。すむわら、RAM21は、例えば
20.14Ml−1zの出き込みクロックパルスにより
再生時間軸圧線色差信りのデジタル信号をif!i!き
込み、4.03MH7の読み出しクロックパルスにより
5倍に時間軸伸長されて時間軸が復元された再生線順次
色差信号のデジタル信号を読み出す。
On the other hand, the AD converter 20. The circuit section consisting of RAM21 is
After writing the axis compressed color difference signal between 8 and r in the reproduced time division multiplexed signal into the RAM 21 based on the output j signal of the device 7, a read operation is performed to return the time axis to the line sequential color difference signal. Get a signal. Then, the RAM 21 outputs a digital signal based on the playback time axis pressure line color difference using the input/output clock pulse of, for example, 20.14 Ml-1z if! i! The digital signal of the reproduction line sequential color difference signal whose time axis has been expanded five times and whose time axis has been restored is read out using a readout clock pulse of 4.03MH7.

RAM21から読み出された再生線順次色差信号のデジ
タル信号はスイッチ回路22及びRAM41に供給され
る。
The digital signal of the reproduced line sequential color difference signal read out from the RAM 21 is supplied to the switch circuit 22 and the RAM 41.

NTSC方式のカラー映像信号では、色差信号R−Y、
B−Yが共に必要であるので、RAM21から読み出さ
れる色差信号と異なる種類の色差信号をRAM41に書
き込/υでおき、−コントロールパルス発生装置7から
の出力信号に早づいてRAM41に歯さ・込んだ色差信
号を読み出してスイッチ回路22に供給する。
In the NTSC color video signal, color difference signals R-Y,
Since both B and Y are required, a color difference signal of a different type from the color difference signal read out from the RAM 21 is written in the RAM 41 at υ, and the signal is stored in the RAM 41 as soon as the output signal from the control pulse generator 7 is received. - Read out the input color difference signal and supply it to the switch circuit 22.

また、タイミング信号検出器42は、供給される再生線
順次色差信号中より、前記判別用タイミング信号を検出
して、スイッチ回路22に供給づる。
Further, the timing signal detector 42 detects the discrimination timing signal from among the supplied reproduced line sequential color difference signals and supplies it to the switch circuit 22.

スイッチ回路22はタイミング信号検出器42から供給
される信号により、RAM21から読み出される色差信
号のf!Ii類を識別して、RAM21.41から読み
出される供給されるR−)/色差信号をDA変換器23
へ、B−Y色差信号をDΔ変tlA器43へ供給する。
The switch circuit 22 detects f! of the color difference signal read out from the RAM 21 based on a signal supplied from the timing signal detector 42. Class Ii is identified and the supplied R-)/color difference signal read out from the RAM 21.41 is sent to the DA converter 23.
, the B-Y color difference signal is supplied to the DΔ transformer 43.

スイッチ回路22から供給された色差侶Bのデジタル信
号はDA変換器23.43で夫々再生線順次色差信号と
された後、エンコーダ44に供給される。
The digital signal of the color difference signal B supplied from the switch circuit 22 is converted into a reproduction line sequential color difference signal by the DA converters 23 and 43, respectively, and then supplied to the encoder 44.

エンコーダ44は再生色差信号R−YとB−Yどで直角
二相変調を行なって被直角二相変調波を得、更にその被
直角二相変調波の水平同期信号及びその館後のm間のみ
被直角二相変調波の伝送を遮断して、NTSC方式に準
拠した被直角二相変調波である搬送色信号を生成する。
The encoder 44 performs quadrature two-phase modulation on the reproduced color difference signals R-Y and B-Y to obtain a quadrature two-phase modulated wave, and further outputs a horizontal synchronization signal of the quadrature two-phase modulated wave and a horizontal synchronization signal of the quadrature two-phase modulated wave, and The transmission of the quadrature two-phase modulated wave is interrupted, and a carrier color signal that is a quadrature two-phase modulated wave conforming to the NTSC system is generated.

エンコーダ44の出力端子より取り出されたNTSC方
式に準拠づ゛る再生搬送色信号は、第3図に示す混合回
路40へ供給され、ここで、DA変換器11よりの再生
H度信号とコントロールパルス発生装置7よりの同期信
号と夫々混合されてNTSC方式に準拠した再生カラー
映像信号に変換された後、出力端子45へ出力される。
The reproduced carrier color signal based on the NTSC system taken out from the output terminal of the encoder 44 is supplied to the mixing circuit 40 shown in FIG. After being mixed with the synchronizing signal from the generator 7 and converted into a reproduced color video signal compliant with the NTSC system, the signal is output to the output terminal 45.

なお、本実施例によれば、再生時に読み出しクロックパ
ルス周波数を一定周波数とし、かつ出ぎ込み側のクロッ
ク周波数をジッタに完全に追従さUることにより、再生
時間軸変動(ジッタ)を時間軸伸長と同時に除去するこ
とができる。
According to this embodiment, the readout clock pulse frequency is set to a constant frequency during playback, and the input/output side clock frequency is made to completely follow the jitter, so that the playback time axis fluctuation (jitter) is reduced to the time axis. It can be removed at the same time as it is stretched.

(発明の効果) 本発明は上述の如き栴成であるので、色差信号中に残留
する輝度信号の高域成分により生ずる固定したパターン
の色ノイズを打ち消し検出できなくすることができると
いう利点を右する。
(Effects of the Invention) Since the present invention is as described above, it has the advantage that fixed pattern color noise caused by the high-frequency component of the luminance signal remaining in the color difference signal can be canceled out and cannot be detected. do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)〜(E)は従来のタイムプレックス方式に
J:る信号を説明するための波形図、第2図(A)〜(
1)は本発明になる映像信号伝送方式の一実施例を説明
するための波形図、第3図は本発明になる映像信号伝送
方式の一実施例を用いた記録再生装置の一例のブロック
系統図である。 4・・・デコーダ、6・・・同期分離回路、7・・・コ
ントロールパルス発生回路、13、1t3.17・・・
フリップフロップ回路(F「〉、14・・・垂直同期分
離回路、 15・・・エクスクル−シブオア回路(EO)、18、
19.22・・・スイッチ回路、20・・・AD変換器
、21、41・・・RAM、23.43・・・DA変換
器、40・・・混合回路、44・・・エンコーダ。 オ1j 才20 手続ネ市正凸1(方式) 特許庁長官志賀学殿 1、事件の表示 昭和59年特¥[願第53147号 2、発明の名称 映像信号伝送方式 3、補正をづる者 事件との関係特許出願人 住所神奈川県横浜市神奈用区守屋町3丁目12番地名称
(432)日本ビクター株式会社 昭和59年6月26日(発送日) 明細内箱26頁第5行記載の「第1図(A)〜(E)」
を「第1図くΔ)〜(F)」と補正する。
Figures 1 (A) to (E) are waveform diagrams for explaining the signals involved in the conventional time-plex system, and Figures 2 (A) to (E)
1) is a waveform diagram for explaining an embodiment of the video signal transmission method according to the present invention, and FIG. 3 is a block system of an example of a recording/reproducing device using an embodiment of the video signal transmission method according to the present invention. It is a diagram. 4... Decoder, 6... Synchronization separation circuit, 7... Control pulse generation circuit, 13, 1t3.17...
Flip-flop circuit (F"), 14... Vertical synchronization separation circuit, 15... Exclusive OR circuit (EO), 18,
19.22... Switch circuit, 20... AD converter, 21, 41... RAM, 23.43... DA converter, 40... Mixing circuit, 44... Encoder. 01j 20 Procedure Neichi Seiko 1 (Method) Patent Office Commissioner Shiga Manabu 1, Indication of the case 1988 Special ¥ [Application No. 53147 2, Title of invention Video signal transmission method 3, Person making amendment case Relationship with Patent Applicant Address: 3-12 Moriya-cho, Kanayō-ku, Yokohama-shi, Kanagawa Prefecture Name (432) Victor Company of Japan Co., Ltd. June 26, 1980 (Shipping date) " Figure 1 (A) to (E)
is corrected as "Fig. 1 Δ) to (F)".

Claims (1)

【特許請求の範囲】[Claims] カラー映像信号の輝度信号成分及び線順次色差信号成分
をそれぞれ時間軸圧縮した後、時分割多重した信号とし
て伝送する映像信号伝送方式であって、前記線順次色差
信号成分を構成する色差信号成分の伝送順序をフレーム
毎に入替えて伝送する映像信号伝送方式。
A video signal transmission method in which a luminance signal component and a line-sequential color-difference signal component of a color video signal are time-base compressed and then transmitted as a time-division multiplexed signal, the method comprising: A video signal transmission method that changes the transmission order for each frame.
JP59053147A 1984-03-19 1984-03-19 Video signal transmission system Pending JPS60196091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59053147A JPS60196091A (en) 1984-03-19 1984-03-19 Video signal transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59053147A JPS60196091A (en) 1984-03-19 1984-03-19 Video signal transmission system

Publications (1)

Publication Number Publication Date
JPS60196091A true JPS60196091A (en) 1985-10-04

Family

ID=12934713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59053147A Pending JPS60196091A (en) 1984-03-19 1984-03-19 Video signal transmission system

Country Status (1)

Country Link
JP (1) JPS60196091A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4974064A (en) * 1986-11-17 1990-11-27 North American Philips Corporation Apparatus for encoding television signals of different formats for transmission and decoding upon reception
WO1991006770A1 (en) * 1989-11-02 1991-05-16 Matsushita Electric Industrial Co., Ltd. Scroll compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4974064A (en) * 1986-11-17 1990-11-27 North American Philips Corporation Apparatus for encoding television signals of different formats for transmission and decoding upon reception
WO1991006770A1 (en) * 1989-11-02 1991-05-16 Matsushita Electric Industrial Co., Ltd. Scroll compressor
US5215452A (en) * 1989-11-02 1993-06-01 Matsushita Electric Industrial Co., Ltd. Compressor having an oil pump ring associated with the orbiting shaft

Similar Documents

Publication Publication Date Title
JPS59172897A (en) Clock pulse generating circuit in color video signal reproducing device
JPS648516B2 (en)
JPS59186491A (en) Recording and reproducing device of color video signal
JPS59171285A (en) Dropout compensating circuit of video signal
JPS60196091A (en) Video signal transmission system
US4285014A (en) Channel division recording/reproducing apparatus
GB1587496A (en) Method of recording and/or transmitting colour television signals
JPS59172898A (en) Clock pulse generating circuit in color video signal reproducing device
JPS59168792A (en) Recording and reproducing device of secam system color video signal
JPS60170393A (en) Recorder/reproducer of video signal
JPH0144075B2 (en)
CA2073519C (en) Magnetic reproduction apparatus
JPS60196093A (en) Video signal transmission system
JPS6096985A (en) Recording and reproducing device
JPS60196092A (en) Video signal transmission system
JPS60196094A (en) Video signal transmission system
JPS59172896A (en) Clock pulse generating circuit in color video signal reproducing device
JPS63215193A (en) Color video signal converting method and its recording and reproducing device
JPS6029099A (en) Record reproducing device
JPH0224437B2 (en)
JPS6020696A (en) Recording and reproducing device
JPS63312793A (en) Time base correction device
JPS6090492A (en) Recording and reproducing device of color video signal
JPS60128786A (en) Record reproducer of color video signal
JPS645515B2 (en)