JPS6017596B2 - Method for suppressing nitrification reaction in aerobic activated sludge treatment - Google Patents

Method for suppressing nitrification reaction in aerobic activated sludge treatment

Info

Publication number
JPS6017596B2
JPS6017596B2 JP53060444A JP6044478A JPS6017596B2 JP S6017596 B2 JPS6017596 B2 JP S6017596B2 JP 53060444 A JP53060444 A JP 53060444A JP 6044478 A JP6044478 A JP 6044478A JP S6017596 B2 JPS6017596 B2 JP S6017596B2
Authority
JP
Japan
Prior art keywords
activated sludge
orp
tank
sludge treatment
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53060444A
Other languages
Japanese (ja)
Other versions
JPS54152351A (en
Inventor
正博 藤井
雅明 八田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP53060444A priority Critical patent/JPS6017596B2/en
Publication of JPS54152351A publication Critical patent/JPS54152351A/en
Publication of JPS6017596B2 publication Critical patent/JPS6017596B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】 本発明は、有機性汚濁物質及びアンモニア化合物が共存
する排水を好気性活性汚泥処理(以下活性汚泥処理Tに
より有機性汚濁物質を除去処理するにあたり、曝気槽の
酸化還元電位を制御する事により、曝気槽におけるアン
モニア化合物の硝酸化合物及び又は亜硝酸化合物への酸
化を抑制して、有機性汚濁物の除去処理を円滑に行なう
方法である。
Detailed Description of the Invention The present invention provides a method for removing organic pollutants by aerobic activated sludge treatment (hereinafter referred to as activated sludge treatment T) from wastewater in which organic pollutants and ammonia compounds coexist. This method suppresses the oxidation of ammonia compounds to nitrate compounds and/or nitrite compounds in the aeration tank by controlling the electric potential, thereby smoothly performing the removal process of organic pollutants.

都市下水、し尿、工場排水等に含まれている有機性汚濁
物質を除去するため活性汚泥処理が普遍的方法になって
いる。
Activated sludge treatment has become a universal method for removing organic pollutants contained in urban sewage, human waste, industrial wastewater, etc.

このような排水の活性汚泥処理の場合、バクテリャの集
合体である活性汚泥には、有機性汚濁物質を分解するバ
クテリヤ(以下BOD資化菌)の他に、アンモニア化合
物を硲酸化合物及び又は亜硝酸化合物等の窒素酸化物に
酸化する硝化菌或いは嫌気性条件で前記窒素酸化物を還
元する通性脱窒菌等が共存している。このように活性汚
泥は、種々の機能を持ったバクテリャの集合体のため、
排水中に有機性汚濁物質の他にアンモニア化合物が共存
していると、活性汚泥処理の条件によってはアンモニア
化合物が硝化菌の作用により窒素酸化物に酸化される。
これらの窒素酸化物は活性汚泥処理に対して著しく悪影
響する。即ち、活性汚泥処理の曝気槽に亜硝酸化合物が
生成すると、BOD質化菌の機能を阻害するため、有機
性汚濁物質の除去性が低下し、処理水質が悪化する。更
に窒素酸化物が生成すると鰻気槽内のpHが低下し、バ
クテリャが活動するのに不適当な軸になり活性汚泥の機
能が低下する事もある。また、窒素酸化物の生成はバク
テリャの機能を阻害するだけではなく別の問題もある。
In the case of activated sludge treatment of such wastewater, activated sludge, which is an aggregate of bacteria, contains not only bacteria that decompose organic pollutants (hereinafter referred to as BOD assimilating bacteria) but also ammonia compounds, silicic acid compounds, and/or Nitrifying bacteria that oxidize to nitrogen oxides such as nitrate compounds and facultative denitrifying bacteria that reduce nitrogen oxides under anaerobic conditions coexist. In this way, activated sludge is a collection of bacteria with various functions.
When ammonia compounds coexist in wastewater in addition to organic pollutants, depending on the conditions of activated sludge treatment, the ammonia compounds are oxidized to nitrogen oxides by the action of nitrifying bacteria.
These nitrogen oxides have a significant negative effect on activated sludge treatment. That is, when a nitrous acid compound is generated in an aeration tank for activated sludge treatment, it inhibits the function of BOD-improving bacteria, reducing the ability to remove organic pollutants and deteriorating the quality of treated water. Furthermore, when nitrogen oxides are produced, the pH in the eel tank decreases, making it an unsuitable axis for bacterial activity, and the function of the activated sludge may deteriorate. Furthermore, the production of nitrogen oxides not only inhibits bacterial function, but also poses other problems.

即ち、鰻気槽で生成した窒素酸化物は、汚泥沈降槽が嫌
気性のため脱窒菌の作用により窒素ガスに還元される。
この窒素ガスが活性汚泥に付着するため、汚泥沈降糟に
おいて汚泥の浮上が起り汚泥が流出し、処理水の浮遊物
質が増加する。この汚泥浮上流出により、汚泥三沈降槽
より暖気槽への返送汚泥濃度が低下し、このため曝気槽
の汚泥濃度が著しく低下する。
That is, the nitrogen oxides produced in the eel tank are reduced to nitrogen gas by the action of denitrifying bacteria since the sludge settling tank is anaerobic.
Since this nitrogen gas adheres to the activated sludge, the sludge floats up in the sludge settling basin, the sludge flows out, and the amount of suspended solids in the treated water increases. Due to this sludge floating and flowing out, the concentration of sludge returned from the sludge settling tank to the warming tank decreases, and therefore the sludge concentration in the aeration tank decreases significantly.

したがって活性汚泥単位量当りの汚濁物質の負荷量が増
大し、更に活性汚泥の機能を低下させる原因となる。こ
のため、活性汚泥処理においては暖気槽の硝化反応を抑
制する方法として、溶存酸素量を管理したり或いは薬品
を添加したりしているが、これらの方法には多くの問題
点がある。
Therefore, the load amount of pollutants per unit amount of activated sludge increases, which causes further deterioration of the function of activated sludge. For this reason, in activated sludge treatment, methods for suppressing the nitrification reaction in the warm air tank include controlling the amount of dissolved oxygen or adding chemicals, but these methods have many problems.

まず、蟻気槽の溶存酸素濃度を調節する方法について説
明する。
First, a method for adjusting the dissolved oxygen concentration in the ant tank will be explained.

好気性活性汚泥処理による排水中の有機性汚濁物質の分
解は、酸化反応で、バクテリャが溶存酸素を利用して分
解する。この事から、活性汚泥処理の管理方法として用
いられている熔存酸素濃度の測定は、飽和溶存酸素濃度
からバクテリャの利用した酸素を除いた残存酸素量を測
定している可能性がある。このため、80D資化菌以外
に溶存酸素を利用するバクテリャ、例えば硝化菌等が共
存していれば、硝化菌も溶存酸素を利用してアンモニア
を酸化して窒素酸化物を形成する。発明者等の研究によ
ると有機性汚濁物質とアンモニア化合物が共存する排水
を活性汚泥法で処理した場合、爆気糟と溶存酸素濃度と
窒素酸化物の生成量との間には一定の関係がなく、した
がって蟻気槽、溶存酸素濃度は硝化反応抑制の指標には
ならない事が明らかになった。
The decomposition of organic pollutants in wastewater through aerobic activated sludge treatment is an oxidation reaction in which bacteria use dissolved oxygen to decompose the organic pollutants. From this, it is possible that the measurement of dissolved oxygen concentration, which is used as a control method for activated sludge treatment, measures the amount of residual oxygen after removing the oxygen used by bacteria from the saturated dissolved oxygen concentration. Therefore, if bacteria that utilize dissolved oxygen, such as nitrifying bacteria, coexist in addition to 80D assimilating bacteria, the nitrifying bacteria will also utilize dissolved oxygen to oxidize ammonia and form nitrogen oxides. According to research conducted by the inventors, when wastewater containing organic pollutants and ammonia compounds is treated using the activated sludge method, there is a certain relationship between the concentration of dissolved oxygen and the amount of nitrogen oxides produced. Therefore, it became clear that the ant gas tank and dissolved oxygen concentration were not indicators of nitrification reaction suppression.

一般に硝化反応の抑制法としては、曝気槽における窒素
酸化物の生成量の測定、汚泥沈降槽での汚泥浮上性の勧
察等を行なって陽気槽を管理している。
In general, methods for suppressing nitrification reactions include measuring the amount of nitrogen oxides produced in the aeration tank, and inspecting sludge flotation in the sludge settling tank to manage the aerated tank.

したがって、従来の方法は硝化反応を事前に抑制する方
法ではなく、硝化反応が発生してからアクションを取る
後追い抑制方法である。また、窒素酸化物の生成を恐れ
るあまり最初から曝気槽を抑えると、硝化反応は抑制で
きても、BOD資化菌の酸素量が不足しBOD簿化菌の
機能を低下させる事になる。これらの事から活性汚泥処
理の硝化反応抑制方法として溶存酸素濃度、蟻気糟を管
理する方法は根本的な抑制方法とは云い難い。
Therefore, the conventional method is not a method of suppressing the nitrification reaction in advance, but a follow-up suppression method of taking action after the nitrification reaction occurs. Furthermore, if the aeration tank is suppressed from the beginning out of fear of the production of nitrogen oxides, even if the nitrification reaction can be suppressed, the amount of oxygen for the BOD assimilating bacteria will become insufficient and the function of the BOD assimilating bacteria will deteriorate. For these reasons, it is difficult to say that the method of controlling dissolved oxygen concentration and ant scale as a method of suppressing the nitrification reaction in activated sludge treatment is a fundamental method of suppression.

また、硝化反応を抑制する薬品が販売されているが多量
の排水を処理する場合にはコスト的に問題がある。
Additionally, chemicals that suppress nitrification reactions are on the market, but they pose a cost problem when treating large amounts of wastewater.

次に本発明の方法について詳細に説明する。Next, the method of the present invention will be explained in detail.

本発明者等は活性汚泥処理における有機性汚濁物質の分
解反応及びアンモニア化合物の硝化反応等について反応
機構を詳細に検討した結果、第I図及び第2図に示すよ
うに曝気槽内の酸化還元電位(以下ORP)と処理水の
COD及び簾気槽内の窒素酸化物の生成量との間に密接
な関係がある事が明らかになった。まず、有機性汚濁物
質の生物学的分解性とORPとの関係は第1図に示よう
にORPが酸化側になる程、処理水のCOD値が低くな
る。
The present inventors have investigated in detail the reaction mechanisms of the decomposition reaction of organic pollutants and the nitrification reaction of ammonia compounds in activated sludge treatment. It has become clear that there is a close relationship between the electric potential (hereinafter referred to as ORP), the COD of treated water, and the amount of nitrogen oxides produced in the aeration tank. First, as shown in FIG. 1, the relationship between the biological degradability of organic pollutants and the ORP is such that the COD value of the treated water decreases as the ORP becomes more oxidized.

更に、ORPと生物分解残存物質の種類との関係を検討
した結果、フェノールのように比較的活性汚泥によって
分解されやすいものは‐10皿V〜仇hV〔以下金一塩
化銀複合電極測定値(金一銀と塩化線の複合電極測定値
)〕程度でも分解するが、クレゾール、ロダン化合物等
は仇hV以下では分解率が低下するが、十郎hV〜十1
0肌V以下ではほとんど分解する。一方、活性汚泥にお
ける硝化反応は第2図に示すようにORP+10仇hV
以下では窒素酸化物をほとんど生成しないが、十15皿
V程度から、徐々に窒素酸化物の生成が認められ、十2
00hV以上になると急激に窒素酸イ物物が生成し、沈
降糟での汚泥の浮上流出が起る。
Furthermore, as a result of examining the relationship between ORP and the type of biodegradable residual substances, it was found that substances that are relatively easy to decompose by activated sludge, such as phenol, were found to have a value of -10 V to 2 hV [hereinafter measured with a gold monosilver chloride composite electrode]. Although the decomposition rate of cresol, rhodan compounds, etc. decreases below 10 hV, the decomposition rate decreases below 10 hV, but the decomposition rate of cresol, rhodan compounds, etc.
Below 0 skin V, it is almost decomposed. On the other hand, the nitrification reaction in activated sludge takes place at ORP+10hV as shown in Figure 2.
Below, almost no nitrogen oxides are generated, but from about 115 dishes V, nitrogen oxides are gradually formed, and 12
When the voltage exceeds 00 hV, nitrogen acid compounds are rapidly generated, and sludge floats up and flows out in the settling basin.

また、窒素酸化物の内、亜硝酸性窒素化合物の生成量と
処理水のCOD、フェノール、ロダン等の残存量との関
係を第3図に示す。
Furthermore, among nitrogen oxides, the relationship between the amount of nitrite nitrogen compounds produced and the remaining amount of COD, phenol, rhodan, etc. in the treated water is shown in FIG.

この事から亜硝酸性窒素化合物は800資化菌の機能を
阻害しており、蛭硝酸性窒素、約5物似上になると阻害
効果は顕著である。したがって蟻気槽内の塵硝酸性窒素
は約50餌以下に抑制する必要がある。これらの事から
、鰻気槽のORPは有機性汚濁物質の分解性からは十2
胸hV以上の酸化側が良いが、窒素酸化物の生成による
汚泥の浮上流出及び函硝酸性窒素化合物によるBOD資
化菌の機能阻害等から考えると十150hV以下が良い
。暖気槽内のORPを十5瓜hVから十150hVの範
囲に維持すれば、硝化反応をかなり抑制する事ができ、
しかも幾分磁性の有機性汚濁物質も処理する事ができる
。したがって蟻翁槽内のORPを指際にして活性汚泥処
理を行なえば、窒素酸化物による前述のようなトラブル
の発生がなく、安定した活性汚泥処理ができる。次に曝
気糟のORP制御方式について説明する。
From this, nitrite nitrogen compounds inhibit the functions of 800 assimilating bacteria, and the inhibitory effect is remarkable when the concentration of nitrite nitrogen compounds is about 50%. Therefore, it is necessary to suppress the amount of dust nitrate nitrogen in the ant tank to about 50 baits or less. Based on these facts, the ORP of the eel tank is 12% in terms of the decomposition of organic pollutants.
The oxidation side should be higher than thoracic hV, but it is better to set it below 1150 hV in view of the upwelling of sludge due to the production of nitrogen oxides and the inhibition of the function of BOD assimilating bacteria by nitrate nitrogen compounds. If the ORP in the warm air tank is maintained within the range of 15 to 1150 hV, the nitrification reaction can be significantly suppressed.
Furthermore, it is possible to treat organic pollutants that are somewhat magnetic. Therefore, if the activated sludge treatment is carried out using the ORP in the ant tank as a guide, the above-mentioned troubles caused by nitrogen oxides will not occur and stable activated sludge treatment will be possible. Next, the ORP control method for the aeration tank will be explained.

暖気槽のORPは暖気量、流入汚濁物質量、活性汚泥の
濃度及び活性度、温度、柑等によって変動する。これら
の変動要因の内、ORP自動制御装置によって比較的容
易に自動制御できるのは爆気量及び流入汚濁物質量であ
る。即ち、ORPは曝気量が増加すると酸化側電位に、
汚濁物質の流入量が増加すると還元側電位側にそれぞれ
移行する。しかし、流入汚濁物量でORPを制御する方
式は、活性汚泥に対する汚濁物の負荷量が変動するので
バクテリャに対して好ましくなく、機能低下の原因にな
る。したがって、ORP制御方法はORP自動制御装置
により曝気槽を調整する方法が最適である。なお、OR
Pの変動要因である温度、pHは活性汚泥に対して最適
な条件に自動制御して維持すれば舟、温度のORPへの
影響は少ない。次に本発明の実施例について説明する。
The ORP of the warm air tank varies depending on the amount of warm air, the amount of inflowing pollutants, the concentration and activity of activated sludge, the temperature, and the like. Among these fluctuation factors, the amount of explosive gas and the amount of inflowing pollutants can be automatically controlled relatively easily by the ORP automatic control device. In other words, ORP changes to the oxidation side potential as the aeration amount increases,
When the inflow amount of pollutants increases, the potential shifts to the reduction side. However, the method of controlling ORP based on the amount of inflowing pollutants is unfavorable for bacteria because the amount of pollutants loaded on the activated sludge varies, which causes a decline in functionality. Therefore, the optimal ORP control method is to adjust the aeration tank using an ORP automatic control device. In addition, OR
Temperature and pH, which are factors that cause P fluctuations, can be automatically controlled and maintained at optimal conditions for activated sludge, so that the influence of temperature on ORP will be small. Next, examples of the present invention will be described.

コークスの製造菱贋より排出する排水を第4図に示す活
性汚泥処理装置を用いて処理した。
The wastewater discharged from a coke production facility was treated using an activated sludge treatment device shown in FIG.

即ちコークス製造袋鷹1の排水から油分、タール、浮遊
性物質等を除去した後、排水を貯留槽2に貯留する。こ
の排水(10重量部)を海水(20重量部)、淡水(1
の重量部)によって混合槽3で均一に4倍希釈し、更に
州調整槽4で餌7.0〜7.5に調整した後、COD負
荷が0.2〜0.5k9/MBSk9・日になるように
曝気槽5に通水する。この曝気槽5は、活性汚泥濃度(
M山SS)約4000〜800の四、温度28〜3が○
で測定検出端としてORP(金一塩化銀復合電極)6、
柑測定計7、溶存酸素濃度計8、汚泥濃度計9、温度計
10、亜硝酸性窒素測定機器16等を備え、それぞれが
記録計14に記録される。ORP6検出機はORP自動
制御装置11に接続している。ORPの制御は、ORP
制御装贋11によりブロワー12を自動制御する。
That is, after removing oil, tar, floating substances, etc. from the waste water from the coke production bag hawker 1, the waste water is stored in the storage tank 2. This waste water (10 parts by weight) was mixed with seawater (20 parts by weight) and fresh water (1 part by weight).
After uniformly diluting the bait by 4 times in the mixing tank 3 with the weight part of Water is passed through the aeration tank 5 so that This aeration tank 5 has an activated sludge concentration (
M mountain SS) Approximately 4000-800 4, temperature 28-3 is ○
ORP (gold monosilver chloride polymerization electrode) 6 as the measurement detection end,
It is equipped with a citrus measuring meter 7, a dissolved oxygen concentration meter 8, a sludge concentration meter 9, a thermometer 10, a nitrite nitrogen measuring device 16, etc., each of which is recorded on a recorder 14. The ORP6 detector is connected to the ORP automatic control device 11. The control of ORP is
The blower 12 is automatically controlled by the control device 11.

即ち、暖気槽のORPが設定ORP値より還元側になっ
た場合、ORP制御装置11の制御によりブ。ワー12
が稼動し蟻気槽5に送風する。蝿気槽5のORPが設定
値に回復したら、ブロワー12が停止する。このように
ORP制御装置11によりブロワー12が制御され、暖
気槽5内のORPが自動制御される。また、蟻気糟内の
活性汚泥は常時燈梓する必要があり、そのため鍵梓用の
ブロワー13が必要であり、そのブロワーはORP制御
に関係なく常時稼動しており、ORP制御用のブロワー
12と常時稼動しているブロワー13との送風量の割合
は約1:2である。なお、第4図のPは送水用ポンプ、
Mは凝梓機、15は活性汚泥の沈降槽を示す。
That is, when the ORP of the warming tank becomes lower than the set ORP value, the ORP control device 11 controls the operation. War 12
operates and blows air into the ant tank 5. When the ORP of the fly tank 5 recovers to the set value, the blower 12 stops. In this way, the blower 12 is controlled by the ORP control device 11, and the ORP in the warm-up tank 5 is automatically controlled. In addition, the activated sludge in the ant cage needs to be lit at all times, so a blower 13 for locking is required, and the blower is always operating regardless of ORP control, and the blower 12 for ORP control is required. The ratio of the amount of air blown by the blower 13 and the blower 13 which is constantly operating is approximately 1:2. In addition, P in Fig. 4 is a water pump,
M is a flocculator, and 15 is an activated sludge settling tank.

以上の条件で活性汚泥処理した結果を第1図から第3図
に示す。
The results of activated sludge treatment under the above conditions are shown in Figures 1 to 3.

まず、曝気槽のORPと窒素酸化物(以下N○x−N)
の生成量との関係は、第2図に示すように、ORP+1
5仇hV程度からN0x−Nが数側程度生成し、十20
0hVにするとN○×一Nが50〜10Q血と急激に生
成する。次にORPを十2皿hV〜25仇hVに維持し
てNOx−Nを50〜150脚程度生成させた後、OR
Pを十15仇hV以下に制御すると、2独特間後にはN
Ox−Nの量は約10脚以下に減少する。このようにO
RPを制御する事によりN○x−Nの生成を任意に調整
する事ができる。次に曝気槽のORPと処理水のCOD
との関係を第1図に示すが、ORPが酸化側にある程C
OD値は低く、有機性汚濁物質が良く分解する事を示し
ている。
First, ORP of the aeration tank and nitrogen oxides (hereinafter referred to as N○x-N)
As shown in Figure 2, the relationship between the amount of production and the amount of ORP+1
Several degrees of N0x-N are generated from about 5 hV, and about 120
When set to 0hV, N○×1N rapidly generates 50-10Q blood. Next, ORP is maintained at 12 hV to 25 hV to generate about 50 to 150 NOx-N, and then ORP is
When P is controlled to below 115 hV, after 2 hours, N
The amount of Ox-N is reduced to about 10 legs or less. Like this O
By controlling RP, the generation of N○x-N can be arbitrarily adjusted. Next, the ORP of the aeration tank and the COD of the treated water.
Figure 1 shows the relationship between C and C.
The OD value was low, indicating that organic pollutants were well decomposed.

しかし十20仇hV以上に維持しているとNO広一Nが
発生し第3図に示すようにN○x−NがBOD資化菌の
機能を阻害するのと同時に亜硝酸性窒素化合物によりC
OD値が高うなる。したがって曝気槽のORPを十5仇
hVから十15伍hV程度に制御すれば、例え数柳程度
のNO広−Nが生成しても80D資化菌の機能をほとん
ど阻害せず、また有機性汚濁物質の分解性も良好であり
、更に汚泥沈降槽における汚泥の浮上流出等のトラブル
が発生しない。本発明は好気性活性汚泥処理において爆
気槽のORPを制御する事により、硝化反応を抑制して
活性汚泥を円滑に行う事ができる。
However, if the temperature is maintained at 120 hV or more, NOx-N is generated, and as shown in Figure 3, N○x-N inhibits the function of BOD-assimilating bacteria, and at the same time, nitrite nitrogen compounds cause CO
The OD value is high. Therefore, if the ORP of the aeration tank is controlled from 15 to 115 hV, even if a few willows of NO-N are produced, it will hardly inhibit the function of 80D assimilating bacteria, and the organic The decomposition of pollutants is also good, and troubles such as sludge floating up and flowing out in the sludge settling tank do not occur. The present invention can suppress the nitrification reaction and smoothly perform activated sludge treatment by controlling the ORP of the aeration tank in aerobic activated sludge treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は顔気槽のORPと活性汚泥処理水のCODとの
関係を示したものである。 第2図は鰻気糟のORPと暖気槽の窒素酸化物の生成量
との関係を示したものである。第3図は爆気槽の窒素酸
化物の生成量と活性汚泥処理水のCOD、フェノール、
ロダンの除去性を示したものである。第4図はコークス
製造装置より排出する排水を活性汚泥処理を行なう場合
の活性汚泥装置の千既略図を示したものである。オー図 汁Z図 分三図 外4図
Figure 1 shows the relationship between the ORP of the face tank and the COD of activated sludge treated water. Figure 2 shows the relationship between the ORP of the eel air tank and the amount of nitrogen oxide produced in the warm tank. Figure 3 shows the amount of nitrogen oxide produced in the explosion tank, the COD of activated sludge treated water, phenol,
This shows Rodin's removability. FIG. 4 is a schematic diagram of an activated sludge apparatus for treating wastewater discharged from a coke manufacturing apparatus with activated sludge. O figure soup Z figure part 3 figure outside 4 figure

Claims (1)

【特許請求の範囲】 1 有機性汚濁物質及びアンモニア化合物が共存する排
水の好気性活性汚泥処理において、曝気槽の酸化還元電
位を金と塩化銀複合電極による測定値が+50mvから
+150mvの範囲に制御してアンモニア化合物の硝化
反応を抑制することを特徴とする好気性活性汚泥処理に
おける硝化反応の抑制方法。 2 曝気槽内の亜硝酸性窒素が50ppm以下になるよ
うに酸化還元電位を制御する特許求の範囲第1項記載の
方法。
[Claims] 1. In aerobic activated sludge treatment of wastewater in which organic pollutants and ammonia compounds coexist, the redox potential of the aeration tank is controlled to a value measured by a gold and silver chloride composite electrode in the range of +50 mv to +150 mv. A method for suppressing a nitrification reaction in aerobic activated sludge treatment, characterized by suppressing the nitrification reaction of an ammonia compound. 2. The method according to claim 1, wherein the redox potential is controlled so that the nitrite nitrogen in the aeration tank is 50 ppm or less.
JP53060444A 1978-05-20 1978-05-20 Method for suppressing nitrification reaction in aerobic activated sludge treatment Expired JPS6017596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53060444A JPS6017596B2 (en) 1978-05-20 1978-05-20 Method for suppressing nitrification reaction in aerobic activated sludge treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53060444A JPS6017596B2 (en) 1978-05-20 1978-05-20 Method for suppressing nitrification reaction in aerobic activated sludge treatment

Publications (2)

Publication Number Publication Date
JPS54152351A JPS54152351A (en) 1979-11-30
JPS6017596B2 true JPS6017596B2 (en) 1985-05-04

Family

ID=13142445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53060444A Expired JPS6017596B2 (en) 1978-05-20 1978-05-20 Method for suppressing nitrification reaction in aerobic activated sludge treatment

Country Status (1)

Country Link
JP (1) JPS6017596B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286597A (en) * 1986-06-03 1987-12-12 Sumitomo Jukikai Envirotec Kk Biological denitrification of raw excretion
JPH06206086A (en) * 1993-01-08 1994-07-26 Nippon Steel Corp Biological treatment of waste liquid and acclimation of microorganism
JP2693099B2 (en) * 1993-01-20 1997-12-17 新日本製鐵株式会社 Biological treatment method and acclimation method of microorganisms
JP6446220B2 (en) * 2014-09-29 2018-12-26 電源開発株式会社 Jellyfish waste reduction method and jellyfish waste reduction device

Also Published As

Publication number Publication date
JPS54152351A (en) 1979-11-30

Similar Documents

Publication Publication Date Title
JP2803941B2 (en) Control method of intermittent aeration type activated sludge method
JPH08192185A (en) Biologically nitrifying and denitrifying method
JPS6017596B2 (en) Method for suppressing nitrification reaction in aerobic activated sludge treatment
JPH04104896A (en) Method for controlling drainage
JP4101539B2 (en) Wastewater treatment equipment
JP3377346B2 (en) Organic wastewater treatment method and apparatus
JPS6221597B2 (en)
JPH01228593A (en) Purification of sewage
JPS6154296A (en) Treatment of sewage
JPH0148834B2 (en)
JP2722271B2 (en) Method for simultaneous removal of BOD, nitrogen compounds and phosphorus compounds in wastewater
JP3782738B2 (en) Wastewater treatment method
JP7181078B2 (en) Water treatment method and water treatment equipment
JP3639679B2 (en) Nitrogen removal method of wastewater by modified activated sludge circulation method
JP2001212591A (en) How to remove nitrogen from wastewater
JPH09290290A (en) Treatment of coke-oven gas liquor
JPH08309388A (en) Nitrification equipment
JP2678803B2 (en) Method for simultaneous removal of BOD, nitrogen compounds and phosphorus compounds in wastewater
JP2711744B2 (en) Method for simultaneous removal of wastewater BOD, nitrogen compounds and phosphorus compounds
Shiskowski Biological nitrification and denitrification of high ammonia landfill leachate using pre denitrification and pre/post denitrification processes
JPH03278896A (en) Simultaneous removal of bod, nitrogen compound and phosphorus compound in waste water
JPH038840B2 (en)
JPH09290292A (en) Biological denitrification treatment of coke-oven gas liquor
JP2000015291A (en) Method for treating flue gas desulfurization drainage
JPS6253238B2 (en)