JPS6016381B2 - Heat-curing cement composition - Google Patents

Heat-curing cement composition

Info

Publication number
JPS6016381B2
JPS6016381B2 JP54093874A JP9387479A JPS6016381B2 JP S6016381 B2 JPS6016381 B2 JP S6016381B2 JP 54093874 A JP54093874 A JP 54093874A JP 9387479 A JP9387479 A JP 9387479A JP S6016381 B2 JPS6016381 B2 JP S6016381B2
Authority
JP
Japan
Prior art keywords
cement
heat
weight
parts
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54093874A
Other languages
Japanese (ja)
Other versions
JPS5617956A (en
Inventor
宣男 玉木
幸男 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP54093874A priority Critical patent/JPS6016381B2/en
Publication of JPS5617956A publication Critical patent/JPS5617956A/en
Publication of JPS6016381B2 publication Critical patent/JPS6016381B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】 本発明は加熱硬化型セメント組成物に関する。[Detailed description of the invention] The present invention relates to a heat-curable cement composition.

本発明における加熱硬化型セメント組成物とは、常温で
は水分が存在しても硬化速度が遅いが一定温度以上に加
熱されると水分の存在下に急速に硬化する性質を有する
ものであって、セメントを主成分とする組成物をいう。
従来から加熱硬化型セメント組成物として、ボルトラン
ドセメント、アルミナセメント、石膏類、石灰類からな
る組成物が提供されており、常温では水分が存在しても
硬化速度が遅く、60こ0以上に加熱されると水分の存
在下に急速に硬化する性質を有している。
The heat-curable cement composition in the present invention has a property of slow curing speed even in the presence of moisture at room temperature, but rapidly hardens in the presence of moisture when heated above a certain temperature, A composition whose main component is cement.
Compositions consisting of Bortland cement, alumina cement, gypsum, and lime have been conventionally provided as heat-curing cement compositions, and the curing speed is slow at room temperature even in the presence of moisture, with hardening speeds of 60% or higher. It has the property of rapidly curing in the presence of moisture when heated.

しかしながら従釆の加熱硬化型セメント組成物では、組
成物中に占めるボルトランドセメント量が少なく、アル
ミナセメント量が多い組成物になされていたので水分の
存在下で6ぴ0以上で一旦熱硬化させて得られた成形物
を、再び6000以上の乾燥条件下においた際に機械的
強度の低下が顕著となり、しかも乾燥収縮による寸法変
化が著しく大きくなり亀裂発生の原因となっていた。又
従釆の加熱硬化型セメント組成物から得られた成形物を
建築物の内外壁に使用した際に防火性能上要求される耐
爆裂性が著しく低いものとなる′欠点があった。
However, in conventional heat-curing cement compositions, the amount of boltland cement in the composition was small and the composition was made with a large amount of alumina cement. When the resulting molded product was again subjected to drying conditions of 6,000 or more, the mechanical strength decreased significantly, and the dimensional change due to drying shrinkage became significantly large, causing cracks to occur. Another disadvantage is that when molded products obtained from the heat-curable cement compositions are used for the interior and exterior walls of buildings, the explosion resistance required for fire protection performance is extremely low.

本発明者は、ボルトランドセメント80〜9亀重量部」
アルミナセメント13〜2.5重量部、無水石膏又は(
及び)半水石膏7〜1.5重量部の混合セメントを形成
して成形物の高温乾燥時の機械的強度、乾嬢収縮による
寸法変化、耐爆裂性を改善し、この混合セメント10の
重量部当り、0.2〜2重量部の有機カルボン酸のアル
カリ金属塩を混合することにより成形物の加熱硬化直後
の機械的強度を良好にすることを解明したのである。
The present inventor has developed 80 to 9 parts by weight of Boltland Cement.
13 to 2.5 parts by weight of alumina cement, anhydrite or (
and) 7 to 1.5 parts by weight of gypsum hemihydrate to form a mixed cement to improve the mechanical strength of the molded product during high temperature drying, dimensional change due to drying shrinkage, and explosion resistance, and the weight of this mixed cement 10. It was discovered that by mixing 0.2 to 2 parts by weight of an alkali metal salt of an organic carboxylic acid per part, the mechanical strength of the molded product immediately after heating and curing can be improved.

本発明は上記従来の加熱硬化型セメント組成物の有する
欠点を解消し、熱硬化により得られた成形物を高温に保
持して乾燥した際の機械的強度の低下を防ぎ乾燥収縮に
よる寸法変化、耐爆裂性を改善すると共に、熱硬化した
成形物の機械的強度を向上させ成形物を脱型した際に形
崩れを生ずるのを防ぐことができる、加熱硬化型セメン
ト組成物を提供することを目的とする。
The present invention eliminates the drawbacks of the conventional heat-curing cement compositions, prevents a decrease in mechanical strength when a molded product obtained by heat-curing is dried by maintaining it at a high temperature, and prevents dimensional changes due to drying shrinkage. It is an object of the present invention to provide a heat-curable cement composition that can improve explosion resistance, improve the mechanical strength of a heat-cured molded product, and prevent the molded product from deforming when removed from the mold. purpose.

次に本発明加熱硬化型セメント組成物について更に詳細
に説明する。
Next, the heat-curable cement composition of the present invention will be explained in more detail.

本発明における混合セメントは、ボルトランドセメント
80乃至9亀重量部、アルミナセメント13〜2.5重
量部、無水石膏又は(及び)半水石膏7〜1.5重量部
からなる。
The mixed cement in the present invention consists of 80 to 9 parts by weight of Bortland cement, 13 to 2.5 parts by weight of alumina cement, and 7 to 1.5 parts by weight of anhydrite or (and) hemihydrate.

ボルトランドセメントとしては、例えば普通ボルトラン
ドセメント、早強ボルトランドセメント、超早強ボルト
ランドセメント、中庸熱ボルトランドセメント、低熱ボ
ルトランドセメント、白色ボルトランドセメント、高酸
化型ボルトランドセメント等が存する。本発明において
は、混合セメント100重量部中にボルトランドセメン
トが80〜9亀重量部使用される。
Examples of boltland cement include ordinary boltland cement, early-strength boltland cement, ultra-early strength boltland cement, medium-heat boltland cement, low-heat boltland cement, white boltland cement, and highly oxidized boltland cement. . In the present invention, 80 to 9 parts by weight of Bortland cement is used in 100 parts by weight of mixed cement.

ボルトランドセメントの量が80〜9母重量部にされる
のは、本発明加熱硬化型セメント組成物を使用し水分の
存在下で加熱硬化して得られた成形物を加熱硬化後、長
期間を経過後における機械的強度の維持を図り、60o
C以上に再加熱して乾燥した際に機械的強度が低下する
のを防ぎ、又乾燥収縮により寸法変化を生ずるのを防ぎ
、更に耐爆裂性を改善するためである。しかしてボルト
ランドセメントの量が8の重量部よりも少量の場合には
、前記成形物の乾燥時の機械的強度の低下、乾燥収縮に
よる寸法変化が著しく、耐爆裂性が得難いものとなり、
又9抗重量部よりも多量になるとアルミナセメント、石
膏の各成分の割合が少量になりすぎて水分の存在下で加
熱硬化させた際の成形物の機械的強度が充分に得られな
いものとなる。アルミナセメントは、カルシウムアルミ
ネートを主成分とするセメントであり、本発明加熱硬化
型セメント組成物を使用し水分の存在下で加熱硬化して
得られる成形物の機械的強度の発現に寄与するカルシウ
ムスルホアルミネート水和物を生成させる役割を有する
ものである。アルミナセメントは混合セメント10の重
量部中に13〜2.5重量部使用される。そしてアルミ
ナセメントが2.5重量部よりも少量では、加熱硬化さ
せた際にカルシウムスルホアルミネート水和物の生成量
が少なくなり、成形物を熱硬化させた際の成形物の機械
的強度の発現が困難になり、またアルミナセメントが1
箱重量部よりも多量の場合には、混合セメント中のボル
トランドセメントの使用量が少なくならざるを得ないか
ら、熱硬化後長期間経過後の機械的強度の低下をきたし
、乾燥時の機械的強度の低下、収縮による寸法変化を生
じ、耐爆裂性の低下等をきたしやすいものとなる。無水
石膏、半水石膏は単独あるいは混合して混合セメント1
0の重量部中に7〜1.5重量部使用される。
The reason why the amount of Bortland cement is set to 80 to 9 parts by weight is that the heat-curable cement composition of the present invention is heat-cured in the presence of moisture, and the molded product obtained is heat-cured and then cured for a long period of time. In order to maintain mechanical strength after
This is to prevent mechanical strength from decreasing when reheated to a temperature higher than C and dried, to prevent dimensional changes from occurring due to drying shrinkage, and to further improve explosion resistance. However, if the amount of Boltland cement is less than 8 parts by weight, the mechanical strength of the molded product will decrease when drying, the dimensional change due to drying shrinkage will be significant, and it will be difficult to obtain explosion resistance.
Furthermore, if the amount exceeds 9 parts by weight, the proportions of each component of alumina cement and gypsum will be too small, and the molded product will not have sufficient mechanical strength when heated and cured in the presence of moisture. Become. Alumina cement is a cement whose main component is calcium aluminate, and calcium contributes to the development of mechanical strength of molded products obtained by heat-curing the heat-curing cement composition of the present invention in the presence of moisture. It has the role of producing sulfoaluminate hydrate. The alumina cement is used in an amount of 13 to 2.5 parts by weight per 10 parts by weight of the mixed cement. If the amount of alumina cement is less than 2.5 parts by weight, the amount of calcium sulfoaluminate hydrate produced during heat curing will decrease, and the mechanical strength of the molded product will decrease when the molded product is heat cured. It becomes difficult to develop, and alumina cement becomes 1
If the amount is larger than the box weight part, the amount of Bortland cement used in the mixed cement must be reduced, resulting in a decrease in mechanical strength after a long period of time after heat curing, and mechanical strength during drying. This results in a decrease in physical strength, dimensional changes due to shrinkage, and a decrease in explosion resistance. Anhydrous gypsum and hemihydrate gypsum can be used alone or in combination to form a mixed cement 1
It is used in an amount of 7 to 1.5 parts by weight in 0 parts by weight.

又、これらの無水石膏、半水石膏は、本発明加熱硬化型
セメント組成物を使用し水分の存在下で加熱硬化させた
際に生ずるカルシウムスルホアルミネート水和物の硫黄
源、カルシウム源となる。前記の混合セメントにおいて
は、従来の加熱硬化型セメントにおける短所であった。
In addition, these anhydrite and hemihydrate serve as sulfur sources and calcium sources for calcium sulfoaluminate hydrate, which is produced when the heat-curing cement composition of the present invention is heated and cured in the presence of moisture. . The above-mentioned mixed cement has disadvantages in conventional heat-curing cement.

成形物の高温乾燥時の機械的強度、乾燥収縮による寸法
変化、耐爆裂性を顕著に改善できるのである。しかしな
がら浪合セメントにおいては、加熱硬化した直後(本発
明においては加熱硬化開始後1時間以内をいう)の成形
物の機械的強度が著しく向上する領域において前記諸性
質の改善が充分に発現されず、逆に前記諸性質の改善が
顕著である領域においては加熱硬化した直後の成形物の
機械的強度の向上の程度が必ずしも充分にはならないの
である。ことに本発明におけるようにボルトランドセメ
ントの量が、混合セメント100重量部中に8の重量部
以上になると加熱硬化させた際のカルシウムスルホアル
ミネートの生成量が減少し、加熱硬化した直後の成形物
の機械的強度が低くなる。従って養生、高温乾燥を行な
うために成形物を脱型させる際に成形物の型崩れを生ず
るようなことになりやすいのである。そこで本発明にお
いては、前記の浪合セメント10の重量部当り、0.2
〜2.0重量部の有機カルボン酸のアルカリ金属塩を混
合し、加熱硬化した直後であっても成形物の機械的強度
が良好となり、成形物を脱型させる際に型崩れを生じた
りすることがないようにしたものである。
The mechanical strength of the molded product during high temperature drying, dimensional change due to drying shrinkage, and explosion resistance can be significantly improved. However, in Namiai cement, the improvements in the various properties described above are not sufficiently realized in the region where the mechanical strength of the molded product is significantly improved immediately after heat curing (in the present invention, within 1 hour after the start of heat curing). On the other hand, in areas where the improvements in the above-mentioned properties are remarkable, the degree of improvement in the mechanical strength of the molded product immediately after heat curing is not necessarily sufficient. In particular, when the amount of Bortland cement exceeds 8 parts by weight in 100 parts by weight of mixed cement as in the present invention, the amount of calcium sulfoaluminate produced during heat curing decreases, and the amount of calcium sulfoaluminate produced immediately after heat curing decreases. The mechanical strength of the molded product decreases. Therefore, when the molded product is removed from the mold for curing and high-temperature drying, the molded product is likely to lose its shape. Therefore, in the present invention, per part by weight of the Namiai cement 10, 0.2
~2.0 parts by weight of an alkali metal salt of an organic carboxylic acid is mixed and the mechanical strength of the molded product is good even immediately after heating and curing, and the molded product does not lose its shape when demolded. This was done to prevent this from happening.

有機カルボン酸のアルカリ金属塩としては、例えばクエ
ン酸、りんご酸、グルコン酸、グルタール酸、グリコー
ル酸等のナトリウム塩又はカリウム塩が存する。
Examples of alkali metal salts of organic carboxylic acids include sodium or potassium salts of citric acid, malic acid, gluconic acid, glutaric acid, glycolic acid, and the like.

有機カルボン酸のアルカリ金属塩は加熱により混合セメ
ントの硬化を促進させる働きを有するものであり、か)
る硬化促進作用によって成形物を加熱硬化させた直後に
おける機械的強度を向上させることができるのである。
Alkali metal salts of organic carboxylic acids have the function of accelerating the hardening of mixed cement by heating.
Due to the hardening accelerating effect, the mechanical strength of the molded article immediately after being heated and hardened can be improved.

そして前記有機カルボン酸のアルカリ金属塩は、脱型後
における高温乾燥時の機械的強度、乾燥収縮による寸法
変化、耐爆裂性の改善を阻害することがない。しかしな
がら有機カルボン酸の使用量が前記混合セメント10の
重量部当り0.2重量部よりも少量であると加熱された
際の混合セメントの硬化促進作用が充分にならないし、
又2重量部よりも多量であると加熱硬化された成形物の
脱型不良を生じやすくなる。本発明において有機カルボ
ン酸のアルカリ金属塩の混合は、予じめ混合セメントを
準備し、この混合セメントに対しなされてもよいが、混
合セメントのいずれか1又は2以上の成分に対し混合し
、混合セメントの残存成分を更に加えて混合することに
より、最終的に混合セメントに対し前記有機カルボン酸
のアルカリ金属塩が混合されておればよい。本発明加熱
硬化型セメント組成物においては、砂、砂利等の各種骨
材、天然繊維、合成繊維、金属繊維、鉱物繊維等の補強
材、各種高分子物質、例えば防水性を改良するためのゴ
ムラテックス等を必要に応じて含有させてもよい。
The alkali metal salt of the organic carboxylic acid does not impede mechanical strength during high temperature drying after demolding, dimensional change due to drying shrinkage, and improvement in explosion resistance. However, if the amount of organic carboxylic acid used is less than 0.2 parts by weight per part by weight of the mixed cement 10, the effect of accelerating the hardening of the mixed cement when heated will not be sufficient.
Further, if the amount is more than 2 parts by weight, demolding failure of the heat-cured molded product is likely to occur. In the present invention, the alkali metal salt of an organic carboxylic acid may be mixed with a mixed cement prepared in advance and mixed with this mixed cement, but it may be mixed with any one or more components of the mixed cement, By further adding and mixing the remaining components of the mixed cement, the alkali metal salt of the organic carboxylic acid may be finally mixed into the mixed cement. In the heat-curing cement composition of the present invention, various aggregates such as sand and gravel, reinforcing materials such as natural fibers, synthetic fibers, metal fibers, and mineral fibers, various polymeric substances, such as rubber to improve waterproofness are used. Latex etc. may be contained as necessary.

本発明加熱硬化型セメント組成物を加熱硬化させる場合
の温度は6000乃至10000が好適であり、600
0よりも低温では硬化速度が遅く、又100q○よりも
高温では加熱硬化して得られた成形物は機械的強度の低
いものとなりやすい。
The temperature when heat-curing the heat-curing cement composition of the present invention is preferably from 6,000 to 10,000;
At a temperature lower than 0, the curing speed is slow, and at a temperature higher than 100 q○, the molded product obtained by heating and curing tends to have low mechanical strength.

本発明加熱硬化型セメント組成物によれば、従来の加熱
硬化型セメント組成物における欠点であった。
According to the heat-curing cement composition of the present invention, the disadvantages of conventional heat-curing cement compositions can be overcome.

成形物を一旦熱硬化させた後、再び60q○以上に加熱
して乾燥させた際の機械的強度、亀裂発生の原因となる
乾燥収縮による寸法変化、建築物の防火性能上必要とな
る加熱時における耐爆裂性を改善することができ、又熱
硬化直後の成形物に機械的強度を付与し脱型した際の型
崩れを防ぐことができ、成形物を量産するに適したもの
にすることができる。以下に本発明の実施例を記す。
Mechanical strength when a molded product is once heat-cured and then heated again to 60q○ or more and dried, dimensional changes due to drying shrinkage that causes cracks, and heating required for building fire prevention performance. It is possible to improve the explosion resistance of the molded product, and also to impart mechanical strength to the molded product immediately after thermosetting and to prevent the molded product from losing its shape when removed from the mold, making the molded product suitable for mass production. I can do it. Examples of the present invention are described below.

実施例 1 雛早強ボルトランドセメント81.の重量部、アルミナ
セメント12.亀重量部、焼石管6.4重量部、からな
る混合セメント10の重量部当り、クエン酸ナトリウム
0.曙重量部を混合し、更に水/セメント比が0.65
砂/セメント比が2.0となるように水及び砂を混合し
、型内に入れて40×40×16価/mの寸法の角柱体
を成形した。
Example 1 Hina Early Strength Voltland Cement 81. Weight parts of alumina cement 12. Sodium citrate per part by weight of 10 parts of mixed cement consisting of 6.4 parts by weight of calcined stone tube, 0.0 parts by weight of sodium citrate. Mix part by weight of Akebono and further water/cement ratio is 0.65.
Water and sand were mixed so that the sand/cement ratio was 2.0, and the mixture was placed in a mold to form a prismatic body with dimensions of 40 x 40 x 16 valent/m.

かくして得られた成形物を80こ0に昇温させて加熱硬
化を急速に行なわせた後、脱型したが、脱型時には成形
物の形崩れを生じなかった。更に成型物の加熱硬化を3
ぴ片間継続した後、常温で1週間をかけて養生した。養
生開始から1週間経過後の成形物の圧縮強度を測定した
。養生後100℃の陣温槽中に成形物を保持し、乾燥を
行なった。
The molded product thus obtained was heated to 80°C to undergo rapid heat curing and then demolded, but the molded product did not lose its shape during demolding. Furthermore, the molded product is heated and hardened.
After continuing for a period of time, it was cured at room temperature for one week. The compressive strength of the molded product was measured one week after the start of curing. After curing, the molded product was kept in a temperature bath at 100° C. and dried.

又乾燥開始から1日、3日、1週間、4週間経過後の圧
縮強度の測定結果を第1表の実施例1の欄に示す。又養
生後10000の陣温糟中に成形物を保持し1日、1週
間、4週間を経過後の寸法変化を測定した。これらの測
定結果は、第2表の実施例1の欄に示す通りであった。
The measurement results of compressive strength after 1 day, 3 days, 1 week, and 4 weeks from the start of drying are shown in the column of Example 1 in Table 1. After curing, the molded product was kept in a thermostat for 10,000 hours, and dimensional changes were measured after 1 day, 1 week, and 4 weeks. These measurement results were as shown in the column of Example 1 in Table 2.

実施例 2 超早強ボルトランドセメント母8の重量部、アルミナセ
メント8.4重量部、焼石骨3.抗重量部からなる混合
セメント10の重量部当り、クエン酸ナトリウム0.6
重量部を混合し、以下実施例1と同様にして水、砂を混
合し、成形加熱硬化を行ない脱型後、常温で養生を行な
った。
Example 2 Parts by weight of ultra early strength boltland cement matrix 8, 8.4 parts by weight alumina cement, 3 parts by weight of burnt stone bone. Sodium citrate 0.6 per part by weight of 10 parts by weight of mixed cement consisting of part by weight
Parts by weight were mixed, water and sand were mixed in the same manner as in Example 1, molded and heated to harden, demolded, and then cured at room temperature.

養生開始から1週間を経過した後の成形物の圧縮強度を
測定した。養生後100℃の垣温槽中に成形物を保持し
乾燥させた。乾燥開始から1週間経過後の圧縮強度、及
び1日、3日、1週間、4週間経過後の圧縮強度の測定
結果を第1表の実施例2の欄に示す。又養生後100o
oの陣温槽中に成形物を保持し、1日、1週間、4週間
を経過後の寸法変化を測定した。これらの測定結果を第
2表の実施例2の欄に示す。第1表 第2表 実施例 3 超早強ボルトランドセメント織.の重量部、アルミナセ
メント8.4重量部、焼石骨3.館重量部、からなる混
合セメント10の重量部当りりんご酸ナトリウム1.2
重量部を混合し、砂(2r/mメッシュ節通過)/セメ
ント比が2.5水/セメント比が0.5となるように、
砂及び水を加えて混合し、型内に入れて40×40×1
60h/mの寸法の角柱体を成形した。
The compressive strength of the molded product was measured one week after the start of curing. After curing, the molded product was kept in a 100° C. temperature bath and dried. The measurement results of the compressive strength one week after the start of drying, and the compressive strength after one day, three days, one week, and four weeks are shown in the column of Example 2 in Table 1. 100o after curing
The molded product was kept in a temperature bath of 100 mL, and dimensional changes were measured after 1 day, 1 week, and 4 weeks. These measurement results are shown in the Example 2 column of Table 2. Table 1 Table 2 Example 3 Ultra-early strength boltland cement woven fabric. 8.4 parts by weight of alumina cement, 3 parts by weight of burnt stone bone. 1.2 parts by weight of sodium malate per 10 parts by weight of mixed cement consisting of 1.2 parts by weight of
Mix parts by weight so that the sand (passed through a 2r/m mesh node)/cement ratio is 2.5 and the water/cement ratio is 0.5.
Add sand and water, mix, and place in a mold 40 x 40 x 1
A prismatic body with dimensions of 60 h/m was molded.

かくして得られた成形物を8000に昇温ごせて3び分
間保持し加熱硬化を急速に行なわせた後脱型し、常温で
養生した。養生開始から30分を経過した時点での成形
物の曲げ強度は25.5k9/地、圧縮強度は82.5
k9/めであった。比較例 1 実施例3においてりんご酸ナトリウムの使用量を0.1
5重量部とした以外は実施例3と同様にして成形物の成
形、加熱硬化、養生を行なった。
The molded product thus obtained was heated to 8,000 ℃ and held for 3 minutes to rapidly heat cure, then removed from the mold and cured at room temperature. The bending strength of the molded product after 30 minutes from the start of curing was 25.5k9/ground, and the compressive strength was 82.5.
It was k9/th. Comparative Example 1 In Example 3, the amount of sodium malate used was 0.1
A molded product was molded, heated and cured in the same manner as in Example 3 except that the amount was 5 parts by weight.

養生開始から3晩ンを経過した時点での成形物の曲。ナ
強度は1.2kg/水、圧縮強度は5.0k9/めであ
った。実施例 4超早強ボルトランドセメント82.の
重量部、アルミナセメント12.亀重量部、焼石管2.
0重量部、無水石膏2.刀重量部からなる混合セメント
10の重量部当りクエン酸ナトリウム0.6重量部を混
合し、砂(2h/mメッシュ筋通過)/セメント比が2
.5、水/セメント比が0.35、減水剤/セメント比
が0.02となるように、砂、水及び減水剤を加えて混
合し、型内に入れて40×40×16仇h/mの寸法の
角柱体を成形した。
The song of the molded product after 3 nights from the start of curing. The strength was 1.2 kg/water, and the compressive strength was 5.0 k9/m. Example 4 Ultra early strength bolt land cement 82. Weight parts of alumina cement 12. Tortoise weight part, baked stone pipe 2.
0 parts by weight, anhydrite 2. 0.6 parts by weight of sodium citrate was mixed with 10 parts by weight of mixed cement consisting of parts by weight of sword, and the sand (passed through a mesh line of 2 h/m)/cement ratio was 2.
.. 5. Add and mix sand, water, and water reducer so that the water/cement ratio is 0.35 and the water reducer/cement ratio is 0.02, and place in a mold 40 x 40 x 16 h/ A prismatic body with dimensions of m was molded.

かくして得られた成形物を7びCに昇温ごせて30分間
保持し加熱硬化を急速に行なわせた後脱型し、常温で養
生した。
The temperature of the thus obtained molded product was raised to 7°C and held for 30 minutes to rapidly harden the molded product, and then the mold was demolded and cured at room temperature.

養生開始から30分を経過した時点での成形物の曲げ強
度は52.9k9/仇、圧縮強度は179.2kg/の
であった。又この成形物から平板状試料を切出し、室温
で4週間放置後、JISAI301による2段加熱曲線
に従い、小型防火性能試験装置を用いて加熱試験を行な
った。
When 30 minutes had passed from the start of curing, the molded product had a bending strength of 52.9 k9/kg and a compressive strength of 179.2 kg/kg. Further, a flat sample was cut out from this molded product, and after being left at room temperature for 4 weeks, a heating test was conducted using a small fireproof performance testing device according to a two-stage heating curve according to JISAI 301.

その結果成形物に爆裂を生じなかった。As a result, no explosion occurred in the molded product.

実施例 5,6 表3の各実施例の欄に示す成分からなる組成物を準備し
、これに水/セメント比が0.6ふ砂/セメント比が2
.0となるように水、砂を混合し、型内に入れて40×
40×160h/mの寸法の角柱体を′成形した。
Examples 5 and 6 A composition consisting of the components shown in the column of each example in Table 3 was prepared, and a composition with a water/cement ratio of 0.6 and a sand/cement ratio of 2 was prepared.
.. Mix water and sand so that it is 0, put it in a mold and
A prismatic body with dimensions of 40 x 160 h/m was molded.

かくして得られた成形物を8000に昇温ごせて3び分
間保持し、加熱硬化を急速に行なわせた後脱型した。脱
型の際の成形物の形崩れは生じなかった。
The temperature of the thus obtained molded product was raised to 8,000 °C and held for 3 minutes to rapidly harden the molded product, and then the mold was demolded. The molded product did not lose its shape during demolding.

次いで常温で養生した。養生開始から3び分を経過した
時点での曲げ強度及び圧縮強度の測定結果を表3の各実
施例の欄に記す。比較例 2〜5 表3の各比較例の欄に示す成分からなる組成物を準備し
、これに水/セメント比が0.65砂/セメント比が2
.0となるように水、砂を混合し、型内に入れて40×
40×16仇h/mの寸法の角柱体を成形した。
Then, it was cured at room temperature. The measurement results of bending strength and compressive strength after 3 minutes from the start of curing are shown in the column of each example in Table 3. Comparative Examples 2 to 5 A composition consisting of the components shown in the column of each comparative example in Table 3 was prepared, and a water/cement ratio of 0.65 and a sand/cement ratio of 2 were prepared.
.. Mix water and sand so that it is 0, put it in a mold and
A prismatic body with dimensions of 40×16 h/m was molded.

かくして得られた成形物を8000に昇温させて加熱硬
化を急速に行なわせた。比較例2,3では3び分間経過
後の成形物の脱型は不良であったので50分間経過後に
脱型を行なった。次いで常温で養生した。養生開始から
3粉ごを経過した時点での曲げ強度及び圧縮強度の測定
結果を第3表の比較例2,3の欄に託す。尚、比較例4
,5では成形物が形崩れしてしまい脱型できなかった。
従つて比較例4,5では曲げ強度、圧縮強度の測定は不
能であった。第 3 表
The temperature of the thus obtained molded product was raised to 8,000 ℃ to rapidly heat cure it. In Comparative Examples 2 and 3, demolding of the molded product after 3 minutes was poor, so demolding was performed after 50 minutes. Then, it was cured at room temperature. The measurement results of bending strength and compressive strength at the time point when 3 powders have passed since the start of curing are shown in the columns of Comparative Examples 2 and 3 in Table 3. In addition, comparative example 4
, 5, the molded product lost its shape and could not be removed from the mold.
Therefore, in Comparative Examples 4 and 5, it was impossible to measure bending strength and compressive strength. Table 3

Claims (1)

【特許請求の範囲】 1 ポルトランドセメント80〜96重量部、アルミナ
セメント13〜2.5重量部、無水石膏又は(及び)半
水石膏7〜1.5重量部からなる混合セメント100重
量部当り、有機カルボン酸のアルカリ金属塩を0.2〜
2重量部混合していることを特徴とする加熱硬化型セメ
ント組成物。 2 有機カルボン酸がクエン酸である特許請求の範囲第
1項記載の加熱硬化型セメント組成物。 3 有機カルボン酸がりんご酸である特許請求の範囲第
1項記載の加熱硬化型セメント組成物。 4 有機カルボン酸がグルコン酸である特許請求の範囲
第1項記載の加熱硬化型セメント組成物。 5 有機カルボン酸がグルタール酸である特許請求の範
囲第1項記載の加熱硬化型セメント組成物。 6 有機カルボン酸がグリコール酸である特許請求の範
囲第1項記載の加熱硬化型セメント組成物。 7 アルカリ金属塩がナトリウム塩である特許請求の範
囲第1項から第6項のいずれか1項記載の加熱硬化型セ
メント組成物。 8 アルカリ金属塩がカリウム塩である特許請求の範囲
第1項から第6項のいずれか1項記載の加熱硬化型セメ
ント組成物。
[Scope of Claims] 1. Per 100 parts by weight of a mixed cement consisting of 80 to 96 parts by weight of Portland cement, 13 to 2.5 parts by weight of alumina cement, and 7 to 1.5 parts by weight of anhydrite or (and) gypsum hemihydrate, Alkali metal salt of organic carboxylic acid from 0.2 to
A heat-curing cement composition characterized in that it contains 2 parts by weight. 2. The heat-curable cement composition according to claim 1, wherein the organic carboxylic acid is citric acid. 3. The heat-curable cement composition according to claim 1, wherein the organic carboxylic acid is malic acid. 4. The heat-curable cement composition according to claim 1, wherein the organic carboxylic acid is gluconic acid. 5. The heat-curable cement composition according to claim 1, wherein the organic carboxylic acid is glutaric acid. 6. The heat-curable cement composition according to claim 1, wherein the organic carboxylic acid is glycolic acid. 7. The heat-curable cement composition according to any one of claims 1 to 6, wherein the alkali metal salt is a sodium salt. 8. The heat-curing cement composition according to any one of claims 1 to 6, wherein the alkali metal salt is a potassium salt.
JP54093874A 1979-07-23 1979-07-23 Heat-curing cement composition Expired JPS6016381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54093874A JPS6016381B2 (en) 1979-07-23 1979-07-23 Heat-curing cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54093874A JPS6016381B2 (en) 1979-07-23 1979-07-23 Heat-curing cement composition

Publications (2)

Publication Number Publication Date
JPS5617956A JPS5617956A (en) 1981-02-20
JPS6016381B2 true JPS6016381B2 (en) 1985-04-25

Family

ID=14094604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54093874A Expired JPS6016381B2 (en) 1979-07-23 1979-07-23 Heat-curing cement composition

Country Status (1)

Country Link
JP (1) JPS6016381B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5973459A (en) * 1982-10-18 1984-04-25 電気化学工業株式会社 High strength cement composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497331A (en) * 1972-05-11 1974-01-23
JPS49112923A (en) * 1973-03-01 1974-10-28

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497331A (en) * 1972-05-11 1974-01-23
JPS49112923A (en) * 1973-03-01 1974-10-28

Also Published As

Publication number Publication date
JPS5617956A (en) 1981-02-20

Similar Documents

Publication Publication Date Title
JPS61500726A (en) Non-expanding, high-curing cement
FI58482C (en) FOERFARANDE FOER ATT ACCLELERERA HAORDNANDET OCH OEKA HAOLLFASTHETEN AV CEMENTER CEMENTMASSOR CEMENT-SANDBRUK OCH BETONGER
DE2949390C2 (en) Curable composition for the formation of ettringite (TSH), cement, plaster of paris and products containing up to 40% by weight of fiber material
JPH11505204A (en) Method for delaying setting speed of magnesium phosphate cement
JPS5951504B2 (en) Heat-curing cement composition
US4930428A (en) Cement composition comprising sodium tripolyphosphate and process for forming shaped articles therefrom
JPS5844622B2 (en) portland type cement
JPS6016381B2 (en) Heat-curing cement composition
JPS6016382B2 (en) Heat-curing cement composition
US3373048A (en) Hardening accelerated portland cement
JPS6234704B2 (en)
JPS59466B2 (en) Water resistant high strength gypsum composition
JPS6250428B2 (en)
JP7312385B1 (en) Method for producing concrete composition and method for producing concrete
JPH035352A (en) Production of fiber-reinforced slag gypsum cement-based lightweight cured body
JPS5811379B2 (en) Manufacturing method of inorganic wall material
JPS5818337B2 (en) gypsum cement composition
JPS5858305B2 (en) Fluorite gypsum composition
JPS6319469B2 (en)
JPS5943432B2 (en) Method for manufacturing fiber-reinforced plaster-based cured product
JPS5814384B2 (en) Anhydrite composition
JPS581064B2 (en) Manufacturing method of inorganic cured body
JPH0248504B2 (en)
US1604577A (en) Quick-setting lime and process of making same
JPH0144662B2 (en)