JPS6019491A - Determination device using biocatalyst electrode - Google Patents

Determination device using biocatalyst electrode

Info

Publication number
JPS6019491A
JPS6019491A JP12994283A JP12994283A JPS6019491A JP S6019491 A JPS6019491 A JP S6019491A JP 12994283 A JP12994283 A JP 12994283A JP 12994283 A JP12994283 A JP 12994283A JP S6019491 A JPS6019491 A JP S6019491A
Authority
JP
Japan
Prior art keywords
electrode
tube
biocatalyst
electrodes
counter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12994283A
Other languages
Japanese (ja)
Inventor
Toshiyuki Yamauchi
俊幸 山内
Haruyuki Date
伊達 晴行
Akiyoshi Miyawaki
宮脇 明宜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP12994283A priority Critical patent/JPS6019491A/en
Publication of JPS6019491A publication Critical patent/JPS6019491A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the determination of plural components in a sample at the same time, by connecting a cylinder containing a biocatalyst electrode and a counter electrode detachably to a tube in a manner to be able to pass the solvent passing through the tube. CONSTITUTION:The present apparatus is composed of the tube 2 to flow the solution containing the substance to be determined, and the biocatalyst electrodes 8, 10 and their counter electrodes 9, 11 contacting with the solvent passing through the tube 2. In the above apparatus, the cylinders 5, 6 containing the biocatalyst electrodes 8, 10 and the counter electrodes 9, 11 are connected detachably to the tube 2 in a manner to be able to pass the solvent passing through the tube 2. Consequently, plural components in a sample can be determined at the same time, the hazards of the damage of biocatalyst electrode can be reduced, and the handling of the electrode can be facilitated.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、1度に複数の物質の測定を行うことができ
、しかも、生体触媒電極が損傷する恐れの少ない生体触
媒電極を用いた測定装置に関する〔背景技術〕 従来、物理化学的手法を用いて、溶液中の特定物質を測
定する場合、当該物質の純度を高める必要があり、その
ため分離精製が必要となり、そのことのため長時間を要
し、これが定量的解析の大きな障害となっていた。さら
に、測定に際し加温、加圧が必要となったり、非水溶系
による必要があることなどの問題もあった。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a measuring device using a biocatalyst electrode that can measure a plurality of substances at once and that has less risk of damaging the biocatalyst electrode. BACKGROUND ART Conventionally, when measuring a specific substance in a solution using a physicochemical method, it is necessary to increase the purity of the substance, which requires separation and purification, which takes a long time. This has been a major obstacle to quantitative analysis. Furthermore, there are also problems such as the need for heating and pressurization during measurement, and the need for non-aqueous systems.

その点、生体触媒は、特定基質だけを触媒すること(基
質特異性)、常温、雷圧下で反応を起こすこと、水溶系
、で反応をすみやかに進行させることができることなど
の利点があるため、酵素等生体触媒を水不溶性にし、電
気的デバイスと組み合わせることで水溶液中の被測定物
質を選択的に反応させることにより、その含有量を電気
的出力(電流、電圧)としてとらえる方法が近年開発さ
れた。
In this regard, biocatalysts have advantages such as being able to catalyze only a specific substrate (substrate specificity), allowing the reaction to occur at room temperature and under lightning pressure, and allowing the reaction to proceed quickly in an aqueous system. In recent years, a method has been developed in which biocatalysts such as enzymes are made water-insoluble and combined with an electrical device to selectively react with a substance to be measured in an aqueous solution, thereby capturing the content as electrical output (current, voltage). Ta.

この、生体触媒を用いた測定方法において、反応の能率
を向上させる等の目的で、溶媒を管に連続的に流し、こ
れに被測定物質を含む試料を注入して測定を行うフロ一
式測定法が提案されているしかし、従来のフロ一式の測
定装置では、溶液中の特定物質を測定する場合、1度に
1つの特定物質しか測定することができないという問題
があった。これは、従来の測定装置では、生体触媒電極
が一つ管に配置されるようになっており、測定の対象と
なる特定物質の種類に応して生体触媒電極の種類を変え
るようにしているからである。また、生体触媒膜の物理
的強度が小さいため、従来の測定装置では、生体触媒電
極を管に設けられたホルダー等に取り付ける場合、細心
の注意を払う必要があり、そのうえ、生体触媒電極の保
存時に何らかの力が加わって生体触媒膜が損傷し、生体
触媒電極としての機能を発揮しなくなることがしばしば
あるというように、取り扱いが非字に困難となっていた
In this measurement method using a biocatalyst, for the purpose of improving reaction efficiency, etc., a flow set measurement method involves continuously flowing a solvent into a tube and injecting a sample containing the substance to be measured into the tube. However, when measuring a specific substance in a solution, the conventional flow-type measuring device has a problem in that only one specific substance can be measured at a time. This is because in conventional measurement devices, one biocatalyst electrode is placed in a tube, and the type of biocatalyst electrode is changed depending on the type of specific substance to be measured. It is from. In addition, because the physical strength of the biocatalyst membrane is low, with conventional measurement devices, it is necessary to pay close attention when attaching the biocatalyst electrode to a holder etc. provided in the tube. The biocatalyst membrane is sometimes damaged by the application of some kind of force, making it extremely difficult to handle, as it often ceases to function as a biocatalyst electrode.

〔発明の目的〕[Purpose of the invention]

この発明は、このような事情に鑑みなされたもので、1
度に複数の物質を測定することが可能で、しかも、生体
触媒電極が損傷する恐れが少なく、取り扱いが容易な生
体触媒電極を用いた測定装置を提供することを目的とし
ている。
This invention was made in view of the above circumstances, and has the following features:
It is an object of the present invention to provide a measuring device using a biocatalyst electrode that can measure a plurality of substances at the same time, has less risk of damaging the biocatalyst electrode, and is easy to handle.

〔発明の開示〕[Disclosure of the invention]

前記のような目的を達成するため、この発明は、被測定
物質を含む溶液が流れる管を備えるとともに、管を通る
溶液に接触する生体触媒電極およびその対極を備えた測
定装置であって、生体触媒電極と対極が内部に配置され
た筒体が、前記管を通る溶媒を通すことができるよう管
に取り外し可能に接続されて、いることを特徴とする、
生体触媒電極を用いた測定装置をその要旨としている。
In order to achieve the above objects, the present invention provides a measuring device comprising a tube through which a solution containing a substance to be measured flows, a biocatalyst electrode that comes into contact with the solution passing through the tube, and a counter electrode thereof. characterized in that a cylinder having a catalytic electrode and a counter electrode disposed therein is removably connected to the tube such that a solvent can be passed through the tube;
Its gist is a measurement device using biocatalytic electrodes.

以下、実施例をあられす図面にもとづき、この発明の詳
細な説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the accompanying drawings.

第1図は、この発明にかがる生体触媒電極を用いた測定
装置の1実施例をあられす。図にみるように、この測定
装置は、溶媒溜め1.一端が溶媒溜め1に臨み、中間部
に試料の注入口2aを持っ管2.溶媒溜め1内の溶媒3
を管2に流ずポンプ4および筒体5,6をそれぞれ備え
ている。管2の末端は大径部2cとなっている。筒体5
,6の一端はそれぞれ大径部5a、6aとなっており、
残部がそれぞれ細径部5b、6bとなってぃ杭そして、
筒体5の細径部5bの先端が管2の大径部2cに挿入さ
れることにより筒体5が管2に取り外し可能に接続され
、筒体6の細径部6bの先端(管側接続端)が筒体5の
大径部5aに挿入されることにより筒体6が筒体5に取
り外し可能に接続されている。筒体6の大径部6aに排
出用管7の一端が挿入されることによって、筒体6に排
出用管7が取り外し可能に接続されている。筒体5の内
部には、生体触媒電極8とその対極9が配置され、筒体
6の内部にも、生体触媒電極10とその対極11が配置
されている。したがって、筒体5,6は一種のカートリ
ッジになっており、生体触媒電極8,1oと対極9,1
1は、管2を通る溶媒に接触することができる。生体触
媒電極8と対極9、および生体触媒電極1oと対極11
は、ポテンシオスタット等の電気的出力測定手段12.
13にそれぞれ接続されている。
FIG. 1 shows an embodiment of a measuring device using a biocatalyst electrode according to the present invention. As shown in the figure, this measuring device consists of a solvent reservoir 1. A tube 2. One end faces the solvent reservoir 1, and the middle part has a sample injection port 2a. Solvent 3 in solvent reservoir 1
A pump 4 and cylindrical bodies 5 and 6 are provided, respectively. The end of the tube 2 has a large diameter portion 2c. Cylindrical body 5
, 6 have large diameter portions 5a, 6a, respectively.
The remaining parts are the narrow diameter parts 5b and 6b, respectively.
By inserting the tip of the narrow diameter portion 5b of the tube 5 into the large diameter portion 2c of the tube 2, the tube 5 is removably connected to the tube 2, and the tip of the narrow diameter portion 6b of the tube 6 (tube side The cylindrical body 6 is removably connected to the cylindrical body 5 by inserting the connecting end) into the large diameter portion 5a of the cylindrical body 5. By inserting one end of the discharge pipe 7 into the large diameter portion 6a of the cylinder 6, the discharge pipe 7 is removably connected to the cylinder 6. A biocatalyst electrode 8 and its counter electrode 9 are arranged inside the cylinder 5, and a biocatalyst electrode 10 and its counter electrode 11 are also arranged inside the cylinder 6. Therefore, the cylinders 5 and 6 are a kind of cartridge, with biocatalyst electrodes 8 and 1o and counter electrodes 9 and 1o.
1 can contact the solvent passing through tube 2. Biocatalyst electrode 8 and counter electrode 9, and biocatalyst electrode 1o and counter electrode 11
12. is an electrical output measuring means such as a potentiostat.
13, respectively.

この測定装置を用いて測定を行う場合、従来と同様、ポ
ンプ4を用いて溶媒溜めl内の溶媒3を管2に流すと、
この溶媒は管2から筒体5,6に流れ、管7から排出さ
れる。このようにした状態で、注入器(マイクロシリン
ジ)14等により注入口2aから試料を注入する。そう
すると、被測定物質を含む溶液が管2から筒体5.6に
流れるので、生体触媒電極と対極間の電気的出力をポテ
ンシオスタット等の測定手段12.13で測定し、被測
定物質の含有量を測定する。
When performing measurements using this measuring device, as in the conventional case, when the solvent 3 in the solvent reservoir 1 is flowed into the pipe 2 using the pump 4,
This solvent flows from tube 2 into cylinders 5, 6 and is discharged from tube 7. In this state, a sample is injected from the injection port 2a using an injector (microsyringe) 14 or the like. Then, the solution containing the substance to be measured flows from the tube 2 to the cylinder 5.6, and the electrical output between the biocatalyst electrode and the counter electrode is measured by a measuring means 12.13 such as a potentiostat. Measure the content.

この測定装置は、筒体内に配置された状態で生体触媒電
極を取り扱うので、生体触媒電極が損傷する恐れが非常
に少ない。また、生体触媒電極と対極の組を2組持つの
で、二つの生体触媒電極の種類を異なるものとすれば、
1度に2種類の物質を測定することができる。そのうえ
、筒体の配置を変えることにより、測定の順番を変える
こともできる。
Since this measuring device handles the biocatalyst electrode while it is placed inside the cylinder, there is very little risk of the biocatalyst electrode being damaged. Also, since there are two sets of biocatalyst electrodes and counter electrodes, if the two biocatalyst electrodes are of different types,
Two types of substances can be measured at once. Furthermore, by changing the arrangement of the cylinders, the order of measurement can be changed.

なお、前記実施例では、生体触媒電極とその対極が配置
された筒体を二つ備えているが、三つ以上備えるようで
あってもよい。そうすると、1度に3種類以上の物質を
測定することができるようになる。また、前記実施例で
は、筒体内に生体触媒電極と対極の組が1組配置される
ようになっているが、2組以上が配置されるようであっ
てもよい。
In the above embodiment, two cylindrical bodies are provided in which the biocatalyst electrode and its counter electrode are disposed, but three or more may be provided. This makes it possible to measure three or more types of substances at once. Further, in the embodiment described above, one set of a biocatalyst electrode and a counter electrode is arranged in the cylinder, but two or more sets may be arranged.

つぎに、より具体的な実施例を説明する。Next, a more specific example will be described.

(実施例1) 第1図において、管2としてシリコンチューブ、生体触
媒電極8,10としてグリコースオキシダーゼ固定電極
(酵素電極)およびグルコースオキシダーゼ・インへル
ターゼ固定電極(酵素電極)、電気的出力測定手段12
.13としてポテンシオスタットをそれぞれ用い、実施
例1の測定装置とした。
(Example 1) In FIG. 1, the tube 2 is a silicon tube, the biocatalyst electrodes 8 and 10 are a glucose oxidase fixed electrode (enzyme electrode) and a glucose oxidase/inhertase fixed electrode (enzyme electrode), and an electrical output measuring means. 12
.. A potentiostat was used as No. 13 to serve as the measuring device of Example 1.

実施例1の測定装置を使用し、グルコースおよびショ糖
を等モルずつ含む(それぞれ10’Mの濃度で含む)試
料溶液(測定溶液)の測定を行った。ただし、溶媒の流
量を1++l/分、試料溶液の注入量を5μβとし、生
体触媒電極に+0.7V印加して、生体触媒電極と対極
間に流れる電流値を測定することとした。測定結果を第
2図に示す。
Using the measurement device of Example 1, a sample solution (measurement solution) containing equimolar amounts of glucose and sucrose (each contained at a concentration of 10'M) was measured. However, the flow rate of the solvent was 1++l/min, the injection amount of the sample solution was 5μβ, +0.7V was applied to the biocatalyst electrode, and the value of the current flowing between the biocatalyst electrode and the counter electrode was measured. The measurement results are shown in Figure 2.

図中、実線であられす線分15はグルコースオキシダー
ゼ固定電極とその対極間に流れた電流値をあられし、破
線であられす線分16はグルコースオキシダーゼ・イン
ベルターゼ固定電極とその対極間に流れた電流値をあら
れしている。応答時間は約10秒であった。グルコース
オキシダーゼ固定電極ではグルコースが過酸化水素に変
換されるので、実線15のピークはグルコース量に対応
する。他方、グル、コースオキシダーゼ・インへルター
ゼ固定電極ではグルコースおよびショ糖の両方が過酸化
水素に変換されるので、破線16はグルコースおよびシ
ョ糖の合計量に対応している。試料溶液中のグルコース
とショ糖の濃度は同じであるため、破線1Gのピーク値
は実線15のピーク値のほぼ2倍となっている。実線1
5のピーク値よりグルコース量がわかり、破線16のピ
ーク値から実線15のピーク値を引くとショ糖量がわか
る。したがって、この測定装置では1度に2種類の物質
を測定することができる。
In the figure, the solid line segment 15 indicates the current value flowing between the glucose oxidase fixed electrode and its counter electrode, and the broken line segment 16 indicates the current value flowing between the glucose oxidase/invertase fixed electrode and its counter electrode. It's raining value. Response time was approximately 10 seconds. Since glucose is converted to hydrogen peroxide at the glucose oxidase fixed electrode, the peak of the solid line 15 corresponds to the amount of glucose. On the other hand, since both glucose and sucrose are converted to hydrogen peroxide in the fixed electrode of glucose and glucose oxidase/inhertase, the dashed line 16 corresponds to the total amount of glucose and sucrose. Since the concentrations of glucose and sucrose in the sample solution are the same, the peak value of broken line 1G is approximately twice the peak value of solid line 15. solid line 1
The amount of glucose can be determined from the peak value of 5, and the amount of sucrose can be determined by subtracting the peak value of solid line 15 from the peak value of broken line 16. Therefore, this measuring device can measure two types of substances at once.

(実施例2) 第1図において、生体触媒電極8.10としてウリカー
ゼ固定電極(酵素電極)、グルコースオキシダーゼ固定
電極(酵素電極)を用い、あとは、実施例1と同様にし
て、実施例2の測定装置とした。
(Example 2) In FIG. 1, a uricase fixed electrode (enzyme electrode) and a glucose oxidase fixed electrode (enzyme electrode) were used as the biocatalyst electrode 8.10, and the rest was carried out in the same manner as in Example 1. This is a measuring device.

まず、尿酸を0.1 mMの濃度で含む試料溶液5μβ
を注入して電流値を測定した。測定条件は実施例1で記
したと同様である。測定結果を第3図に示す。実線17
は、ウリカーゼ固定電極とその対極間、実線18は、グ
ルコースオキシダーゼ固定電極とその対極間の電流変化
をそれぞれあられしている。
First, 5μβ of a sample solution containing uric acid at a concentration of 0.1mM was prepared.
was injected and the current value was measured. The measurement conditions are the same as those described in Example 1. The measurement results are shown in Figure 3. solid line 17
shows the current change between the uricase fixed electrode and its counter electrode, and the solid line 18 shows the current change between the glucose oxidase fixed electrode and its counter electrode.

つぎに、グルコースを1m’Mの濃度で含む試料溶液5
p(lを注入して電流値を測定した。測定結果を第4図
に示す。実線19はウリカーゼ固定電極とその対極間、
実線20はグルコースオキシダーゼ固定電極とその対極
間の電流変化をそれぞれあられしている。第3図より、
尿酸はグルコースオキシダーゼ固゛定電極では影響を受
けず、第4図より、グルコースはウリカーゼ固定電極で
は影響を受けないことがわかる。
Next, sample solution 5 containing glucose at a concentration of 1 m'M
The current value was measured by injecting p(l). The measurement results are shown in FIG.
Solid lines 20 represent the current changes between the glucose oxidase fixed electrode and its counter electrode. From Figure 3,
It can be seen from FIG. 4 that uric acid is not affected by the glucose oxidase fixed electrode, and glucose is not affected by the uricase fixed electrode.

このあと、尿酸を0.1mM、グルコースを1mMの濃
度でそれぞれ含む試料溶液5μlを注入して電流値を測
定した。測定結果を第5図に示す。実線21はウリカー
ゼ固定電極とその対極間、実線22はグリコースオキシ
ダーゼ固定電極とその対極間の電流変化をそれぞれあら
れしている。第5図より、尿酸量とグルコース量がそれ
ぞれ電流値のピーク値として明確にとらえられているこ
とがわかる。
Thereafter, 5 μl of a sample solution containing uric acid at a concentration of 0.1 mM and glucose at a concentration of 1 mM was injected, and the current value was measured. The measurement results are shown in Figure 5. A solid line 21 represents the current change between the uricase fixed electrode and its counter electrode, and a solid line 22 represents the current change between the glycose oxidase fixed electrode and its counter electrode. From FIG. 5, it can be seen that the amount of uric acid and the amount of glucose are clearly captured as the peak values of the current values.

〔発明の効果〕〔Effect of the invention〕

この発明にかかる生体触媒電極を用いた測定装置は、前
記のように構成されているので、1度に複数の物質を測
定することが可能で、生体触媒電極が損傷・する恐れが
少なく、取り扱いが容易である。
Since the measuring device using the biocatalyst electrode according to the present invention is configured as described above, it is possible to measure multiple substances at once, there is less risk of damage to the biocatalyst electrode, and it can be handled easily. is easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明にかかる生体触媒電極を用いた測定装
置の1実施例の構造説明図、第2図〜第5図は時間の経
過にともなう電流変化をあられすグラフである。 1・・・溶媒溜め 2・・・管 2a・・・注入口 4
・・・ポンプ 5,6・・・筒 8,10・・・生体触
媒電極 9.11・・・対極 代理人 弁理士 松 本 武 彦 第1図 時間 10秒 第2図 時間 、0秒 第3図
FIG. 1 is a structural explanatory diagram of one embodiment of a measuring device using a biocatalyst electrode according to the present invention, and FIGS. 2 to 5 are graphs showing changes in current over time. 1... Solvent reservoir 2... Tube 2a... Inlet 4
...Pump 5,6...Cylinder 8,10...Biocatalyst electrode 9.11...Counter electrode patent attorney Takehiko Matsumoto Figure 1 Time: 10 seconds Figure 2 Time: 0 seconds 3 figure

Claims (2)

【特許請求の範囲】[Claims] (1)被測定物質を含む溶液が流れる管を備えるととも
に、管を通る溶液に接触する生体触媒電極およびその対
極を備えた測定装置であって、生体触媒電極と対極が内
部に配置された筒体が、前記管を通る溶媒を通すことが
できるよう管に取り外し可能に接続されていることを特
徴とする、生体触媒電極を用いた測定装置。
(1) A measurement device that is equipped with a tube through which a solution containing a substance to be measured flows, and a biocatalyst electrode that contacts the solution passing through the tube and its counter electrode, the tube in which the biocatalyst electrode and the counter electrode are arranged. A measuring device using a biocatalytic electrode, characterized in that the body is removably connected to a tube such that a solvent can be passed through said tube.
(2)筒体は、その一端が管に接続可能となり、他端が
同一構造の他の筒体の管側接続端に接続可能となってい
る特許請求の範囲第1項記載の生体触媒電極を用いた測
定装置。
(2) The biocatalyst electrode according to claim 1, wherein one end of the cylindrical body is connectable to a tube, and the other end is connectable to a tube-side connecting end of another cylindrical body having the same structure. A measurement device using
JP12994283A 1983-07-15 1983-07-15 Determination device using biocatalyst electrode Pending JPS6019491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12994283A JPS6019491A (en) 1983-07-15 1983-07-15 Determination device using biocatalyst electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12994283A JPS6019491A (en) 1983-07-15 1983-07-15 Determination device using biocatalyst electrode

Publications (1)

Publication Number Publication Date
JPS6019491A true JPS6019491A (en) 1985-01-31

Family

ID=15022240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12994283A Pending JPS6019491A (en) 1983-07-15 1983-07-15 Determination device using biocatalyst electrode

Country Status (1)

Country Link
JP (1) JPS6019491A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1619023A2 (en) 2004-07-20 2006-01-25 Fuji Photo Film Co., Ltd. Image forming material
EP1637324A2 (en) 2004-08-26 2006-03-22 Fuji Photo Film Co., Ltd. Color image-forming material and lithographic printing plate precursor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577665A (en) * 1980-06-17 1982-01-14 Nec Corp Time call start system of automatic switchboard
JPS5784346A (en) * 1980-11-15 1982-05-26 Toyobo Co Ltd Measuring apparatus of body liquid component
JPS5886449A (en) * 1981-11-18 1983-05-24 Toshiba Corp Ion concentration detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577665A (en) * 1980-06-17 1982-01-14 Nec Corp Time call start system of automatic switchboard
JPS5784346A (en) * 1980-11-15 1982-05-26 Toyobo Co Ltd Measuring apparatus of body liquid component
JPS5886449A (en) * 1981-11-18 1983-05-24 Toshiba Corp Ion concentration detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1619023A2 (en) 2004-07-20 2006-01-25 Fuji Photo Film Co., Ltd. Image forming material
EP1637324A2 (en) 2004-08-26 2006-03-22 Fuji Photo Film Co., Ltd. Color image-forming material and lithographic printing plate precursor

Similar Documents

Publication Publication Date Title
US4452682A (en) Apparatus for measuring clinical emergency check items of blood
US4795707A (en) Electrochemical sensor having three layer membrane containing immobilized enzymes
US5206145A (en) Method of measuring the concentration of a substance in a sample solution
US3948745A (en) Enzyme electrode
JPS6358149A (en) Biosensor
Milardović et al. Glucose determination in blood samples using flow injection analysis and an amperometric biosensor based on glucose oxidase immobilized on hexacyanoferrate modified nickel electrode
Volpe et al. Enzyme sensors for determination of fish freshness
GB1581353A (en) Measurement of content of dialysable compounds in a compleex media
JPH0235933B2 (en)
GB2102962A (en) Electronic cell for indirect measurement of clinical-chemical parameters, and method of measurement using such a cell
JPS6019491A (en) Determination device using biocatalyst electrode
US5225321A (en) Measuring apparatus using enzyme electrodes and the method thereof
EP0310824B1 (en) Method and apparatus for the determination of two different substances in a sample using enzyme electrodes
JP2928588B2 (en) Alcohol measurement method and measurement device
JP2775055B2 (en) Biosensor
Botrè et al. Determination of L-glutamate and L-glutamine in pharmaceutical formulations by amperometric L-glutamate oxidase based enzyme sensors
JPH1038844A (en) Online biosensor
JPH0230764Y2 (en)
JP2602526B2 (en) Biosensor for continuous measurement of enzyme activity
JPH0340824B2 (en)
Hornby et al. [42] The applications of immobilized enzymes in automated analysis
JPS613048A (en) Measurement using biosensor
JPS58189549A (en) Measuring cell of enzyme reaction
Redinha et al. Design and development of a flow-through glucose reactor
SU1032401A1 (en) Glukose determination method