JPS60161669A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS60161669A
JPS60161669A JP59015213A JP1521384A JPS60161669A JP S60161669 A JPS60161669 A JP S60161669A JP 59015213 A JP59015213 A JP 59015213A JP 1521384 A JP1521384 A JP 1521384A JP S60161669 A JPS60161669 A JP S60161669A
Authority
JP
Japan
Prior art keywords
region
semiconductor device
film
offset
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59015213A
Other languages
Japanese (ja)
Other versions
JPH067596B2 (en
Inventor
Mitsumasa Koyanagi
光正 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59015213A priority Critical patent/JPH067596B2/en
Publication of JPS60161669A publication Critical patent/JPS60161669A/en
Publication of JPH067596B2 publication Critical patent/JPH067596B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66636Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's

Abstract

PURPOSE:To enable to perform the higher-speed operation of a semiconductor device, MOSFET, as well as to upgrade the withstand voltage thereof and to reduce the junction capacity thereof by a method wherein the source region and the drain region of the MOSFET in an offset structure are respectively constituted of an offset part and a main region part and the main region parts are formed deeper than the offset parts, and at the same time, insulating films are made to interpose between the interface of the source and drain regions. CONSTITUTION:Grooves 16 and 16 of the same depth as those of N<-> type layers 7a and 7a are formed in a source region 6 and a drain region 6 by performing an etching using sidewalls 15 and 15 as masks. An Si3N4 film (second Si3N4 film) 17 and an SiO2 film (second SiO2 film) 18 are again formed on the whole surface by a CVD method and the films 17 and 18 are performed an etching treatment by an RIE method. As a result, second sidewalls 19 and 19 are formed on both sides of the sidewalls 15 and 15 or the inner wall surfaces of the grooves 16 and 16. An etching is again performed on a substrate 2 using the second sidewalls 19 and 19 as masks and new deeper grooves 20 and 20 are formed in the lower sides of the grooves 16 and 16. After the second SiO2 film 18 was removed by performing an etching, an oxidation is performed on the inner surfaces of the grooves 20 and 20 and oxide films 9 and 9 are formed as insulating films.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は高速作動を可能とし、かつ一方では高集積化や
耐圧の向上を可能にした半導体装置およびその製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a semiconductor device that enables high-speed operation, high integration, and improved breakdown voltage, and a method for manufacturing the same.

〔背景技術〕[Background technology]

近年のIC,LSI等の半導体装置は益々高集積化が図
られており、MOSFET(MO8型電界効果トランジ
スタ)では短チヤネル化が図られている。しかしながら
、短チヤネル化を進めると、いわゆる短チヤネル効果で
生じるしきい値のゲート長依存性などの副作用を防ぐ上
からソース・ドレイン領域を浅くしなければならず、こ
れらソース・ドレイン領域の抵抗が犬となって素子の高
速化の障害になる。また、短チヤネル化に伴なって耐圧
にも問題が生じることとなり、従来、ソース・ドレイン
領域を高濃度の領域主部と、低濃度の領域とからなるプ
ロファイルのLightly DopedDrain 
構造が提案されてきている(IEEETRANSACT
IONS ON ELECTRONDEVICES、V
OL ED−29,No、4APRIL1982 P5
90〜)。しかし、抵抗が相対的に小さい領域主部が更
に微小化されてしまい、前述した高抵抗化を助長するこ
とになる。また、ソース・ドレイン領域の特に高濃度部
位が直接逆導電型の基板やウェルに接している構成であ
ることから、接合容量が太き(1よると共に、これをC
−MO8構造に用いたときにはランチアンプ耐圧が低く
なり、素子分離寸法を大きくしなげればならない等高集
積化の障害となる。
In recent years, semiconductor devices such as ICs and LSIs have become increasingly highly integrated, and MOSFETs (MO8 field effect transistors) have been made to have shorter channels. However, as channels become shorter, the source and drain regions must be made shallower in order to prevent side effects such as gate length dependence of the threshold value caused by the so-called short channel effect, and the resistance of these source and drain regions increases. It becomes a dog and becomes an obstacle to increasing the speed of the element. In addition, with the shortening of channels, problems arise with breakdown voltage. Conventionally, the source/drain regions have a profile consisting of a main part of a highly doped region and a lightly doped region.
Structures have been proposed (IEEE
IONS ON ELECTRON DEVICE,V
OL ED-29, No, 4APRIL1982 P5
90~). However, the main portion of the region with relatively low resistance is further miniaturized, which promotes the above-mentioned increase in resistance. In addition, since the particularly high concentration portions of the source/drain regions are in direct contact with the opposite conductivity type substrate or well, the junction capacitance is large (1) and this
- When used in the MO8 structure, the launch amplifier breakdown voltage becomes low, which becomes an obstacle to high-density integration, which requires increasing element isolation dimensions.

〔発明の目的〕[Purpose of the invention]

本発明の目的は短チヤネル化を図ったMOSFETのソ
ース・ドレイン領域の低抵抗化を図って高速化を可能に
すると共に、その耐圧の向上および接合容量の低減を可
能とし、更に高集積化を達成することのできる半導体装
置を提供することにある。
The purpose of the present invention is to reduce the resistance of the source/drain regions of a MOSFET with a short channel, thereby making it possible to increase the speed of the MOSFET, as well as to improve its breakdown voltage and reduce its junction capacitance. The object of the present invention is to provide a semiconductor device that can achieve the above goals.

また、本発明の他の目的は前記した高速作動可能でかつ
高集積化を達成する半導体装置の好適な製造方法を提供
することにある。
Another object of the present invention is to provide a suitable method for manufacturing the semiconductor device described above, which is capable of high-speed operation and achieves high integration.

本発明の前記ならびにそのほかの目的と新規な特徴は、
本明細省の記述および添付図面からあきらかになるであ
ろう。
The above and other objects and novel features of the present invention include:
It will become clear from the description of the present specification and the accompanying drawings.

〔発明の概要〕[Summary of the invention]

本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば、下記のとおりである。
A brief overview of typical inventions disclosed in this application is as follows.

すなわち、オフセット構造に形成したMOSFETのソ
ース・ドレイン領域における領域主部を深く形成すると
共に、この領域主部と基板側との界面に絶縁膜を介在さ
せる構成とすることにより、耐圧の向上はもとよりソー
ス・ドレイン領域の見かけ上の深さを大きくして低抵抗
化、つまり高速化を達成し、更に接合容量の低減を図り
、しかも短チヤネル化により高集積化を達成するもので
ある。
That is, by forming the main part of the source/drain region of a MOSFET formed in an offset structure deeply, and by interposing an insulating film at the interface between the main part of this region and the substrate side, not only the breakdown voltage can be improved. The apparent depth of the source/drain regions is increased to achieve lower resistance, that is, higher speed, and furthermore, junction capacitance is reduced, and moreover, high integration is achieved by shortening the channels.

また、ソース・ドレイン領域のオフセット部位を形成し
た後に領域主部の部位に溝を形成し、この溝の表面に絶
縁膜を形成した上で溝内に導電材料を充填することによ
り、前記高速作動型、高集積型の半導体装置の製造を完
成するものである。
Furthermore, after forming the offset portions of the source/drain regions, a groove is formed in the main portion of the region, an insulating film is formed on the surface of the groove, and a conductive material is filled in the groove. This completes the manufacturing of highly integrated semiconductor devices.

〔実施例〕〔Example〕

第1図は本発明の半導体装置をN型MO8FET1に適
用した実施例を示している。即ち、P型のシリコン半導
体基板2の主面上には選択酸化法(LOCO8法)で形
成したフィールド絶縁膜3を設けて活性領域を画成し、
この活性領域内にN−MO8FETIを構成している。
FIG. 1 shows an embodiment in which the semiconductor device of the present invention is applied to an N-type MO8FET1. That is, a field insulating film 3 formed by a selective oxidation method (LOCO8 method) is provided on the main surface of a P-type silicon semiconductor substrate 2 to define an active region.
An N-MO8FETI is configured within this active region.

このN−MO8FETIはゲート絶縁膜4上に形成した
ゲート電ri、5と、N型不純物をドープさせたソース
・ドレイン領域6.6とで構成しており、特にソース・
ドレイン領域は不純物濃度の低い(N−)部分7.7と
、これらの各外側に連続する不純物濃度の高い(N+)
領域主部8.8とで形成している。そして、前記領域主
部8.8は基板2の内方に向がって深く形成して低抵抗
化を図っている。fだ、領域主部8.8と基板2との界
面にはシリコン酸化膜(SjO,膜)かもなる絶縁膜9
.9を形成し、各領域主部8.8における接合容量の低
減を図っている。図中、io、iiはSin、、PSG
の層間絶縁膜12.12はAn配線である。
This N-MO8FETI is composed of a gate voltage ri, 5 formed on a gate insulating film 4, and source/drain regions 6.6 doped with N-type impurities.
The drain region has a low impurity concentration (N-) part 7.7 and a continuous high impurity concentration (N+) part 7.7 on the outside of each of these parts.
It is formed by a main area 8.8. The main region portion 8.8 is formed deeply inward of the substrate 2 to lower the resistance. f, at the interface between the main region 8.8 and the substrate 2, there is an insulating film 9 which may also be a silicon oxide film (SjO, film).
.. 9 is formed to reduce the junction capacitance in each region main portion 8.8. In the figure, io and ii are Sin, PSG
The interlayer insulating film 12.12 is an An wiring.

次に以上の構成のN−MO8FETIの製造方法を第2
図囚〜(I+の工程図に基づいて説明する。
Next, a second method for manufacturing the N-MO8FETI with the above configuration will be described.
The explanation will be based on the process diagram of I+.

先ず、第2図(3)のようにP型シリコン基板2の主面
にLOCO8法によりフィールド絶縁膜(SiO,)3
を形成して活性領域な画成すると共に、この活性領域上
にゲート絶縁膜(SiO2)4を形成し、更にその上に
ポリシリコン層を形成した上でこれをバターニングして
ゲート電極5を形成する。しかる後に不純物としてりん
P)を自己整合によって基板主面にドープさせ、オフセ
ット部7.7に相当する低濃度のN一層7a、7aを形
成する。
First, as shown in FIG. 2(3), a field insulating film (SiO,) 3 is formed on the main surface of a P-type silicon substrate 2 by the LOCO8 method.
A gate insulating film (SiO2) 4 is formed on this active region, and a polysilicon layer is further formed on it, and this is buttered to form a gate electrode 5. Form. Thereafter, the main surface of the substrate is doped with phosphorus (P) as an impurity by self-alignment to form a low concentration N layer 7a, 7a corresponding to the offset portion 7.7.

次いで、同図刊のようにシリコンナイトライド膜(Si
、N4)13およびSiO□膜14をCVD法により全
面に形成し、その後これを反応性イオンエツチング法(
RIE)によりエツチング除去することにより、同図(
C1のようにゲート電極50両側にサイドウオール15
.15を形成する。このとき、5in2膜14を比較的
厚く形成しておけば、ゲート電極5における断面形状と
RIE法の関係により、ゲート電極5上にもS i02
膜14とSi、N4膜13を若干残すことができる。そ
して、このサイドウオール15.15をマスクとしてソ
ース・ドレイン領域6.6に前記N一層7a。
Next, as shown in the same publication, a silicon nitride film (Si
, N4) 13 and SiO
The same figure (
Sidewalls 15 are placed on both sides of the gate electrode 50 as shown in C1.
.. form 15. At this time, if the 5in2 film 14 is formed relatively thick, Si02 will also be formed on the gate electrode 5 due to the relationship between the cross-sectional shape of the gate electrode 5 and the RIE method.
The film 14 and the Si, N4 film 13 can be left slightly. Then, using this sidewall 15.15 as a mask, the N layer 7a is applied to the source/drain region 6.6.

7aと同じ深さの溝16.16をエツチング形成する。A groove 16.16 of the same depth as 7a is etched.

次に、再びS i 3N4膜(第2Si3・N4膜)1
7とS i02膜(第2SiO3膜)18をCVD法に
より全面に形成し、かつこれをRIE法によりエツチン
グ処理することにより、同図の)のように前記サイドウ
オール15.15の両側ないし前記溝16.16の内立
面に第2サイドウオール19.19を形成する。そして
、再びこの第2サイドウオール19.19をマスクとし
そ基板2をエツチングし、前記溝16.16の下側に同
図田)のように、更に深い新たな溝20.20を形成す
る。
Next, Si 3N4 film (second Si3/N4 film) 1
7 and a SiO2 film (second SiO3 film) 18 are formed on the entire surface by CVD method, and etched by RIE method, thereby forming both sides of the sidewall 15, 15 or the groove. A second sidewall 19.19 is formed on the inner vertical surface of 16.16. Then, using the second sidewall 19.19 as a mask, the substrate 2 is etched again to form a new, deeper groove 20.20 below the groove 16.16 as shown in the same figure.

次いで、同図(F′)のように、第28iO2膜18を
エツチング除去した上で溝20.20内面を酸化して酸
化膜9.9を絶縁膜として形成する。このとき、領域7
.7の側面は第2Si3N、膜17.17に被覆されて
いるので酸化膜が形成されることはない。しかる上で、
第2Si3N、膜17を除去した後、同図(0のように
高濃度にN型不純物をドープしたポリシリコン8aを全
面に堆積させる。このとき、溝20.20はポリシリコ
ン8aにより充填される。そして、このポリシリコン8
aを表面からエツチングバックすれば、前記溝20.2
0内のポリシリコン8aのみが残され、同図σ」のよう
に高濃度不純物(N″−)の領域主部8.8が構成され
る。この領域主部8.8は低濃度不純物の前記オフセッ
ト部7.7と接続状態にあり、これにより各領域主部8
.8と領域7.7とでソース・ドレイン領域6.6を形
成する。
Next, as shown in FIG. 2F, the 28th iO2 film 18 is removed by etching, and the inner surface of the groove 20.20 is oxidized to form an oxide film 9.9 as an insulating film. At this time, area 7
.. Since the side surfaces of 7 are covered with the second Si3N film 17.17, no oxide film is formed. However,
After removing the second Si3N film 17, polysilicon 8a doped with N-type impurities at a high concentration is deposited on the entire surface as shown in the same figure (0).At this time, the trenches 20 and 20 are filled with polysilicon 8a. .And this polysilicon 8
If a is etched back from the surface, the grooves 20.2
Only the polysilicon 8a within 0 is left, forming a main region 8.8 of high concentration impurity (N"-) as shown in the figure σ". The offset portion 7.7 is connected to the main portion 8 of each area.
.. 8 and the region 7.7 form a source/drain region 6.6.

しかる上で、ゲート電極5の5i0211u14とSL
、N4膜13を除去し、改めて酸化処理して同図fI)
のよ5にゲート電極5ないしソース・ドレイン領域6.
6上にS io 2膜」0を形成する。更にその上にP
SG膜11を形成し、かつコンタクトホールの形成後に
Al配線12.12を形成すれば第1図のN−MO8F
ETIを完成することができる。
In addition, 5i0211u14 of gate electrode 5 and SL
, the N4 film 13 is removed and oxidized again (FIG. fI).
Gate electrode 5 or source/drain region 6.
6, an S io 2 film 0 is formed on top of the 6. Furthermore, P on top of that
If the SG film 11 is formed and the Al wiring 12.12 is formed after the contact hole is formed, the N-MO8F shown in FIG.
Able to complete ETI.

以上のように形成されたN−MO8FETIによれば、
ソース・ドレイン領域6.6は不純物濃度の低い領域7
.7と、濃度の高い領域主部8.8とで形成され、かつ
ゲート電極5とで構成されていることになる。したがっ
て、短チヤネル化した場合にもその耐圧を高いものにで
きる。一方、ソース・ドレイン領域6.6のこの構造に
より、領域の広い部分を占める領域主部8.8の深さを
大きくできるのでその低抵抗化を図り、高速化を実現で
きる。この場合、領域7.7は従来通りであり、短チヤ
ネル化に伴なうしきい値のゲート長依存性の副作用が生
じることはない。更に、領域主部8.8と基板2との界
面には絶縁膜9.9を形成しているので、ソース・ドレ
イン領域6.6全体の接合容量を大幅に低減することも
できる。
According to the N-MO8FETI formed as described above,
Source/drain regions 6.6 are regions 7 with low impurity concentration
.. 7, a high concentration region main portion 8.8, and the gate electrode 5. Therefore, even when the channel is shortened, the withstand voltage can be increased. On the other hand, this structure of the source/drain region 6.6 allows the depth of the main region 8.8, which occupies a wide portion of the region, to be increased, thereby lowering the resistance and realizing higher speed. In this case, the region 7.7 is the same as before, and the side effect of the gate length dependence of the threshold value due to the shortening of the channel does not occur. Furthermore, since the insulating film 9.9 is formed at the interface between the main region 8.8 and the substrate 2, the junction capacitance of the entire source/drain region 6.6 can be significantly reduced.

結局、短チヤネル化に伴なつ拙々の不具合を防止でき、
集子の微細化を図って高集積化を達成できる。
In the end, it is possible to prevent the awkward problems associated with shortening the channel.
High integration can be achieved by miniaturizing the cluster.

ここで、領域主部8.8の絶縁膜9.9は素子間分離用
の絶縁膜として利用することもでき、したがって第3図
のように2個のMO8FETIA。
Here, the insulating film 9.9 in the main region 8.8 can also be used as an insulating film for isolation between elements, and therefore two MO8FETIAs are used as shown in FIG.

IBを近接して配置することもできる8この構造を同図
のように、Pウェル2]、Nウェル22上に形成したN
−MOS F、E T I A、 P−MOS FET
IBからなるc−Mosデバイスに適用した場合には、
高集積化、高速度化に加えてラッチアップ耐圧の向上も
可能とされる。第3図中、第1図に対応する部分には同
一符号を付しである。
The IBs can be placed close to each other.8 This structure can be used as shown in the same figure for the N well 2 formed on the
-MOS FET, ETIA, P-MOS FET
When applied to a c-Mos device consisting of IB,
In addition to higher integration and speed, it is also possible to improve latch-up resistance. In FIG. 3, parts corresponding to those in FIG. 1 are given the same reference numerals.

〔効果〕〔effect〕

(11MOSFETのソース・ドレイン領域を低不細物
濃度領域と領域主部とからなるオフセット構造としてい
るので、耐圧の向上を図ることができる。
(Since the source/drain regions of the MOSFET 11 have an offset structure consisting of a low impurity concentration region and a main region, the breakdown voltage can be improved.

(2) ソース・ドレイン領域の領域主部のみを深く形
成しているので、短チヤネル化に伴なうしきい値のゲー
ト長依存性の副作用を防止する一方で、ソース・ドレイ
ン領域の低抵抗化を達成でき、高速化を達成できる。
(2) Only the main part of the source/drain region is formed deeply, which prevents the side effects of gate length dependence of the threshold value due to shorter channels, while reducing the resistance of the source/drain region. can be achieved and high speed can be achieved.

(3)領域主部と基板との界面に絶縁膜を形成している
ので、接合容量の低減を図ることができ、高速化を助長
すると共に動作の安定化を図ることができる。
(3) Since an insulating film is formed at the interface between the main region and the substrate, it is possible to reduce the junction capacitance, thereby promoting high speed operation and stabilizing the operation.

(4)短チヤネル化によっても耐圧の向上、高速化等を
達成できるので、素子の微細化を進めて高集積化を達成
できる。
(4) By shortening the channels, it is possible to improve breakdown voltage and increase speed, so it is possible to advance the miniaturization of elements and achieve high integration.

(5)ゲート電極の自己整合を利用したエツチング技術
により溝を形成し、溝内面の酸化技術により絶縁膜を形
成し、かつポリシリコンの堆積、エツチングバンク技術
によりソース・ドレインの領域主部を形成できので、特
殊な技術を必要とすることなく、しかも従来のMOSF
ETの製造工程に比べて大幅に工程数を増加することな
く高耐圧、高速、高集積度の半導体装置を製造すること
ができる。
(5) Form a trench using etching technology that utilizes self-alignment of the gate electrode, form an insulating film using oxidation technology on the inner surface of the trench, and form the main part of the source/drain region using polysilicon deposition and etching bank technology. Therefore, it does not require any special technology and can be done using conventional MOSFETs.
A semiconductor device with high breakdown voltage, high speed, and high integration can be manufactured without significantly increasing the number of steps compared to the ET manufacturing process.

以上本発明者によってなされた発明を実施例に −もと
づき具体的に説明したが、本発明は上記実施例に限定さ
れるものではなく、その要旨を逸脱しない範囲で種々変
更可能であることはいうまでもない。たとえば、ソース
・ドレイン領域の領域主部を高濃度不純物ポリシリコン
に代えて金属又は金属シリサイドを使用してもよく、低
抵抗化を一層向上することができる。また、溝の形成に
はホトリソグラフィ技術を利用した選択エツチング法を
利用してもよい。更に、各膜の形成法やポリシリコンの
堆積法にはCVD法の外種々の方法が利用できる。
The invention made by the present inventor has been specifically explained above based on Examples, but it should be noted that the present invention is not limited to the above Examples and can be modified in various ways without departing from the gist thereof. Not even. For example, metal or metal silicide may be used instead of heavily doped polysilicon for the main portions of the source/drain regions, and the resistance can be further reduced. Alternatively, a selective etching method using photolithography may be used to form the grooves. Furthermore, various methods other than the CVD method can be used for forming each film and depositing polysilicon.

〔利用分野〕[Application field]

以上の説明では主として本発明者によってなされた発明
をその背景となった利用分野である基本MO,’S F
 E Tに適用した場合につし・て説明したが、それに
限定されるものではな(このMOSFETを素子とする
IC,LSIの全てに適用することができ、特に高速、
高集積型の半導体装置に有効に適用できる。
In the above explanation, the invention made by the present inventor will be mainly explained in terms of the basic MO, 'S F
Although the explanation has been made for the case where it is applied to ET, it is not limited thereto (it can be applied to all ICs and LSIs that use this MOSFET as an element, especially for high-speed,
It can be effectively applied to highly integrated semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の断面図、 第2回込)〜(Ilは製造工程の断面図、第3図は変形
例の断面図である。 1、IA、IB・・・MO8F’ET12・・・半導体
基板、3・・・フィールド絶縁膜、4・・・ゲート絶縁
膜、5・・・ゲート電極、6・・・ソース・ドレイン領
域、7・・・低不純物濃度領域、8・・・領域主部、9
・・・絶縁膜、10・・・5in2膜、11・・・PS
G膜、15・・・サイドウオール、16・・・溝、19
・・・第2サイドウオール、20・・・溝、21・・・
Pウェル、22・・・Nウェル。 代理人 弁理士 高 橋 明 失 策 1 図 第 3 図 第 2 図 どA) (B) 第 2 図
Fig. 1 is a sectional view of an embodiment of the present invention, 2nd round) - (Il is a sectional view of the manufacturing process, and Fig. 3 is a sectional view of a modified example. 1, IA, IB...MO8F 'ET12... Semiconductor substrate, 3... Field insulating film, 4... Gate insulating film, 5... Gate electrode, 6... Source/drain region, 7... Low impurity concentration region, 8 ...Region main part, 9
...Insulating film, 10...5in2 film, 11...PS
G film, 15... Side wall, 16... Groove, 19
...Second side wall, 20...Groove, 21...
P well, 22...N well. Agent Patent Attorney Akira Takahashi Mistake 1 Figure 3 Figure 2 Figure A) (B) Figure 2

Claims (1)

【特許請求の範囲】 1、オフセット構造のMOSFETのソース0ドレイン
領域を、低不純物濃度のオフセット部と、その外側に連
なる領域主部とで構成し、この領域主部はオフセット部
よりも深く形成すると共に基板側との界面に絶縁膜を介
在させたことを特徴とする半導体装置。 2、領域主部を高不純物濃度の半導体材料で形成してな
る特許請求の範囲第1項記載の半導体装置。 3、領域主部を金属又は金属シリサイドで形成してなる
特許請求の範囲第1項記載の半導体装置。 4、MOSFETのソース・ドレイン領域の形成に際し
、先に低不純物濃度のオフセット部を形成し、その後領
域主部に相当する部位の半導体基板にオフセット部より
も深い溝を形成し、この溝の内面に絶縁膜を形成した上
で溝内に低抵抗材料を充填して領域主部を構成したこと
を特徴とする半導体装置の製造方法。 5、オフセット部をゲートを極を利用した自己整合法に
より形成し、その後ゲート電極にサイドウオールを形成
しかつこれをマスクとして領域主部の溝をエツチング形
成してなる特許請求の範囲第4項記載の半導体装置の製
造方法。 6、溝内面を酸化して酸化膜を形成し、この酸化膜を絶
縁膜として形成してなる特許請求の範囲第4項又は第5
項記載の半導体装置の製造方法。
[Claims] 1. The source 0 drain region of a MOSFET with an offset structure is composed of an offset part with a low impurity concentration and a main part of the region continuous to the outside thereof, and the main part of the region is formed deeper than the offset part. A semiconductor device characterized in that, at the same time, an insulating film is interposed at the interface with the substrate side. 2. The semiconductor device according to claim 1, wherein the main region is formed of a semiconductor material with a high impurity concentration. 3. The semiconductor device according to claim 1, wherein the main region is formed of metal or metal silicide. 4. When forming the source/drain regions of a MOSFET, first form an offset part with a low impurity concentration, then form a trench deeper than the offset part in the semiconductor substrate at a portion corresponding to the main part of the region, and then 1. A method of manufacturing a semiconductor device, characterized in that a main region is formed by forming an insulating film on the substrate and then filling a trench with a low-resistance material. 5. Claim 4, in which the offset portion is formed by a self-alignment method using a gate electrode, and then a sidewall is formed on the gate electrode, and a groove in the main region is etched using this as a mask. A method of manufacturing the semiconductor device described above. 6. The inner surface of the groove is oxidized to form an oxide film, and this oxide film is formed as an insulating film as claimed in claim 4 or 5.
A method for manufacturing a semiconductor device according to section 1.
JP59015213A 1984-02-01 1984-02-01 Method for manufacturing semiconductor device Expired - Lifetime JPH067596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59015213A JPH067596B2 (en) 1984-02-01 1984-02-01 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59015213A JPH067596B2 (en) 1984-02-01 1984-02-01 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS60161669A true JPS60161669A (en) 1985-08-23
JPH067596B2 JPH067596B2 (en) 1994-01-26

Family

ID=11882592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59015213A Expired - Lifetime JPH067596B2 (en) 1984-02-01 1984-02-01 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH067596B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147359A (en) * 1986-08-11 1988-06-20 テキサス インスツルメンツ インコーポレイテツド Semiconductor integrated circuit and manufacture of the same
WO1999025025A1 (en) * 1997-11-07 1999-05-20 Siemens Aktiengesellschaft Mos transistor and process for producing the same
US7528453B2 (en) * 2002-10-07 2009-05-05 Infineon Technologies Ag Field effect transistor with local source/drain insulation and associated method of production
CN103426753A (en) * 2012-05-14 2013-12-04 中芯国际集成电路制造(上海)有限公司 Preparation method for source drain region and metal oxide semiconductor (MOS) device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147359A (en) * 1986-08-11 1988-06-20 テキサス インスツルメンツ インコーポレイテツド Semiconductor integrated circuit and manufacture of the same
WO1999025025A1 (en) * 1997-11-07 1999-05-20 Siemens Aktiengesellschaft Mos transistor and process for producing the same
US7528453B2 (en) * 2002-10-07 2009-05-05 Infineon Technologies Ag Field effect transistor with local source/drain insulation and associated method of production
US7824993B2 (en) * 2002-10-07 2010-11-02 Infineon Technologies Ag Field-effect transistor with local source/drain insulation and associated method of production
US9240462B2 (en) 2002-10-07 2016-01-19 Infineon Technologies Ag Field-effect transistor with local source/drain insulation and associated method of production
CN103426753A (en) * 2012-05-14 2013-12-04 中芯国际集成电路制造(上海)有限公司 Preparation method for source drain region and metal oxide semiconductor (MOS) device
CN103426753B (en) * 2012-05-14 2016-06-22 中芯国际集成电路制造(上海)有限公司 The preparation method of source-drain area and MOS device

Also Published As

Publication number Publication date
JPH067596B2 (en) 1994-01-26

Similar Documents

Publication Publication Date Title
JP5319046B2 (en) Manufacturing method of semiconductor device including buried oxide film and semiconductor device including the same
JP3607431B2 (en) Semiconductor device and manufacturing method thereof
JPS59188974A (en) Manufacture of semiconductor device
JP2002026139A (en) Semiconductor device and manufacturing method therefor
JP2004533728A (en) Field effect transistor and method of manufacturing the same
JPH118379A (en) Semiconductor device and manufacture thereof
JP2000332242A (en) Semiconductor device and manufacture thereof
JPH0575117A (en) Semiconductor device and manufacture thereof
JP2001223360A (en) Insulated gate semiconductor device and its manufacturing method
JP2002231821A (en) Method for manufacturing semiconductor device and semiconductor device
JPS60161669A (en) Semiconductor device and manufacture thereof
JPH07153952A (en) Semiconductor device and manufacture thereof
JPH07273330A (en) Semiconductor device and its manufacture
JPH01194362A (en) Buried gate type mosfet and manufacture of the same
JPH09312331A (en) Semiconductor device and manufacture thereof
JP2003249650A (en) Semiconductor device and manufacturing method therefor
JP3125929B2 (en) Method for manufacturing semiconductor device
JPS61141180A (en) Field-effect transistor and manufacture thereof
JPS6197967A (en) Semiconductor device and manufacture thereof
JPH10163338A (en) Semiconductor device and its manufacturing method
JPH0828501B2 (en) Method for manufacturing semiconductor device
JP2006164998A (en) Semiconductor device and manufacturing method of the same
JP4439678B2 (en) Manufacturing method of semiconductor device
JPH06232163A (en) Vertical type mosfet device and its manufacture
JP2000124454A (en) Semiconductor device and its manufacture