JPS60174468A - Heat pump device for air-conditioning - Google Patents

Heat pump device for air-conditioning

Info

Publication number
JPS60174468A
JPS60174468A JP59027205A JP2720584A JPS60174468A JP S60174468 A JPS60174468 A JP S60174468A JP 59027205 A JP59027205 A JP 59027205A JP 2720584 A JP2720584 A JP 2720584A JP S60174468 A JPS60174468 A JP S60174468A
Authority
JP
Japan
Prior art keywords
heat
pump device
heating
heat pump
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59027205A
Other languages
Japanese (ja)
Inventor
光司 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Diesel Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Diesel Engine Co Ltd filed Critical Yanmar Diesel Engine Co Ltd
Priority to JP59027205A priority Critical patent/JPS60174468A/en
Publication of JPS60174468A publication Critical patent/JPS60174468A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関駆動の圧縮機を有する冷暖房用のヒー
トポンプ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat pump device for air conditioning and heating, which has a compressor driven by an internal combustion engine.

〔従来技術〕[Prior art]

従来、ヒートボ/プ式冷暖房装置を使用して暖房を行な
う際に、外気温度が低下して暖房能力が不足した場合、
補助熱源として、室内側熱交換器に適宜の電気ヒータを
配設し、その発熱により暖房能力の不足を補う手段が採
用されていたが、電力を熱源として使用しているので運
転経費が高くつく許りでなく、温間制御機構が比較的複
雑であるという欠点を有していた。
Conventionally, when heating using a HEATBO/P type air conditioning system, if the outside air temperature drops and the heating capacity is insufficient,
As an auxiliary heat source, an appropriate electric heater was installed in the indoor heat exchanger, and the heat generated by the heater compensated for the lack of heating capacity, but since electricity was used as the heat source, operating costs were high. However, it has the disadvantage that the warm control mechanism is relatively complicated.

捷だ、冷暖房装置とは別個に温水ボイラー等の補助熱源
機構を附設して温水を室内側熱交換器に送り、暖房能力
が不足した場合の補助熱源として利用する手段も採られ
ているが、この場合は設備費が高額になるという欠点を
ゼしていた。
However, it is also possible to install an auxiliary heat source mechanism such as a hot water boiler separately from the air conditioning system and send hot water to the indoor heat exchanger to use it as an auxiliary heat source when heating capacity is insufficient. In this case, the disadvantage was that the equipment costs were high.

そこで以上の事実に看目し、空冷ヒートポンプ式冷暖房
装置に、暖房時の圧縮機の吸入ガスの温度に対応して熱
容量を適宜変化し得るごとき冷媒加熱器を配設すると共
に、加熱サイクル時の感温膨張弁の感温体を前記冷媒加
熱器の出口側管路に配設することにより、外気温度の低
下に関係なく安定した暖房を可能ならしめ、かつ圧縮機
吸入ガスの過熱度を安定せしめることにより運転効率を
向上し得る空冷ヒートポンプ式冷暖房装置ケ提供しよう
とする実公昭46−33816の考案がなされているが
、この装置においては外部の熱源を利用するものであり
、どうしても外部の熱源を必要とするという欠点がある
Therefore, in view of the above facts, we installed a refrigerant heater in the air-cooled heat pump type air-conditioning system that can change the heat capacity appropriately according to the temperature of the intake gas of the compressor during heating, and By arranging the temperature-sensitive element of the temperature-sensitive expansion valve on the outlet side conduit of the refrigerant heater, stable heating is possible regardless of the drop in outside temperature, and the degree of superheating of the compressor suction gas is stabilized. Japanese Utility Model Publication No. 46-33816 has been devised to provide an air-cooled heat pump type air-conditioning and heating system that can improve operating efficiency by increasing the temperature of the air. The disadvantage is that it requires

一方、内燃機関を冷凍機の圧縮機に連結し、その冷凍機
の凝縮器と内燃機関の/リング冷却部を循環する高温流
体通路及びこの内燃機関からの蒸発器への低温流体通路
に設置した熱交換器への排カス通路を設け、前記高温流
体通路にはその抽ガス通路と交わる別の熱交換器を置き
、との熱父換器ケ通った前記高温流体の循環通路には放
熱器及びポンプなどの流体移送装置を置き、冷凍機を内
燃1幾関で駆動するように組合わせられたヒートポンプ
方式に関する特公昭41−5859の発明もなされてい
るか、この場合、内燃機関の排気ガスは熱交換器で冷却
水を加熱しだ佐、更に別の熱交換器で低温流体を加熱す
るが、ヒートポンプの熱源として回収されるものではな
い。
On the other hand, an internal combustion engine is connected to a compressor of a refrigerator, and a high-temperature fluid passage that circulates between the condenser of the refrigerator and the /ring cooling section of the internal combustion engine, and a low-temperature fluid passage from this internal combustion engine to the evaporator are installed. A waste exhaust passage to the heat exchanger is provided, another heat exchanger is placed in the high temperature fluid passage intersecting with the bleed gas passage, and a radiator is provided in the circulation passage for the high temperature fluid that has passed through the heat exchanger. There has also been an invention published in Japanese Patent Publication No. 41-5859 concerning a heat pump system in which a fluid transfer device such as a pump is installed and a refrigerator is driven by internal combustion. In this case, the exhaust gas of the internal combustion engine is A heat exchanger heats the cooling water, and another heat exchanger heats the low-temperature fluid, but it is not recovered as a heat source for the heat pump.

〔発明の目的〕[Purpose of the invention]

そこで本発明は、外気温変の低下時に、暖房能力が低下
するという従来の冷暖房用のヒーj・ポンプ装置の欠点
を解消し、寒冷地においても暖房能力が低下せずに使用
可能なヒートポンプ装置を提供することを目的としたも
のである。
Therefore, the present invention solves the drawback of conventional heating and cooling heat pump devices, in which the heating capacity decreases when the outside temperature changes, and provides a heat pump device that can be used even in cold regions without decreasing the heating capacity. The purpose is to provide the following.

〔発明の構成〕[Structure of the invention]

即ち、本発明の冷暖房用のヒートポンプ装置は、内燃機
関駆動の圧縮機を有する冷暖房用のヒートポンプ装置に
おいて、暖房時外気温度の低下時にのみその内燃機関か
らの回収廃熱の一部をそのヒートポンプ装置の熱源とし
て外気熱源と併用することにより構成される。
That is, the heat pump device for air conditioning and heating of the present invention is a heat pump device for air conditioning and heating that has a compressor driven by an internal combustion engine, and uses a part of the waste heat recovered from the internal combustion engine only when the outside air temperature decreases during heating. It is constructed by using an outside air heat source as a heat source.

〔実施)2す〕 以下図面を参照して本発明の各実施例を説明するが、各
実施例において同じ部品は同じ部品番号で示している。
[Implementation) 2] Each embodiment of the present invention will be described below with reference to the drawings, and the same parts in each embodiment are indicated by the same part numbers.

まず、第1図、第2図及び第3図は本発明の実施例1に
おける冷暖房用のヒートポンプ装JKj。
First, FIG. 1, FIG. 2, and FIG. 3 show a heat pump system JKj for heating and cooling in Embodiment 1 of the present invention.

のシステムフ、ロー図であシ、この装置の冷房時におい
ては、第1図に示すごとく、冷水WCを導入した水・フ
ロン熱交換器6で冷水Wcから吸熱した冷媒であるフロ
ンrは太線の矢印で示すごとく、四方弁2から内燃機関
10で駆動される圧縮機1で圧縮され、内び四方弁2経
山、圧力スィッチ25取ト1部を辿り、2方電イ1好弁
26の手前から空気・フロン熱交換器7で外気に放熱し
た後、太線の矢印で示す回路から受液器4を通り、冷房
用膨張弁5で膨張され、再び水・フロン熱交換器6へ循
環することにより冷房機能をする。
In this system flow diagram, when this device is cooling, as shown in Figure 1, the refrigerant fluorocarbon r, which absorbs heat from the cold water WC in the water/fluorocarbon heat exchanger 6 into which the cold water WC is introduced, is indicated by the bold line. As shown by the arrow, it is compressed by the compressor 1 driven by the internal combustion engine 10 from the four-way valve 2. After dissipating heat to the outside air in the air/fluorocarbon heat exchanger 7, the heat passes through the liquid receiver 4 from the circuit shown by the thick arrow, is expanded by the cooling expansion valve 5, and is circulated again to the water/fluorocarbon heat exchanger 6. This provides a cooling function.

一方、圧縮機1を、鳴動する内燃1幾関10からの排気
ガスXは、排気カス切換弁14から何気カス熱交換器1
5を辿り、排気ガス消音器16経由外部に放出されるが
、この場合、内燃機関IL)の機関冷却水回路28の冷
却水Weは太線の矢印で示すごとく、機関冷却水ポンプ
12によシ加圧され、オイルクーラ11、図示されてい
ない内燃機関10内の水ジャケットを通り、温調弁16
から排気ガス熱交換器15を経℃、放熱ファン18を有
する放熱器17でラジエー/ヨンを行ない、3方弁19
゜20を通り機関冷却水ポンプ11により再び循環され
るようになっている。
On the other hand, the exhaust gas
5, and is discharged to the outside via the exhaust gas muffler 16. In this case, the cooling water We in the engine cooling water circuit 28 of the internal combustion engine IL) is pumped by the engine cooling water pump 12 as shown by the thick arrow. It is pressurized, passes through an oil cooler 11 and a water jacket inside the internal combustion engine 10 (not shown), and then passes through a temperature control valve 16.
The exhaust gas heat exchanger 15 is heated to 30.degree.
20 and is again circulated by the engine cooling water pump 11.

なお、図中8は、空気・フロン熱交換器Z用のモータフ
ァンであり、寸た21で示すのは機関冷却水回路28に
設けられた膨張タンクである。
Note that 8 in the figure is a motor fan for the air/fluorocarbon heat exchanger Z, and the dimension 21 is an expansion tank provided in the engine cooling water circuit 28.

次に、この装置の通常の暖房用の運転時には第2図の冷
媒であるフロンrは太線の矢印で示ずごとく、受液器4
からフロン回路27経由、暖房用膨張弁6がら空気・フ
ロン熱交換器7で外気から吸熱し、四方弁2経由圧縮機
1で圧縮された後、再び四方弁2経由、水・フロン熱交
換器6に入り、冷温水回路29からの温水Wh中に放熱
した後、受液器4に戻り、」=記の回路を循環して暖房
機能をする。
Next, during normal heating operation of this device, the refrigerant fluorocarbon r in FIG.
Heat is absorbed from the outside air via the fluorocarbon circuit 27, from the heating expansion valve 6, through the air/fluorocarbon heat exchanger 7, and after being compressed by the compressor 1 via the four-way valve 2, it is transferred again via the four-way valve 2 to the water/fluorocarbon heat exchanger. 6, and after dissipating the heat into the hot water Wh from the cold/hot water circuit 29, it returns to the liquid receiver 4, circulates through the circuit indicated by ``='', and performs the heating function.

この場合の内燃1幾関10の冷却水Weは、(戎関冷却
水ポ/プ12、オイルクーラー11、機関内の水ジャケ
ット、温調弁13、排気ガス熱交換器15.3方弁19
及び20経由、太線の矢印で示すごとく、廃熱回収用蒸
発器9を通り、冷温水回路29内に設けた冷却水熱交換
器26で温水Whに放熱した後、機関冷却水回路28の
機関冷却水ポンプ12により循環されるようになってい
る。
In this case, the cooling water We for the internal combustion 1 and 10 is (Ebisuki cooling water pump 12, oil cooler 11, water jacket in the engine, temperature control valve 13, exhaust gas heat exchanger 15, 3-way valve 19
and 20, as shown by the thick arrow, passes through the waste heat recovery evaporator 9 and radiates heat to hot water Wh in the cooling water heat exchanger 26 provided in the cold/hot water circuit 29, and then cools the engine in the engine cooling water circuit 28. The cooling water pump 12 circulates the water.

そこで、暖房時外気温度の低下時においては、外気温度
の低下によりこのヒートポンプ装置の低圧側、即ち蒸発
圧力が低下し、第3図の圧力スイッチ25がオンになり
、その結果、電磁弁22及び26が開き、とのヒートポ
ンプ装置で常時使1、+Jされる空気・フロン熱交換器
7に加えて、廃熱回収用蒸発器9も並列に使用される。
Therefore, when the outside air temperature decreases during heating, the low pressure side of this heat pump device, that is, the evaporation pressure, decreases due to the decrease in outside air temperature, and the pressure switch 25 shown in FIG. 26 is opened, and in addition to the air/fluorocarbon heat exchanger 7 that is constantly used in the heat pump device, the evaporator 9 for waste heat recovery is also used in parallel.

即ち、この場合、第2図のフロンfの循環回路と(幾関
の冷却水Weの循環回路に対し、第3図の二重線で示す
フロ/fが流れる廃熱回収用フロン回路60が伺加され
、廃熱回収用蒸発機9を介して廃熱回収の温水からの吸
熱も利用することになる。
That is, in this case, in contrast to the fluorocarbon f circulation circuit in FIG. 2 and the cooling water We circulation circuit in FIG. In addition, the heat absorbed from the hot water for waste heat recovery is also utilized via the waste heat recovery evaporator 9.

なお、第3図の24で示すのは廃熱回収用蒸発器9用の
膨張弁である。
Note that 24 in FIG. 3 is an expansion valve for the waste heat recovery evaporator 9.

上記第3図におけるAから■までの各部に対応した圧力
P及びエンタルピー1の関係を示すモリエル線図を第4
図に示しており、ここで外気からのくみ上げ熱量はG、
 (i、−、I、 、で、内燃機関10の回収廃熱から
のくみ上げ熱量はQ2(i++−IG)である。
The Mollier diagram showing the relationship between pressure P and enthalpy 1 corresponding to each part from A to ■ in Figure 3 above is shown in Figure 4.
The amount of heat pumped up from the outside air is G,
(i, −, I, , and the amount of heat pumped up from the recovered waste heat of the internal combustion engine 10 is Q2(i++−IG).

そこで、本発明の実IRm例1の冷暖房用のヒートポン
プ装置を使用すれば、第5図の暖房能力(出力)と外気
温度との関係線図において、暖房時外気温度の低下時に
従来のヒートポンプ装置において暖房能力が線図すであ
ったのに対し、本発明のととく2方電磁弁22 、23
を開いて廃熱回収用フロン回路60を開とすることによ
り暖房能ノJが線図aのごとく上昇し、斜線で示す部分
だけ暖房能力が向上することになる。
Therefore, if the heat pump device for air conditioning according to Practical IRm Example 1 of the present invention is used, in the relationship diagram between heating capacity (output) and outside air temperature in Fig. 5, when the outside air temperature decreases during heating, the conventional heat pump device In contrast, the heating capacity of the two-way solenoid valves 22 and 23 of the present invention was
By opening the waste heat recovery fluorocarbon circuit 60, the heating capacity J increases as shown in the diagram a, and the heating capacity improves only in the shaded area.

次に、第6図、第7図、88図及び第9図は本発明の実
施例2の冷暖房用のヒートポンプ装置を示しておシ、前
記実施例1とほぼ同様の構成及び機能を有するものであ
るが、相違点は、実施例1における廃熱回収用フロン回
路30を設けずに、四方弁2と空気・フロン熱交換器7
との間のフロン回路27に直接、冷媒熱交換器9Aを設
けて内燃1洩関10からの冷却水Weからの回収廃熱の
一部をこのヒートポンプ装置の熱源として外気熱源と併
用しており、更に、フロン回路27の四方弁2と冷媒熱
交換器9Aとの間に高圧用の圧力スイッチ25A及び低
圧用の圧力スイッチ25Bを設けたことである。
Next, FIG. 6, FIG. 7, FIG. 88, and FIG. 9 show a heat pump device for heating and cooling according to a second embodiment of the present invention, which has almost the same configuration and function as the first embodiment. However, the difference is that the four-way valve 2 and the air/fluorocarbon heat exchanger 7 are not provided in the waste heat recovery fluorocarbon circuit 30 in the first embodiment.
A refrigerant heat exchanger 9A is installed directly in the fluorocarbon circuit 27 between the heat pump system and a part of the waste heat recovered from the cooling water We from the internal combustion leakage gate 10, which is used in conjunction with the outside air heat source as a heat source for this heat pump device. Furthermore, a pressure switch 25A for high pressure and a pressure switch 25B for low pressure are provided between the four-way valve 2 of the fluorocarbon circuit 27 and the refrigerant heat exchanger 9A.

そこで、外気温度の低い通常の冷房時には第6図に示す
ととく、冷媒のフロンfは空気・フロン熱交換器7で放
熱しながら太線の矢印方向に循環し、内燃機関10の冷
却水Weは放熱器17でテ/エーゾヨン、即ち放熱しな
がら太線の矢印方向に循環する。
Therefore, during normal cooling when the outside air temperature is low, as shown in FIG. The heat radiator 17 circulates in the direction of the thick arrow while radiating heat.

次に、外気温度の高い冷房時には、第7図に示すごとく
フロンf用の圧力スイッチ25Aにより冷却水Weの2
方電磁弁22が閉、26が開となり、空気・フロン熱交
換器7に直列に冷媒熱交換器9Aが付加されることによ
り、ヒートポンプ装置の凝縮圧力が低下し、外気温度の
上昇時の冷房能力及び冷房成績係数、1.!l!ちシス
テム効率の低下を改善することができる。
Next, during cooling when the outside air temperature is high, as shown in FIG.
The solenoid valve 22 is closed and the solenoid valve 26 is opened, and the refrigerant heat exchanger 9A is added in series to the air/fluorocarbon heat exchanger 7, thereby reducing the condensing pressure of the heat pump device and providing cooling when the outside temperature rises. Capacity and cooling coefficient of performance, 1. ! l! Therefore, it is possible to improve the decrease in system efficiency.

一方、外気温度の高い通常の暖房時には第8図に示すご
とく、フロンfは空気・フロン熱交換器7で外気より吸
熱し、かつ水・フロン熱交換器6で温水Wllに放熱し
ながら太線の矢El]方−」に循環し、内燃機関10の
冷却水Weは冷却水熱交換器26で温水Wbに放熱しな
がら太線の欠口j方向に循環する。
On the other hand, during normal heating when the outside air temperature is high, as shown in FIG. The cooling water We of the internal combustion engine 10 circulates in the direction of the cutout j indicated by the thick line while dissipating heat to the hot water Wb in the cooling water heat exchanger 26.

そこで、外気温度の低い暖房時には第9図に示すごとく
、フロンf用の圧力スイッチ25Bによシ冷却水Weの
2方電磁弁22が閉、26が開となり、冷媒熱交換器9
Aに冷却水Weの回収温水が流れこみ、ヒートポンプ装
置のくみあげ熱量が増加し、圧縮機1の駆動動力も増大
する効果が重なって、ヒートポンプ装置の能力カ玉増力
ui−るので外気温度の低下時の暖房能力の低下を防止
する。
Therefore, during heating when the outside air temperature is low, as shown in FIG.
The hot water recovered from the cooling water We flows into A, the amount of heat pumped by the heat pump device increases, and the driving power of the compressor 1 also increases.The combined effect of this increases the capacity of the heat pump device, thereby decreasing the outside air temperature. Prevents the heating capacity from decreasing during heating.

なお、この実施例2において使用される2方電イ丑弁2
2 、23及び冷暖房切換スイッチ61にIm続される
高圧用の圧力スイッチ25A、低圧用の圧ノコスイッチ
25Bの回路図を第10図に示している。
In addition, the two-way electric ox valve 2 used in this embodiment 2
FIG. 10 shows a circuit diagram of a pressure saw switch 25A for high pressure and a pressure saw switch 25B for low pressure, which are connected to the air conditioner 2, 23 and the heating/cooling changeover switch 61.

また、上記実施例2の冷暖房用のヒートポンプ装置にお
いて、第6図に示す外気温度のイ氏い通常の冷房時の圧
力P及びエンタルピー1の関係を示すモリエル線図を第
11図に示しており、図中矢印7で示す範囲は空気・フ
ロン熱交換器7での放熱を示している。
In addition, in the heat pump device for cooling and heating of the above-mentioned Example 2, a Mollier diagram showing the relationship between pressure P and enthalpy 1 during normal cooling when the outside temperature is low as shown in FIG. 6 is shown in FIG. , the range indicated by the arrow 7 in the figure shows the heat radiation in the air/fluorocarbon heat exchanger 7.

次に、第7図に示す外気温度の高い冷房時のモリエル線
図を第12図に示しており、矢印7で示す範囲は空気・
フロン熱交換器7での放熱を、そして矢印9Aで示すl
1i12囲は冷媒熱交換器9Aでの放熱をそれぞれ内<
シている。
Next, Fig. 12 shows a Mollier diagram during cooling when the outside air temperature is high, as shown in Fig. 7, and the range indicated by arrow 7 is
The heat dissipation in the fluorocarbon heat exchanger 7 is shown by the arrow 9A.
1i and 12 are the heat radiation in the refrigerant heat exchanger 9A, respectively.
It's happening.

一方、第8図に示す外気温度の高い通常の暖房時のモリ
エル線図を第13図に示しており、矢印7で示す範囲は
空気・フロン熱交換器7での外気よりの吸熱を示し、更
に第9図に示す外気温度の低い1ホノ方時のモリエル線
図を第14図に示しており、矢印7で示す11伯囲は空
気・フロン熱交換器7での吸熱を、そして矢印9Aで示
す範囲は冷媒熱交換器9Aでの吸熱をそれぞれ示してい
る。
On the other hand, FIG. 13 shows a Mollier diagram during normal heating when the outside air temperature is high as shown in FIG. Furthermore, Fig. 14 shows the Mollier diagram when the outside air temperature is low in the 1-ho direction shown in Fig. 9, and the 11th circle indicated by arrow 7 represents the heat absorption in the air/fluorocarbon heat exchanger 7, and the arrow 9A The ranges indicated by the arrows indicate the heat absorption in the refrigerant heat exchanger 9A.

〔発明の効果〕〔Effect of the invention〕

従って、本発明の冷暖房用のヒートポンプ装置を採用す
れば、外気温度の低下時に暖房T圧力が低下するという
空気熱源式ヒートポンプ装置の欠点を解消し、ヒートポ
ンプ装置の暖房能力、即ち出力が増大するという利点が
あり、その結果、寒冷地においても本発明のヒートポン
プ装置を充分使用用能である。
Therefore, if the heat pump device for cooling and heating of the present invention is adopted, the drawback of the air heat source type heat pump device that the heating T pressure decreases when the outside air temperature decreases is eliminated, and the heating capacity, that is, the output of the heat pump device is increased. As a result, the heat pump device of the present invention can be used satisfactorily even in cold regions.

また、本発明ではヒートポンプ装置内の内燃機関からの
回収廃熱の一部を有効利用しており、外部からの熱源を
使用しないので経済的である。
Furthermore, the present invention effectively utilizes a portion of the waste heat recovered from the internal combustion engine within the heat pump device, and is economical because it does not use an external heat source.

なお、本発明は主として空気熱源式の内燃機関駆動のヒ
ートポンプ装置に利して有効に適用することができる。
Note that the present invention can be effectively applied mainly to an air heat source type internal combustion engine-driven heat pump device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図及び第3図は本発明の実施例1における
冷暖房用のヒートポンプ装置のそれぞれ異なる状態を示
すシステムフロー図、第4図は実施例1のヒートポンプ
装置のモリエル線図、第5図は従来例及び実施例1にお
ける外気温度に対する暖房能力を示す線図、第6図、第
7図、第8図及び第9図は実施例2におけるヒートポン
プ装置のそれぞれ異なる状態を示すシステムフロー図、
第10図は実施例2に使用する2方電磁弁を作動させる
各圧力スイッチの回路図、更に第11図、第12図、第
13図及び第14図は第6図以降に示す実施例2におけ
るヒートポンプ装置の一連のモリエル線図であり、第1
1図は第6図に、第12図は第7図に、第13図は第8
図に、てして第14図は第9図にそれぞれ対応するもの
である。 1・・圧縮機、3・・・水・フロン熱交換器、4・・・
受i器、7・・・空気・フロン熱交換器、9A・・冷媒
熱交換器、9・・・廃熱回収用蒸熱器、10・・・内燃
機関、15・・お「気ガス熱交換器、19 、20・・
・3方弁22 、23・・・2方電磁弁、25 、25
A 、 25B・・・圧力スイッチ、26・・・冷却水
熱交換器、27・・・フロン回路、28・・機関冷却水
回路、30・・・廃熱回収用フロン回路、f・・・フロ
ン、We・・・冷却水、Wc・・冷水、Wh・・・温水
、X・・・排気カス。 第1図 n 第3図 外気温度
1, 2, and 3 are system flow diagrams showing different states of the heat pump device for cooling and heating in Embodiment 1 of the present invention, and FIG. 4 is a Mollier diagram of the heat pump device in Embodiment 1, and FIG. Figure 5 is a diagram showing the heating capacity with respect to outside air temperature in the conventional example and Example 1, and Figures 6, 7, 8, and 9 are system flows showing different states of the heat pump device in Example 2. figure,
Figure 10 is a circuit diagram of each pressure switch that operates the two-way solenoid valve used in Embodiment 2, and Figures 11, 12, 13, and 14 are Embodiment 2 shown in Figures 6 onwards. 1 is a series of Mollier diagrams of heat pump devices in
Figure 1 is similar to Figure 6, Figure 12 is similar to Figure 7, and Figure 13 is similar to Figure 8.
In the figures, FIG. 14 corresponds to FIG. 9, respectively. 1...Compressor, 3...Water/Freon heat exchanger, 4...
Receiver, 7...Air/fluorocarbon heat exchanger, 9A...Refrigerant heat exchanger, 9...Steamer for waste heat recovery, 10...Internal combustion engine, 15...Air/gas heat exchanger Vessel, 19, 20...
・3-way valve 22, 23... 2-way solenoid valve, 25, 25
A, 25B... Pressure switch, 26... Cooling water heat exchanger, 27... Freon circuit, 28... Engine cooling water circuit, 30... Freon circuit for waste heat recovery, f... Freon , We...cooling water, Wc...cold water, Wh...hot water, X...exhaust scum. Figure 1 n Figure 3 Outside air temperature

Claims (1)

【特許請求の範囲】[Claims] 内燃機関駆動の圧縮機を有する冷暖房用のヒートポンプ
装置において、暖房時外気温度の低下時にのみ該内燃機
関からの回収廃熱の一部を該ヒートポンプ装置の熱源と
して外気熱源と併用することを特徴とする冷暖房用のヒ
ートポンプ装置。
A heat pump device for air conditioning and heating having a compressor driven by an internal combustion engine, characterized in that a part of the waste heat recovered from the internal combustion engine is used in combination with the outside air heat source as a heat source for the heat pump device only when the outside air temperature decreases during heating. A heat pump device for heating and cooling.
JP59027205A 1984-02-17 1984-02-17 Heat pump device for air-conditioning Pending JPS60174468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59027205A JPS60174468A (en) 1984-02-17 1984-02-17 Heat pump device for air-conditioning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59027205A JPS60174468A (en) 1984-02-17 1984-02-17 Heat pump device for air-conditioning

Publications (1)

Publication Number Publication Date
JPS60174468A true JPS60174468A (en) 1985-09-07

Family

ID=12214595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59027205A Pending JPS60174468A (en) 1984-02-17 1984-02-17 Heat pump device for air-conditioning

Country Status (1)

Country Link
JP (1) JPS60174468A (en)

Similar Documents

Publication Publication Date Title
JP5030344B2 (en) Gas heat pump type air conditioner, engine cooling water heating device, and operation method of gas heat pump type air conditioner
US5099651A (en) Gas engine driven heat pump method
US6543531B1 (en) Device and method for heating and cooling a compartment of a motor vehicle
US5003788A (en) Gas engine driven heat pump system
US5429179A (en) Gas engine driven heat pump system having integrated heat recovery and auxiliary components
US7155927B2 (en) Exhaust heat utilizing refrigeration system
US6722147B2 (en) Coolant circuit of a motor vehicle having a coolant/refrigerant heat exchanger
CN114683803B (en) Heat pump-based heat management system for pure electric vehicle and control method thereof
JPS60174468A (en) Heat pump device for air-conditioning
JPH074777A (en) Engine waste heat recovery device
JPS618574A (en) Air conditioner for heat pump of engine
JP2600482Y2 (en) Automotive air conditioners
JP3654017B2 (en) Multi-function heat pump system
JP2508758B2 (en) Freezing / heating control device mounted on the vehicle
JPH0854156A (en) Cooling and heating device utilizing exhaust heat of engine and operating method thereof
JPH0352000Y2 (en)
JPH0332712B2 (en)
JPS6343664B2 (en)
JPH0410525Y2 (en)
JPH10306954A (en) Engine driven refrigerant compression circulation type heat transfer device
JPS6226459A (en) Refrigerant heating type hot-water supply air conditioner
JP3740757B2 (en) Air conditioner
CN116278587A (en) New energy automobile's thermal management system and vehicle
JPH0635871U (en) Heat pump using engine exhaust heat
JPS5973356A (en) Air conditioner for diesel locomotive