JPS60194524A - Controlling method of plasma treatment - Google Patents

Controlling method of plasma treatment

Info

Publication number
JPS60194524A
JPS60194524A JP4907384A JP4907384A JPS60194524A JP S60194524 A JPS60194524 A JP S60194524A JP 4907384 A JP4907384 A JP 4907384A JP 4907384 A JP4907384 A JP 4907384A JP S60194524 A JPS60194524 A JP S60194524A
Authority
JP
Japan
Prior art keywords
etching
plasma
atoms
vertical
molecules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4907384A
Other languages
Japanese (ja)
Other versions
JPH0614519B2 (en
Inventor
Shinichi Taji
新一 田地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4907384A priority Critical patent/JPH0614519B2/en
Publication of JPS60194524A publication Critical patent/JPS60194524A/en
Publication of JPH0614519B2 publication Critical patent/JPH0614519B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Abstract

PURPOSE:To shorten the time for the optimization of processes regarding several blank by calculating the changes of an etching rate, shape, a selection ratio, etc. due to parameters on plasma treatment, such as gas pressure, input power, the kinds of gases, etc. without actual experiments and controlling etching treatment. CONSTITUTION:The principal cause of vertical etching is represented by the product of the reaction probability (Yai+/A) of ai<+> at energy (Ei) at a time when the particle flux of neutral particles ai and ionized particles ai of ai are projected to a fixed surface from plasma and a solid A. Since ER (vertical direction) =alphaGAMMAaiXYai/A is formed and there is etching only of neutral atoms and molecules regarding the transverse direction, an etching rate is represented by ER (vertical direction)=alphaXGAMMAaiXYai/A by the particle flux (GAMMAai) of atoms and molecules and the reaction probability (Yai/A) of ai and the solid A. Vertical and transverse etching rates at every material are obtained, the optimiztion of the conditions of etching can be drawn out by a computer on the basis of the values, and the control of etching using the computer is enabled.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、プラズマ処理の制御方法に係り、特にエツチ
ング終点の決定とエツチング条件の最適化に好適なエツ
チング特性の決定方法とこれを用いたプロセスの制御方
法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for controlling plasma processing, and in particular to a method for determining etching characteristics suitable for determining an etching end point and optimizing etching conditions, and a process using the same. Concerning a control method.

〔発明の背景〕[Background of the invention]

従来のドライエツチング特性の制御方法は、エツチング
の終点をプラズマ発光スペクトルの測定などにより検出
し、エツチング速度の均一性やエツチング後の形状や選
択比(材料間のエツチング速度比)についてはあらかじ
め行なった同種の実験結果をもとに推察していたので、
個々の素材についてプロセスの最適化に極めて長いM間
と実験が必要となる欠点があった。
The conventional method of controlling dry etching characteristics is to detect the end point of etching by measuring plasma emission spectra, etc., and to check the uniformity of etching rate, shape after etching, and selectivity (etching rate ratio between materials) in advance. Since I was making inferences based on similar experimental results,
This method has the drawback that it requires an extremely long time period and experiments to optimize the process for each material.

〔発明の目的〕[Purpose of the invention]

本発明の目的はガス圧力や入力電力、ガスの種類などと
いったプラズマ処理のパラメータによるエツチング速度
や形状2選択比等の変化を、実際の実験を行なわずに算
出する方法を提供し、かつこの決定方法を用いてエツチ
ング処理を制御する方法を提供することにある。
The purpose of the present invention is to provide a method for calculating changes in etching rate, shape 2 selection ratio, etc. due to plasma processing parameters such as gas pressure, input power, and gas type without conducting actual experiments, and to An object of the present invention is to provide a method for controlling an etching process using a method.

〔発明の概要〕[Summary of the invention]

プラズマによるエツチングは、イオンによるもの、ラジ
カルとよばれる電気的には中性の粒子によるもの、およ
びイオンとラジカルの相乗効果によるものの3つに分類
できる。この内、前2者のエツチング速度の計算法は、
単純に入射する数とそれぞれの粒子の反応確率の乗算に
より与えられることがわかっていたが、エッチ速度の主
因となるイオンとラジカルの相乗効果によるエツチング
の速度をめる方法が全くわからなかった。本発明はイオ
ンとラジカルの相乗効果をめる方法を見出しこれにもと
づいてプラズマによる反応を制御するものである。
Etching by plasma can be classified into three types: etching by ions, etching by electrically neutral particles called radicals, and etching by the synergistic effect of ions and radicals. Of these, the calculation method for the etching speed of the first two is as follows:
Although it was known that the etching rate was simply multiplied by the number of incident particles and the reaction probability of each particle, there was no way to calculate the etching rate due to the synergistic effect of ions and radicals, which is the main cause of the etching rate. The present invention is to discover a method of enhancing the synergistic effect of ions and radicals, and to control reactions caused by plasma based on this method.

〔発明の実施例〕[Embodiments of the invention]

ドライエツチングのエツチング特性は、エツチング速度
や選択比や形状により判断されるが、これらは、深さ方
向のエツチング速度と試料面に平行な横方向エツチング
速度の二つにより表わされる。ここで反応性イオンエツ
チングについては、深さ方向のエツチングを縦方向エツ
チングどすると、縦方向エツチングを行なうプラズマ中
の粒子は、正電荷をもつイオンとガス分子およびガス分
解から生じた原子2分子である。一方、横方向、エツチ
ングは、陽イオンの寄与はなく、電気的に中性な原子9
分子により行なわれる。したがって、縦方向エツチング
速度は、第一次近似として、固体に垂直に入射するイオ
ンと熱運動する中性粒子(M子2分子)のそれぞれによ
るエツチングの速さとこれらの相乗効果によるエツチン
グ速度の和となり、横方向は、中性粒子によるエツチン
グ速度だけで表わされることになる。
The etching characteristics of dry etching are determined by the etching rate, selectivity, and shape, and these are expressed by two factors: the etching rate in the depth direction and the etching rate in the lateral direction parallel to the sample surface. Regarding reactive ion etching, when etching in the depth direction is replaced with etching in the vertical direction, the particles in the plasma that perform the vertical etching are positively charged ions, gas molecules, and two molecules of atoms generated from gas decomposition. be. On the other hand, in the lateral direction, there is no contribution from cations, and electrically neutral atoms 9
It is done by molecules. Therefore, as a first approximation, the vertical etching speed is the sum of the etching speed of ions incident perpendicularly to the solid and the etching speed of thermally moving neutral particles (two M molecules), and the etching speed of the synergistic effect of these. Therefore, the lateral direction is expressed only by the etching rate by neutral particles.

縦方向エツチング速度(ERA)は、イオン種(al”
)の入射粒J束(rat”(個/ al −5ee) 
) 。
The longitudinal etching rate (ERA) is determined by the ionic species (al”
) incident particle J flux (rat” (pieces/al −5ee)
).

被エツチング材Aとイオン種a1+のイオン入射エネル
ギEiでの反応確率(Yak” /A ) p中性粒子
(ai)の粒子束(rat(個/ c+# −sec〕
)とalとエツチング材Aとの反応確率(Yat/A)
を用いると ER縦= a X I’ a t ” X Y at 
+/ A+ (Z r a i XYa+/A +(相乗効果) (1) トする。αは材料Aの定数である。ここで、第1項はイ
オンだけ、また第2項は、中性粒子だけによるエツチン
グの速度を示す。これら2つの項のエツチング速度は、
実際の反応性イオンエツチングでのエツチング速度の1
/10以下の値しか示さないことがわかった。すなわち
、縦方向エツチングの主因は、第3項の相乗効果による
ものであり、本発明では、この項が、中性粒子a1の粒
子束とalのイオン化粒子a1がプラズマから固定表面
へ入射する時のエネルギー(El)でのa1+と固定A
との反応確率(Ya++/A)の積であられれされるこ
とを実験によって見出したことにもとづいている。すな
わち、 ER縦= a r at X Y at + / A 
(2)となる。この新しい知見を実験のプラズマを用い
たエツチングに適用する方法にのべる。
Reaction probability between etched material A and ion species a1+ at ion incident energy Ei (Yak''/A) p Particle flux of neutral particles (ai) (rat (pieces/c+# -sec)
) and reaction probability between al and etching material A (Yat/A)
Using ER vertical = a X I' a t ” X Y at
+/ A+ (Z r a i XYa+/A + (synergistic effect) The etching rate of these two terms is
1 of the etching speed in actual reactive ion etching
It was found that only a value of /10 or less was shown. In other words, the main cause of vertical etching is the synergistic effect of the third term, and in the present invention, this term is defined as when the particle flux of neutral particles a1 and the ionized particles a1 of Al are incident on the fixed surface from the plasma. a1+ and fixed A at the energy (El) of
This is based on the finding through experiments that the reaction probability is the product of the reaction probability (Ya++/A). That is, ER vertical = a r at X Y at + / A
(2) becomes. We will discuss how to apply this new knowledge to experimental plasma etching.

実際のプラズマ中では、分子状ガス(Ax B y )
がプラズマ化し、ガス分子は様々な形に分解する。
In actual plasma, molecular gas (Ax B y )
becomes plasma, and the gas molecules decompose into various forms.

したがって、式(2)に示すalはその分解生成した全
ての原子や分子を表わし、エツチング速度は、その和で
与えられる。したがって、生成粒子を固定することで、
本発見をプラズマを用いたエツチングの縦方向エツチン
グ速度がわかることになる。
Therefore, al shown in formula (2) represents all the atoms and molecules produced by its decomposition, and the etching rate is given by the sum of them. Therefore, by fixing the generated particles,
This discovery allows us to understand the vertical etching speed of etching using plasma.

横方向については、中性の原子9分子だけのエツチング
となることから、エツチング速度は、原子や分子の粒子
束(rar)とalと固体Aとの反応確率(Ya+/A
)により、 ER縦= αX r a s X Y at / A 
(3)となる。
In the lateral direction, since only 9 molecules of neutral atoms are etched, the etching rate is determined by the particle flux of atoms and molecules (rar) and the reaction probability between al and solid A (Ya+/A
), ER vertical = αX ras X Y at / A
(3) becomes.

すなわち、ratとY al ” / A I Y a
、/ Aをめることにより、(2)、(3)式より被エ
ツチング材Aの縦および横方向のエツチング速度をめる
ことができることになる。
That is, rat and Y al ” / A I Y a
, /A, the etching speed of the material to be etched A in the vertical and horizontal directions can be calculated from equations (2) and (3).

本発明によれば、以上の考察をもとに、材料毎の縦およ
び横方向エツチング速度をめ、その値をもとに計算機に
より、エツチング条件の最適化を導出することができ、
計算機をもちいたエツチングの制御が可能になる。
According to the present invention, based on the above considerations, it is possible to determine the etching speed in the vertical and horizontal directions for each material, and to derive the optimization of etching conditions using a computer based on the values.
Etching can be controlled using a computer.

本発明の一実施例を、第1図と表1により説明する。本
実施例は平行平板型高周波放電プラズマエツチング装置
を用い、CF 4ガスプラズマによリSiをエツチング
する時のエツチング制御手法について述べたものである
An embodiment of the present invention will be explained with reference to FIG. 1 and Table 1. This embodiment describes an etching control method when etching Si with CF 4 gas plasma using a parallel plate type high frequency discharge plasma etching apparatus.

表 1 表1は1、CF4ガスプラズマ中で生成される原子2分
子の組成比率と、真空度が10Paである時の各中性粒
子の入射粒子束、および、各粒子のイオンであるF+、
CF3+、CF、+、CF”。
Table 1 Table 1 shows the composition ratio of two molecules of atoms generated in CF4 gas plasma, the incident particle flux of each neutral particle when the degree of vacuum is 10 Pa, and the ion F+ of each particle,
CF3+, CF, +, CF”.

C+とStとのイオンエネルギーが200eVにおける
反応確率あられしている。表1に示す粒子組成比率は、
真空度10 P、 、入力電力100W(周波数: 1
3.56 MHz)での値である。入射粒子束は、CF
4ガスが原子9分子に分解する割合を放電前後の真空度
の変化からめたもので、この場合には全体の1%が分解
している。入力電力をioowから150Wに増加する
と、分解する割合は1.5 %と3/2倍になり、入力
電力と線形な関係のあることがわかった。
The probability of reaction between C+ and St when the ion energy is 200 eV is shown. The particle composition ratios shown in Table 1 are:
Degree of vacuum: 10 P, input power: 100 W (frequency: 1
3.56 MHz). The incident particle flux is CF
The rate at which four gases are decomposed into nine atoms and molecules is determined from the change in the degree of vacuum before and after discharge, and in this case, 1% of the total is decomposed. When the input power was increased from ioow to 150 W, the decomposition rate increased by 3/2 to 1.5%, indicating a linear relationship with the input power.

各イオンF ” y CF 3 ” y CF z+と
Ssとの反応確率は、イオンエネルギーにより第1図の
ように変化する。また、エツチング装置内でSi表面に
到達するイオンエネルギーは真空度と入力電力により変
化する。
The reaction probability between each ion F `` y CF 3 '' y CF z+ and Ss changes depending on the ion energy as shown in FIG. 1. Furthermore, the ion energy that reaches the Si surface within the etching apparatus changes depending on the degree of vacuum and input power.

イオンエネルギーは、Si表面もしくは試料台の電位と
アース電位との差とほぼ等しい。したがって電位測定に
より、イオンエネルギーを決め、第1図により、そのイ
オンとStとの反応確率をめることにより、真空度およ
び入力電力により本化する反応確率がわかる。
The ion energy is approximately equal to the difference between the potential of the Si surface or sample stage and the ground potential. Therefore, by determining the ion energy by measuring the potential, and calculating the reaction probability between the ion and St using FIG. 1, the probability of a reaction occurring depending on the degree of vacuum and the input power can be determined.

表1に示す反応確率は、10Pa、100Wの条件での
イオンエネルギー200eVにおける値であり、入射粒
子束との積により、本発明ではこの条件におけるCF4
ガスを用いたStエツチング速度をめることが可能であ
った。
The reaction probability shown in Table 1 is a value at an ion energy of 200 eV under the conditions of 10 Pa and 100 W.
It was possible to increase the St etching rate using gas.

ここで、計算上特に留意すべき点は、CF4ガスの分解
により生ずるC原子やCF分子、さらにCF2.CF3
分子に含まれるCが、第2図に示すようにSi表面に堆
積することである。したがって、堆積物を表面から除く
ため、F原子が使われることになる。第1図に示したF
+イオンとC膜の反応確率では、イオンエネルギーに対
し変化なく、0.33個/イオンであった。
Here, the points to be particularly careful about in calculations are the C atoms and CF molecules produced by the decomposition of CF4 gas, as well as CF2. CF3
C contained in the molecules is deposited on the Si surface as shown in FIG. Therefore, F atoms will be used to remove deposits from the surface. F shown in Figure 1
The reaction probability between + ions and C film did not change with respect to ion energy, and was 0.33 ions/ion.

ここで、第2図で、C+はほとんど全て表面に堆積する
ことがわかる。したがって、CF3分子では、分子中に
含まれるCが堆積し、そのエツチングに、分子中の3個
のF原子が全て使用されることになる。CF 2の場合
、F[子が1測子足し、このためプラズマ中に生成され
るF原子が使われる。CF分子では、2個のF原子、さ
らにC原子の場合には3個のr?JJI子が必要である
Here, in FIG. 2, it can be seen that almost all C+ is deposited on the surface. Therefore, in the CF3 molecule, C contained in the molecule is deposited, and all three F atoms in the molecule are used for etching. In the case of CF 2 , the F atoms are added by one, and therefore the F atoms generated in the plasma are used. In the CF molecule, there are two F atoms and, in the case of C atoms, three r? JJI child is necessary.

以上の堆積物の除去に要するF原子をめ、全Fg子から
差し引くことにより、Stエツチングに使すれるF原子
粒子束が算出できる。
By subtracting the F atoms required to remove the above deposits from the total Fg atoms, the F atom particle flux used for St etching can be calculated.

計算の結果、本実施例の条件では全体の70%のF粒子
束が、Cの除去に使用され、Sjのエツチングには30
%のFが使われることがあきらかとなり、そのときの縦
方向のエツチング速度が1700人/winであること
がわかった。また横方向については100人/winと
なった。
As a result of calculation, under the conditions of this example, 70% of the total F particle flux is used for C removal, and 30% of the total F particle flux is used for etching Sj.
It became clear that F of % was used, and the etching speed in the vertical direction at that time was found to be 1700 people/win. Also, in the horizontal direction, the number was 100 people/win.

本実施例では、以上の計算をプログラム化し、計算機を
利用し、エツチング速度を導出した。本方法では、必要
な基本的データである反応確率とイオンエネルギーを与
えることにより、極めて容易に、エツチング条件とエツ
チング結果の関連性をめることができ、エツチング条件
の設定とエツチング終点の決定に極めて有効であった。
In this example, the above calculation was programmed and a computer was used to derive the etching speed. In this method, by providing the necessary basic data such as reaction probability and ion energy, it is possible to very easily determine the relationship between etching conditions and etching results, and to set the etching conditions and determine the etching end point. It was extremely effective.

本発明は、八〇やW、Mo等の金属および少なくともこ
れらの材料の一つを含む化合物、すなわちA Q −C
uや、An−Cu−8t 、 AM −N i 。
The present invention is directed to metals such as 80, W, and Mo, and compounds containing at least one of these materials, that is, AQ-C.
u, An-Cu-8t, AM-Ni.

W−8ts Mo−5iでもエツチング条件の設定やエ
ツチング終点の判定をプログラムにもとづく計算機の制
御、およびこの計算機の出力によるエツチング装置の条
件決定にも適用可能であった。
In the W-8ts Mo-5i, it was also possible to control a computer based on a program to set etching conditions and determine the end point of etching, and to determine the conditions of an etching apparatus using the output of this computer.

さらに、無機レジスト材、有機レジスト材のマスク材や
SiO□、 S i 3 N<などの絶縁物にも適用可
能であり、これらを第3図に示すように計算機プログラ
ム化することにより、積層構造を有する半導体素子の製
造プロセスの条件設定とエツチングの終点決定が極めて
容易であった。また、選択比(エツチング速度比)も同
時に明らかにできた。
Furthermore, it can be applied to mask materials such as inorganic resist materials and organic resist materials, and insulators such as SiO□ and Si3N. It was extremely easy to set the conditions for the manufacturing process and determine the end point of etching for a semiconductor device having the following properties. In addition, the selectivity (etching rate ratio) was also clarified at the same time.

エツチング用ガスとしては、CF4t SFe vNF
3等の弗素化金物ガス、ccQ、。
As the etching gas, CF4t SFe vNF
3 grade fluorinated metal gas, ccQ,.

S i CQ 4 、 B CQ 3の塩化物ガス、C
BrF3゜C,CQ F5 、C2(12F4等の2種
類以上のハロゲンを含むガス、さらにCHF3やCH2
F z等のハロゲンと水素を含む化合物ガスが適用でき
た。また、02やN 2 、H2ガスを添加しても可能
であり、また、2種以上のガスの混合においてもエツチ
ング条件の設定は極めて容易となった。
S i CQ 4 , B CQ 3 chloride gas, C
BrF3°C, CQ F5, C2 (gases containing two or more halogens such as 12F4, as well as CHF3 and CH2
A compound gas containing halogen and hydrogen such as Fz could be applied. It is also possible to add O2, N2, or H2 gas, and it has become extremely easy to set etching conditions even when two or more gases are mixed.

〔発明の効果〕〔Effect of the invention〕

本発明では、プラズマによるエツチング装置でけではな
く、イオンとガスの混合体を使用する半導体表面処理装
置であるイオンビームエツチング装置のエツチング制御
にも効果的であった。
The present invention is effective in controlling etching not only in plasma etching equipment but also in ion beam etching equipment, which is a semiconductor surface treatment equipment that uses a mixture of ions and gas.

さらに、マイクロ波を用いたプラズマエツチング装置に
も適用可能であり、エツチング特性の制御が極めて容易
であった。
Furthermore, it can be applied to a plasma etching apparatus using microwaves, and the etching characteristics can be extremely easily controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】[Claims] プラズマもしくは少なくともガスと荷電粒子の混合体お
よびイオンビームを用いた半導体素子のエツチング処理
工程において、該プラズマによる素子エツチング速度を
、該プラズマ中に発生した中性粒子(A)の粒子束(単
位時間あたり、単位面積に入射する電気的に中性な粒子
の数)FAと、中性粒子Aのイオン化粒子A+の該素子
表面への入射エネルギーでの該素子(B)とイオンA+
との化学反応確率Y A+ 、、どの乗算(rA X 
Y A−/!l )により決定し、その算出したエツチ
ング速度により
In a semiconductor device etching process using plasma or a mixture of gas and charged particles and an ion beam, the device etching rate by the plasma is expressed as the particle flux (unit time) of neutral particles (A) generated in the plasma. (number of electrically neutral particles incident on a unit area) FA and the incident energy of the ionized particles A+ of the neutral particles A on the element surface (B) and the ions A+
Probability of chemical reaction with Y A+ ,, which multiplication (rA
Y A-/! l), and based on the calculated etching rate.
JP4907384A 1984-03-16 1984-03-16 Control method of plasma processing Expired - Lifetime JPH0614519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4907384A JPH0614519B2 (en) 1984-03-16 1984-03-16 Control method of plasma processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4907384A JPH0614519B2 (en) 1984-03-16 1984-03-16 Control method of plasma processing

Publications (2)

Publication Number Publication Date
JPS60194524A true JPS60194524A (en) 1985-10-03
JPH0614519B2 JPH0614519B2 (en) 1994-02-23

Family

ID=12820903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4907384A Expired - Lifetime JPH0614519B2 (en) 1984-03-16 1984-03-16 Control method of plasma processing

Country Status (1)

Country Link
JP (1) JPH0614519B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373526A (en) * 1986-09-16 1988-04-04 Sony Corp Etching gas for silicon
JPS6459819A (en) * 1987-08-31 1989-03-07 Tokuda Seisakusho Dry etching
JPH0383335A (en) * 1989-08-28 1991-04-09 Hitachi Ltd Etching process
JPH04130723A (en) * 1990-09-21 1992-05-01 Tadahiro Omi Reactive ion etching apparatus
EP1546876A2 (en) * 2002-08-28 2005-06-29 Tokyo Electron Limited Method and system for dynamic modeling and recipe optimization of semiconductor etch processes

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373526A (en) * 1986-09-16 1988-04-04 Sony Corp Etching gas for silicon
JPS6459819A (en) * 1987-08-31 1989-03-07 Tokuda Seisakusho Dry etching
JPH0383335A (en) * 1989-08-28 1991-04-09 Hitachi Ltd Etching process
JPH04130723A (en) * 1990-09-21 1992-05-01 Tadahiro Omi Reactive ion etching apparatus
EP1546876A2 (en) * 2002-08-28 2005-06-29 Tokyo Electron Limited Method and system for dynamic modeling and recipe optimization of semiconductor etch processes
EP1546876A4 (en) * 2002-08-28 2008-11-19 Tokyo Electron Ltd Method and system for dynamic modeling and recipe optimization of semiconductor etch processes

Also Published As

Publication number Publication date
JPH0614519B2 (en) 1994-02-23

Similar Documents

Publication Publication Date Title
Sekine Dielectric film etching in semiconductor device manufacturing: Development of SiO2 etching and the next generation plasma reactor
Booth Optical and electrical diagnostics of fluorocarbon plasma etching processes
Efremov et al. On the control of plasma parameters and active species kinetics in CF 4+ O 2+ Ar gas mixture by CF 4/O 2 and O 2/Ar mixing ratios
US4253907A (en) Anisotropic plasma etching
Golden The degradation of polytetrafluoroethylene by ionizing radiation
d’Agostino et al. Mechanism of etching, polymerization and deposition in RF (radio frequency) discharges
Wilkinson et al. Dry etching and sputtering
Lim et al. A Comparison of CF 4, CHF 3 and C 4 F 8+ Ar/O 2 Inductively Coupled Plasmas for Dry Etching Applications
JPH09171994A (en) Shape simulation method
US5017511A (en) Method for dry etching vias in integrated circuit layers
JPS60194524A (en) Controlling method of plasma treatment
Murin et al. Features of the kinetics of bulk and heterogeneous processes in CHF 3+ Ar and C 4 F 8+ Ar plasma mixtures
Tatsumi Quantitative control of plasma and surface reactions for dielectric film etching
Efremov et al. On the effect of the ratio of concentrations of fluorocarbon components in a CF 4+ C 4 F 8+ Ar mixture on the parameters of plasma and SiO 2/Si etching selectivity
d'Agostino et al. Radiofrequency plasma decomposition of C n F 2 n+ 2-H 2 and CF 4-C 2 F 4 mixtures during Si etching or fluoropolymer deposition
Zhang et al. Modeling and experimental investigation of the plasma uniformity in CF4/O2 capacitively coupled plasmas, operating in single frequency and dual frequency regime
Kopalidis et al. Modeling and experimental studies of a reactive ion etcher using SF 6/O 2 chemistry
Efremov et al. Parameters of Gaseous Phase and Kinetics of Reactive Ion Etching of SiO2 in CF4/C4F8/Ar/He Plasma
Sekine Study for plasma etching of dielectric film in semiconductor device manufacturing. Review of ASET research project
Oh et al. A Study of Parameters Related to the Etch Rate for a Dry Etch Process Using NF 3/O 2 and SF 6/O 2
JPH11345803A (en) Method and apparatus for plasma production and processing
Efremov et al. Kinetics of the Volumetric and Heterogeneous Processes in the Plasma of a C 4 F 8+ O 2+ Ar Mixture
Tinck et al. Numerical Investigation of Si O 2 Coating Deposition in Wafer Processing Reactors with Si C l4/O 2/A r Inductively Coupled Plasmas
Efremov et al. Kinetics and Mechanisms of Reactive-Ion Etching of Si and SiO 2 in a Plasma of a Mixture of HBr+ O 2
Lee et al. Observations of Silicon Surfaces Exposed to Inductively Coupled CHF3 and C4F8/H2 Plasmas Using Fourier Transform Infrared Ellipsometry