JPS60162786A - Production of thin film resistor - Google Patents

Production of thin film resistor

Info

Publication number
JPS60162786A
JPS60162786A JP59018482A JP1848284A JPS60162786A JP S60162786 A JPS60162786 A JP S60162786A JP 59018482 A JP59018482 A JP 59018482A JP 1848284 A JP1848284 A JP 1848284A JP S60162786 A JPS60162786 A JP S60162786A
Authority
JP
Japan
Prior art keywords
acid
thin film
hypophosphite
insulating substrate
resistance film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59018482A
Other languages
Japanese (ja)
Inventor
Takao Iwazawa
岩澤 隆雄
Mitsuru Kijima
木島 満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP59018482A priority Critical patent/JPS60162786A/en
Publication of JPS60162786A publication Critical patent/JPS60162786A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating

Abstract

PURPOSE:To obtain an extremely thermally stable thin film resistor by forming a resistance film by a chemical plating method on an insulator then immersing the insulator into a surface treating bath contg. acyclic satd. carboxylic acid having >=1 carboxylic group and hypophosphite and further subjecting the same to a heating treatment in a gaseous N2 atmosphere. CONSTITUTION:An insulating substrate such as a ceramic substrate, plastic substrate or the like is immersed in a plating bath and a resistance film is formed by a chemical plating method. The insulating substrate is required to be preliminarily adhered with a catalytic metal such as Pd or the like. The compsn. of the resistance film is exemplified by Ni, Co, Ni-P, etc. The insulating substrate formed with the above-described resistance film is immersed into the surface treating bath contg. the above-described acyclic satd. carboxylic acid (e.g.; acetic acid) and hypophosphite (e.g.; NaHPO2) and adjusted to 6.0-8.0pH and >=85 deg.C temp. and is then subjected to a heating treatment at >=200 deg.C in a gaseous N2 atmosphere. The thin film resistor having improved thermal stability is thus obtd.

Description

【発明の詳細な説明】 本発明は、回路基板上に直接被着形成することが可能な
薄膜抵抗の製造方法に関するものであり、さらに詳細に
は薄膜抵抗の熱安定性向上のための処理方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a thin film resistor that can be directly deposited on a circuit board, and more particularly to a processing method for improving the thermal stability of a thin film resistor. It is related to.

従来、電子回路用としてプリント配線基板等に抵抗を設
ける方法としては、別途成形した抵抗部品を半田付けに
より上記プリント配線基板に実装するのが一般的である
が、このようり方法では実装工□程が煩雑なものとなる
ばかりか電子回路の小型軽量化や高密度実装化等に対処
することができないという問題が生じている。
Conventionally, the common method for providing a resistor on a printed wiring board for electronic circuits is to mount a separately molded resistor component onto the printed wiring board by soldering. This poses a problem in that not only does the process become complicated, but it also cannot cope with miniaturization and weight reduction of electronic circuits, high-density packaging, and the like.

そこでさらに従来は、プリント配線基板等の絶縁基板上
に、例えば黒鉛粉末にケイ素末や滑石末を混ぜたものを
抵抗体としこの抵抗体をフェノール系合成樹脂等を結合
剤としてスクリーン印刷等の手法を用いて直接印刷成形
する所謂印刷抵抗が用いられるようになっている。この
印刷抵抗は、基板上に印刷膜として極めて薄く形成され
るものであるので高密度実装化には有用であるが、印刷
工程の工数が多いことやこの印刷抵抗と導体配線とを接
続するために用いられる銀ペーストがマイグレーション
を起こす等不良が発生し易いこと等の欠点も有している
。 □ 以上のような背景のもとに、さらに従来は、化学メッキ
法により絶縁基板上に抵抗皮膜を形成す6カ法、8工さ
ゎ、マゎよより、1う成。工程数が少なくなり、さらに
高密度実装化や不良の発生の低減等を図ることが可能と
なっている。
Therefore, in the past, a method such as screen printing was used, in which a resistor made of graphite powder mixed with silicon powder or talc powder was used as a resistor on an insulating substrate such as a printed wiring board, and this resistor was printed using a binder such as phenolic synthetic resin. So-called printed resistors, which are directly printed and molded using , are now being used. This printed resistor is formed as an extremely thin printed film on the board, so it is useful for high-density packaging. It also has the disadvantage that the silver paste used for this process tends to cause defects such as migration. □ Based on the above-mentioned background, there have been six methods, eight steps, two steps, and one method of forming a resistive film on an insulating substrate by chemical plating. The number of steps is reduced, and it is possible to achieve higher density packaging and reduce the occurrence of defects.

しかしながら、上記化学メッキ法により得られる抵抗皮
膜は熱に対する抵抗値の安定性に劣シ、例えば抵抗以外
の電子部品実装のための半田デインプ工程や半田り7.
0一工程等の熱処理工程が加わると上記抵抗皮膜の抵抗
値が大きく変化してしまうというように、実用上大きな
問題となっている。本発明者等が通常の湯洗処理を施し
た薄膜抵抗の抵抗値の変化量音調べたところ、例えば半
田り70一工程では1〜2%、250℃、5秒間の半田
ディツプを施した後には3〜5%、125℃、100時
間のエージングの後には5〜IO%にも達することが判
明した。
However, the resistance film obtained by the above chemical plating method has poor stability of resistance value against heat, for example, in the solder dipping process for mounting electronic components other than resistors.
Addition of a heat treatment process such as the 01 process causes a large change in the resistance value of the resistive film, which poses a serious problem in practice. The inventors investigated the change in resistance of thin film resistors subjected to normal hot water washing, and found that, for example, in the soldering process 70, the resistance was 1 to 2% after a solder dip was applied at 250°C for 5 seconds. was found to be 3-5%, and reached 5-IO% after aging at 125°C for 100 hours.

本発明者等は、化学メッキ法で得られる抵抗皮膜の熱安
定性を向上するための方法全開発せんものと鋭意研究を
重ねた結果、次亜リン酸塩が抵抗皮膜を構成する結晶粒
子の結び付きを強化させ熱ベーキングによる抵抗値の低
下を防ぐという作用上布し、さらに窒素ガス雰囲気中で
の加熱処理を併用することによって物理的密着性音強化
し効果−’ kより一層高めることが可能であることを
見出し本発明全完成したものであって、絶縁体上に化学
メッキ法により抵抗皮膜全形成した後、カルボキシル基
を1以上有する非環式飽和カルボン酸と次亜リン酸塩と
全台有しPH6,0〜8.0、温度85℃以上に調整さ
れる表面処理浴中に浸漬し、さらに窒素ガス雰囲気中に
おいて温度200℃以上の条件で加熱処理を施すことを
特徴とするものである。
The inventors of the present invention have conducted intensive research to develop a method for improving the thermal stability of resistive films obtained by chemical plating, and have discovered that hypophosphite is a highly effective method for improving the thermal stability of resistive films obtained by chemical plating. It has the effect of strengthening the bond and preventing a decrease in resistance value due to thermal baking, and by using heat treatment in a nitrogen gas atmosphere, it is possible to strengthen the physical adhesion sound and further increase the effect. The present invention has been completely completed, and after completely forming a resistive film on an insulator by chemical plating, an acyclic saturated carboxylic acid having one or more carboxyl groups, a hypophosphite, and a total It is characterized by being immersed in a surface treatment bath with a table and adjusted to a pH of 6.0 to 8.0 and a temperature of 85°C or higher, and then subjected to heat treatment at a temperature of 200°C or higher in a nitrogen gas atmosphere. It is.

本発明の製造方法においては、先ず七ラミック基板や合
成樹脂基板等の絶縁基板をメッキ浴中に浸漬し、化学メ
ッキ法により抵抗皮膜を形成する。
In the manufacturing method of the present invention, first, an insulating substrate such as a lamic substrate or a synthetic resin substrate is immersed in a plating bath, and a resistive film is formed by chemical plating.

ここで、上記化学メッキ法は無電解メッキであるので、
上記絶縁基板に対してあらかじめキャタリスト工程やア
クセレータ工程等を施しその表面にパラジウム等の触媒
となる金属を付着しておく必要がある。
Here, since the above chemical plating method is electroless plating,
It is necessary to perform a catalytic process, an accelerator process, etc. on the insulating substrate in advance, and attach a metal such as palladium to the surface of the insulating substrate to serve as a catalyst.

一方、上記メッキ浴の組成としては、抵抗皮膜を形成す
るために通常用いられるものであれば如何なるものであ
って丸よく、例えばニッケル塩やコバルト塩全生成分と
し還元剤を含有する化学メッキ液が挙げられる。この場
合、得られる抵抗皮膜の組成としては、Ni 、 Co
 、 Ni −P 、 Ni −B、Co−P、Co−
B、N1−Co−P等や、あるいは前記組成にさらにW
、Cr、Fe、Mo。
On the other hand, the composition of the plating bath may be any one commonly used for forming a resistive film, such as a chemical plating solution containing all nickel salts or cobalt salts and a reducing agent. can be mentioned. In this case, the composition of the resulting resistive film is Ni, Co
, Ni-P, Ni-B, Co-P, Co-
B, N1-Co-P, etc., or W in addition to the above composition.
, Cr, Fe, Mo.

Sn 、Cu等を含むもの等が挙げられる。そして、上
記メッキ浴の組成を調整することによって得られる抵抗
皮膜の組成を適宜変更し、この抵抗被膜の比抵抗全コン
トロールすればよい。
Examples include those containing Sn, Cu, etc. Then, by adjusting the composition of the plating bath, the composition of the resulting resistive film can be changed as appropriate to completely control the specific resistance of the resistive film.

さらに、上記得られる抵抗皮膜の比抵抗を高めるために
、上記メッキ浴中にレニウム塩を添加することも有効で
ある。このレニウム塩としては、過レニウム酸カリウム
や塩化レニウム等が挙げられ、メッキ浴中での濃度が0
.001モル/i〜0゜008モル/Jであることが好
ましい。これは、レニウム塩の濃度が0.001モル/
i未満だと高抵抗値が得られず、また、o、oosモル
/ik越えると抵抗皮膜が形成できないからである。
Furthermore, it is also effective to add a rhenium salt to the plating bath in order to increase the specific resistance of the resulting resistive film. Examples of this rhenium salt include potassium perrhenate and rhenium chloride, and the concentration in the plating bath is 0.
.. It is preferably from 0.001 mol/i to 0.008 mol/J. This means that the concentration of rhenium salt is 0.001 mol/
If it is less than i, a high resistance value cannot be obtained, and if it exceeds o, oos mol/ik, a resistive film cannot be formed.

また、上記メッキ浴がアルカリ性であるとニッケルやコ
バルトが水酸化物となシやすいので、錯化剤としてクエ
ン酸や酒石酸あるいはそれらのナトリウム塩やカリウム
塩等を添加することが好ましい。さらに、酢酸、グリコ
ール酸、コハク酸、プロピオン酸、乳酸、酪酸、エチレ
ンジアミン四酢酸等の有機酸およびそれらのナトリウム
塩やカリウム塩などを併用してもよい。
Furthermore, if the plating bath is alkaline, nickel and cobalt are easily converted into hydroxides, so it is preferable to add citric acid, tartaric acid, or their sodium or potassium salts as complexing agents. Furthermore, organic acids such as acetic acid, glycolic acid, succinic acid, propionic acid, lactic acid, butyric acid, ethylenediaminetetraacetic acid, and their sodium salts and potassium salts may be used in combination.

さらに、上記還元剤としては、次亜リン酸及びその塩が
好ましく、また次亜リン酸塩としては可溶性のものであ
ればほとんど適用できるが、一般的にはナトリウム塩が
用いられる。
Further, as the above-mentioned reducing agent, hypophosphorous acid and its salts are preferable, and almost any soluble hypophosphite can be used, but sodium salts are generally used.

以上の基本成分に加えてメッキ浴の安定剤、メッキ速度
コントロールのための添加剤等を用いてもよく、これら
添加剤として例えば鉛塩、チオ尿素、ロダンカリウム、
次亜硫酸ナトリウム、ホウ酸、ホウ酸塩、ホウフッ化・
物等が挙げられる。また、先のニッケル塩、コバルト塩
以外に他の金属塩を添加してその組成を調整する場合に
は、例えば硫酸鉄、塩化クロム、モリブデン酸カリウム
、塩化スズ、タングステン酸ナトリウム等が用いられる
In addition to the above basic components, stabilizers for the plating bath, additives for controlling the plating speed, etc. may be used, such as lead salts, thiourea, rhodan potassium, etc.
Sodium hyposulfite, boric acid, borate, fluoroborate,
Examples include things. When adjusting the composition by adding other metal salts in addition to the nickel salt and cobalt salt, for example, iron sulfate, chromium chloride, potassium molybdate, tin chloride, sodium tungstate, etc. are used.

また、上記メッキ浴には、所定のPH値に制御するため
のPH調整剤が加えられるが、このPH調整剤としては
通常は水酸化アルカリやアンモニア水が用いられる。
Further, a PH adjuster is added to the plating bath to control the pH value to a predetermined value, and alkali hydroxide or aqueous ammonia is usually used as the PH adjuster.

上述のメッキ浴中で上記絶縁基板上に抵抗皮膜を被着形
成した後、表面処理浴中に浸漬して第1の熱安定化処理
ヲ施す。
After a resistive film is deposited on the insulating substrate in the above-mentioned plating bath, it is immersed in a surface treatment bath to perform a first thermal stabilization treatment.

−上記表面処理浴において重要なことは、この処理浴が
次亜リン酸塩全含有することであって、この次亜リン酸
塩の分解により上記抵抗皮膜を構成する結晶粒子の結び
付きが強化され、上記抵抗皮膜の表面安定化が図られこ
の抵抗皮膜の抵抗値の低下が防止される。
- What is important in the above surface treatment bath is that it entirely contains hypophosphite, and the decomposition of this hypophosphite strengthens the bonds between the crystal grains that make up the resistance coating. , the surface of the resistive film is stabilized, and a decrease in the resistance value of the resistive film is prevented.

上記次亜リン酸塩としては通常ナトリウム塩が用いられ
、その添加量は3〜20 #/Jであることが好ましい
。次亜リン酸ナトリウムの添加量が32/J未満である
と効果がitとんど期待できず、また添加量が201/
j、f越えると却って抵抗値が低下してしまう。
As the above-mentioned hypophosphite, a sodium salt is usually used, and the amount added is preferably 3 to 20 #/J. If the amount of sodium hypophosphite added is less than 32/J, no effect can be expected;
If j and f are exceeded, the resistance value will actually decrease.

また、上記次亜リン酸塩を単独で用いると、PH値が高
過ぎ(PHIO程度)、また還元力が強すぎて却って抵
抗値が低下してしまう虞れがあるので、上記次亜リン酸
塩の還元力を緩和するための緩和剤を併用する必要があ
る。
In addition, if the above-mentioned hypophosphite is used alone, the pH value is too high (around PHIO) and the reducing power is too strong, which may actually lower the resistance value. It is necessary to use a mitigating agent to soften the reducing power of the salt.

この緩和剤としては、有接酸や無機酸等が考えられるが
、上記無機酸を用いると先に化学メッキ法で形成した抵
抗皮膜が溶解したり剥離したりする虞れがあり、また水
による希釈では不安定なものとなってしまう。
As this mitigating agent, argon acids, inorganic acids, etc. can be considered, but if the above-mentioned inorganic acids are used, there is a risk that the resistance film previously formed by chemical plating may dissolve or peel off, and Dilution makes it unstable.

本発明者の長期に亘る試験によれば、上記緩和剤トして
カルボン酸が好適で、特にカルボキシル基’に1以上に
有する非環式飽和カルボン酸が最適であることが判明し
た。さらに、上記非環式飽和カルボン酸のうち、OH基
やNH,基等を側鎖に有し、これらOH基やNH,基等
で上記カルボン酸のカルボキシル基の作用が緩和される
ものが好ましいことが分かった。
According to long-term tests conducted by the present inventors, it has been found that carboxylic acids are preferable as the above-mentioned relaxation agents, and in particular, acyclic saturated carboxylic acids having one or more carboxyl groups are most suitable. Further, among the above acyclic saturated carboxylic acids, those having an OH group, NH, group, etc. in the side chain, and the action of the carboxyl group of the above carboxylic acid is alleviated by the OH group, NH, group, etc. are preferable. That's what I found out.

上記非環式飽和カルボン酸は水溶性であればよく、具体
的には酢酸、プロピオン酸、酪酸等のカルボキシル基′
kl有する非環式飽和カルボン酸、シュウ酸、マロン酸
、コハク酸、ゲルタール酸、アジピン酸、ピメリン酸等
のカルボキシル基を2以上有する非環式飽和カルボン酸
、グリコール酸、乳酸、グリセリン酸、グルマン酸等の
カルボキシル基とOH基とを有する非環式飽和カルボン
酸、リンゴ酸、酒石酸、クエン酸等のカルボキシル基′
?t2以上とOH基とを有する非環式飽和カルボン酸、
アラニン、グリシン、グルタミン酸等のアミノ酸、エチ
レンジアミン四酢酸等の錯化剤等が挙げられる。これら
のなかで、熱的にも安定なリンゴ酸が最も好ましいもの
であった。
The above-mentioned acyclic saturated carboxylic acid may be water-soluble, and specifically, a carboxyl group such as acetic acid, propionic acid, butyric acid, etc.
Acyclic saturated carboxylic acids having two or more carboxyl groups, such as oxalic acid, malonic acid, succinic acid, geltaric acid, adipic acid, and pimelic acid, glycolic acid, lactic acid, glyceric acid, and gourmanic acid. Acyclic saturated carboxylic acids having carboxyl groups such as acids and OH groups, carboxyl groups such as malic acid, tartaric acid, citric acid, etc.
? Acyclic saturated carboxylic acid having t2 or more and an OH group,
Examples include amino acids such as alanine, glycine, and glutamic acid, and complexing agents such as ethylenediaminetetraacetic acid. Among these, thermally stable malic acid was the most preferred.

また、上記非環式飽和カルボン酸の濃度としては、上記
カルボン酸のカルボキシル基の当量で0゜05〜0.3
グラム当量/Jの範囲内であることが好ましい。
Further, the concentration of the acyclic saturated carboxylic acid is 0°05 to 0.3 in terms of the equivalent of the carboxyl group of the carboxylic acid.
It is preferably within the range of gram equivalent/J.

さらに、上記表面処理浴にあっては、浴温やPH値の影
響も大きく、本発明者等の実験によれば、上記浴温は8
5℃以上、PH6,8〜8.0に調整することが好まし
いことが弔1明した。浴温か85℃以下では充分な効果
が得られない。また、 PH値が6.0未満であると抵
抗値の上昇が見られ、PH値が8.0ヲ越えると逆に抵
抗値の低下が見られる。
Furthermore, in the above surface treatment bath, the influence of bath temperature and PH value is also large, and according to the experiments of the present inventors, the above bath temperature is 8.
It was revealed that it is preferable to adjust the temperature to 5°C or higher and the pH to 6.8 to 8.0. A sufficient effect cannot be obtained if the bath temperature is below 85°C. Further, when the PH value is less than 6.0, an increase in the resistance value is observed, and when the PH value exceeds 8.0, a decrease in the resistance value is observed.

上記表面処理浴への浸漬時間は30分以上であることが
望ましい。浸漬時間が30分以下であると充分な効果が
得られない虞れがある。
It is desirable that the immersion time in the above surface treatment bath be 30 minutes or more. If the immersion time is 30 minutes or less, sufficient effects may not be obtained.

次に、上記抵抗皮膜を形成した絶縁基板を上記表面処理
浴から取り出し、窒素ガス雰囲気中で加熱処理して第2
の熱安定化処理を施す。
Next, the insulating substrate on which the resistive film has been formed is taken out from the surface treatment bath and heat-treated in a nitrogen gas atmosphere to give a second
Heat stabilization treatment is applied.

上記第2の熱安定化処理である加熱処理は窒素ガスの如
き不活性ガス中で行なう必要があり、例えば大気中等で
行なうと上記抵抗皮膜の表面が酸化されてしまう。また
、その温度条件としては200〜280℃の範囲内が好
ましく゛、加熱温度が200℃未満であると熱安定化の
効果が減少してしまい、280℃を越えると上記抵抗皮
膜を構成する結晶が変化してしまう。さらに、上記加熱
処理の処理時間は、1時間以上であることが好ましく、
これ以下であると充分な効果が得られない0この窒素ガ
ス雰囲気中での加熱処理によって上記抵抗皮膜を構成す
る結晶粒子の物理的密着性の向土や充横状態の安定化が
図られ、上記抵抗皮膜はさらに熱的に安定化される。
The heat treatment, which is the second thermal stabilization treatment, must be performed in an inert gas such as nitrogen gas, and if it is performed in the atmosphere, for example, the surface of the resistive film will be oxidized. In addition, the temperature condition is preferably within the range of 200 to 280°C. If the heating temperature is less than 200°C, the thermal stabilization effect will decrease, and if it exceeds 280°C, the above-mentioned resistance film will be formed. The crystal changes. Furthermore, the treatment time of the heat treatment is preferably 1 hour or more,
If the temperature is less than this, a sufficient effect cannot be obtained. By heating in this nitrogen gas atmosphere, the physical adhesion of the crystal grains constituting the resistive film is stabilized, and The resistive coating is further thermally stabilized.

このように、上記抵抗皮膜に対して第1の熱安定化処理
及び第2の熱安定化処理を施して薄膜抵抗を完成する。
In this way, the first thermal stabilization treatment and the second thermal stabilization treatment are performed on the resistive film to complete a thin film resistor.

以上の各工程を経て製造される薄膜抵抗は、熱的に極め
て安定したものであり、信頼性の高いものである。例え
ば、他の回路部品実装時の半田リフロ一工程後の抵抗値
の変化量はo、oi%以下、まfc250℃、5秒間の
半田デイツプ後の抵抗値の変化量はo、i〜0.2%、
さらに125℃、100時間のエージング後であっても
抵抗値の変化量は0.5〜工チ程度であった。
The thin film resistor manufactured through the above steps is extremely thermally stable and highly reliable. For example, the amount of change in resistance value after one solder reflow process when mounting other circuit components is o, oi% or less, and the amount of change in resistance value after soldering dip for 5 seconds at 250°C is o,i ~ 0. 2%,
Furthermore, even after aging at 125° C. for 100 hours, the amount of change in resistance value was about 0.5 to inch.

ところで、上記第1の熱安定化処理あるいは第2の熱安
定化処理のいずれか一方の処理ヲ施した場合の効果につ
いても検討してみたが、上記窒素ガス雰囲気中での加熱
処理のみでは抵抗値の減少が見られ安定した値とするこ
とは難かしく、−刃表面処理浴への浸漬のみでは効果が
少ない。例えは125℃、100時間のエージング後の
抵抗値の変化量は2〜3チ程度になってしまう。
By the way, we also investigated the effect of performing either the first heat stabilization treatment or the second heat stabilization treatment, but the resistance was low with only the heat treatment in the nitrogen gas atmosphere. It is difficult to maintain a stable value as the value decreases, and - immersion in the blade surface treatment bath alone has little effect. For example, after aging at 125° C. for 100 hours, the amount of change in resistance value is about 2 to 3 inches.

以下、本発明の具体的な実施例について説明するが、本
発明がこれら実施例に限定されるものでないことは言う
までもない。
Hereinafter, specific examples of the present invention will be described, but it goes without saying that the present invention is not limited to these examples.

実施例1 絶縁基板としてアルミナ系セラミック基板を準備し、こ
の基板を先ずトリクロルエチレ“ン蒸気と接触させ、次
いで20%NaOH水溶液中に5分間浸漬して基板表面
を脱脂し、5分間水洗した。
Example 1 An alumina ceramic substrate was prepared as an insulating substrate. This substrate was first brought into contact with trichloroethylene vapor, then immersed in a 20% NaOH aqueous solution for 5 minutes to degrease the substrate surface, and washed with water for 5 minutes.

さらにこの基板’t−15%HCjV、水溶液中に1分
間浸漬した後、PdCJ2,5nCJ2.HCJk含む
触媒液中に5分間浸漬し、3分間水洗した。最後に3%
HCJ、水溶液に5分間浸漬した後、3分間水洗して上
記基板に対する前処理を完了した。
Further, this substrate 't-15%HCjV was immersed in an aqueous solution for 1 minute, and then PdCJ2,5nCJ2. It was immersed in a catalyst solution containing HCJk for 5 minutes and washed with water for 3 minutes. Finally 3%
After immersing the HCJ in an aqueous solution for 5 minutes, the substrate was washed with water for 3 minutes to complete the pretreatment for the substrate.

次いで、この基板を、下記に示す組成のメッキ浴中に浸
漬し、抵抗皮膜を形成した。なお、このときのメッキ浴
の液温は85℃に設定した。
Next, this substrate was immersed in a plating bath having the composition shown below to form a resistive film. Note that the temperature of the plating bath at this time was set at 85°C.

メッキ浴組成 塩化コバルト 20t/ノ 過レニウム酸カリウム L5f/11 クエン酸ナトリウム 1509/11 次亜リン酸ナトリウム 50tt/J。Plating bath composition Cobalt chloride 20t/no Potassium perrhenate L5f/11 Sodium citrate 1509/11 Sodium hypophosphite 50tt/J.

アンモニア水CPH@整剤)PH10,5となる量続い
て抵抗皮膜が形成された絶縁基板を下記の組成を有する
表面処理浴中に60分間浸漬し第1の熱安定化処理t−
mした0なお、上記表面処理浴の温度は90℃に設定し
た。
Ammonia water (CPH @ stabilizer) Amount to give pH 10.5 Subsequently, the insulating substrate on which the resistive film was formed was immersed for 60 minutes in a surface treatment bath having the following composition, and the first thermal stabilization treatment was performed.
Note that the temperature of the surface treatment bath was set at 90°C.

表面処理浴組成 リンゴ酸 10 f/J。Surface treatment bath composition Malic acid 10 f/J.

次亜リン酸ナトリウム 10f/J。Sodium hypophosphite 10f/J.

アンモニア水 PH7,4となる量 最後に、窒素ガス雰囲気中で250℃、1時間の加熱処
理を施して薄膜抵抗を製造した。
Ammonia water in an amount to give a pH of 7.4.Finally, a heat treatment was performed at 250° C. for 1 hour in a nitrogen gas atmosphere to produce a thin film resistor.

実施例2 先の実施例1の表面処理浴の組成を下記のように変更し
て、先の実施例1と同様な方法によって薄膜抵抗を製造
した。
Example 2 A thin film resistor was manufactured in the same manner as in Example 1, except that the composition of the surface treatment bath in Example 1 was changed as follows.

表面処理浴組成 エチレンジアミン四酢酸 1t/− 次亜リン酸ナトリウム 五Of/J 炭酸ナトリウム 2.5f/J これら実施例1及び実施例2で製造された薄膜抵抗の抵
抗値の変化率を第1図に示す。なお、比較のために上記
実施例10表面処理浴の組成や処理時間を次表の通り変
えて製造され、る薄膜抵抗の抵抗値の変化率を併せて示
す。
Surface treatment bath composition Ethylenediaminetetraacetic acid 1t/- Sodium hypophosphite 5Of/J Sodium carbonate 2.5f/J Figure 1 shows the rate of change in resistance value of the thin film resistors manufactured in Example 1 and Example 2. Shown below. For comparison, the rate of change in resistance value of thin film resistors manufactured by changing the composition and treatment time of the surface treatment bath of Example 10 as shown in the following table is also shown.

表 この第1図より、本発明により製造される薄膜抵抗にあ
っては、抵抗値の変化率が飛躍的に小さ・くなっており
、その効果が極めて大であることが分かる。 −
From the table shown in FIG. 1, it can be seen that in the thin film resistor manufactured according to the present invention, the rate of change in resistance value is dramatically reduced, and the effect thereof is extremely large. −

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用した実施例により製造さξJ れる薄膜抵抗の抵抗値の変化率を他の処理方法よるもの
と比較して示すグラフである。 特許出願人 ソニー株式会社 代理人 弁理士 小 池 見 回 1) 村 栄 − 第11II
FIG. 1 is a graph showing the rate of change in the resistance value of a thin film resistor ξJ manufactured by an embodiment of the present invention in comparison with that by other processing methods. Patent Applicant Sony Corporation Representative Patent Attorney Mimi Koike 1) Sakae Mura - No. 11 II

Claims (1)

【特許請求の範囲】[Claims] 絶縁体上に化学メッキ法により抵抗皮膜を形成した後、
カルボキシル基t1以上有する非環式飽和カルボン酸と
次亜リン酸塩とを含有しPH6,0〜8.0.温度85
℃以上に調整される表面処理浴中に浸漬し、さらに窒素
ガメ雰囲気中において温度200℃以上の条件で加熱処
理を施すことを特徴とする薄膜抵抗の製造方法。
After forming a resistive film on the insulator by chemical plating,
Contains an acyclic saturated carboxylic acid having t1 or more carboxyl groups and a hypophosphite, and has a pH of 6.0 to 8.0. temperature 85
1. A method for manufacturing a thin film resistor, which comprises immersing the resist in a surface treatment bath adjusted to a temperature of 200° C. or higher, and further heat-treating the resist at a temperature of 200° C. or higher in a nitrogen gas atmosphere.
JP59018482A 1984-02-06 1984-02-06 Production of thin film resistor Pending JPS60162786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59018482A JPS60162786A (en) 1984-02-06 1984-02-06 Production of thin film resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59018482A JPS60162786A (en) 1984-02-06 1984-02-06 Production of thin film resistor

Publications (1)

Publication Number Publication Date
JPS60162786A true JPS60162786A (en) 1985-08-24

Family

ID=11972852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59018482A Pending JPS60162786A (en) 1984-02-06 1984-02-06 Production of thin film resistor

Country Status (1)

Country Link
JP (1) JPS60162786A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5037766A (en) * 1988-12-06 1991-08-06 Industrial Technology Research Institute Method of fabricating a thin film polysilicon thin film transistor or resistor
JPH04131261U (en) * 1991-05-27 1992-12-02 ダイワゴルフ株式会社 golf club head
CN111321320A (en) * 2018-12-13 2020-06-23 和谐工业有限责任公司 Nickel-cobalt material and method of forming

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5037766A (en) * 1988-12-06 1991-08-06 Industrial Technology Research Institute Method of fabricating a thin film polysilicon thin film transistor or resistor
JPH04131261U (en) * 1991-05-27 1992-12-02 ダイワゴルフ株式会社 golf club head
CN111321320A (en) * 2018-12-13 2020-06-23 和谐工业有限责任公司 Nickel-cobalt material and method of forming
GB2580534A (en) * 2018-12-13 2020-07-22 Unison Ind Llc Nickel-cobalt material and method of forming
US11053577B2 (en) 2018-12-13 2021-07-06 Unison Industries, Llc Nickel-cobalt material and method of forming
GB2580534B (en) * 2018-12-13 2021-11-03 Unison Ind Llc Nickel-cobalt material and method of forming
US11591684B2 (en) 2018-12-13 2023-02-28 Unison Industries, Llc Nickel-cobalt material and method of forming
CN111321320B (en) * 2018-12-13 2023-09-15 和谐工业有限责任公司 Nickel-cobalt material and method of forming

Similar Documents

Publication Publication Date Title
CA1139012A (en) Method of preparing substrate surface for electroless plating and products produced thereby
US5910340A (en) Electroless nickel plating solution and method
USRE45175E1 (en) Process for silver plating in printed circuit board manufacture
US4775449A (en) Treatment of a polyimide surface to improve the adhesion of metal deposited thereon
KR100235850B1 (en) Pretreatment solution for electroless plating, electroless plating bath and electroless plating method
US4194913A (en) Electroless tin and tin-lead alloy plating baths
US6319543B1 (en) Process for silver plating in printed circuit board manufacture
US5403650A (en) Process for selectively depositing a nickel-boron coating over a metallurgy pattern on a dielectric substrate and products produced thereby
US6336962B1 (en) Method and solution for producing gold coating
GB2051489A (en) Process for the manufacture of printed circuits
JPH10287994A (en) Plating structure of bonding part
JPS60162786A (en) Production of thin film resistor
US3674550A (en) Method of electroless deposition of a substrate and sensitizing solution therefor
CA1046357A (en) Method for producing a metal film resistor by electroless plating
US20220388279A1 (en) Multilayer plating film
JPH0694593B2 (en) Electroless nickel plating on anodized aluminum
JP4096671B2 (en) Electronic component plating method and electronic component
JP2022062617A (en) Plating film and manufacturing method of plating film
JPS596365A (en) Electroless gold plating method
JPS62274076A (en) Electroless nickel-phosphorus plating bath
WO1994018350A1 (en) Alloy to be plated, its plating method and plating solution
JPS61231176A (en) Electroless plating method
JP2023176435A (en) Electroless nickel-phosphorus plating bath for electroless silver plating and method for applying electroless silver plating on sulfur compound-free nickel plating
JP2004149824A (en) Gold plating liquid, plating method using the gold plating liquid, method of producing electronic component, and electronic component
JPH09176864A (en) Thick-film formation in electroless gold plating