JPS60160599A - Tomograph - Google Patents

Tomograph

Info

Publication number
JPS60160599A
JPS60160599A JP59015808A JP1580884A JPS60160599A JP S60160599 A JPS60160599 A JP S60160599A JP 59015808 A JP59015808 A JP 59015808A JP 1580884 A JP1580884 A JP 1580884A JP S60160599 A JPS60160599 A JP S60160599A
Authority
JP
Japan
Prior art keywords
pulse
distance
radiation
irradiation
number setting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59015808A
Other languages
Japanese (ja)
Other versions
JPH056458B2 (en
Inventor
Yasuyoshi Doi
土井 泰敬
Hidefumi Suzuki
英文 鈴木
Katsuhiro Masuo
克裕 増尾
Hideyuki Moriya
英之 森谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP59015808A priority Critical patent/JPS60160599A/en
Publication of JPS60160599A publication Critical patent/JPS60160599A/en
Publication of JPH056458B2 publication Critical patent/JPH056458B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/30Controlling
    • H05G1/38Exposure time
    • H05G1/42Exposure time using arrangements for switching when a predetermined dose of radiation has been applied, e.g. in which the switching instant is determined by measuring the electrical energy supplied to the tube
    • H05G1/44Exposure time using arrangements for switching when a predetermined dose of radiation has been applied, e.g. in which the switching instant is determined by measuring the electrical energy supplied to the tube in which the switching instant is determined by measuring the amount of radiation directly
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/30Controlling
    • H05G1/36Temperature of anode; Brightness of image power

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • X-Ray Techniques (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

PURPOSE:To obtain a picture of high quality by correcting changes in the quantity of X-rays reaching the surface of a film, which are caused by the distance changing with the move of an irradiation device, by means of changing the number of pulses or the pulse width of the pulsed irradiation. CONSTITUTION:A signal, which is proportional to the square of the distance between an X-ray tube 1 and a detection device 2, is inputted to a pulse-number setting circuit 6. The pulse-number setting circuit 16, including an A/D conversion circuit, generates a numerical output in inverse proportion to the input signal as the pulse-number setting output. A standard clock signal generating circuit 18 outputs the standard clock signal, which is counted by a counter contained in an irradiation signal generating circuit 17, and each time it reaches the numerical value of the pulse-number setting output given by the pulse-number setting circuit 16, an irradiation signal with a certain width is generated. Therefore, the irradiation intervals change in inverse proportion to the square of the distance between the X-ray tube and the film, and the quantity of X-rays reaching the film surface is maintained at a constant level.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、放射線照射手段と2次元放射線検出手段と
を被写体を挟んで対向配置し、これら両者を被写体中の
断層面の上の中心点を中心として対称的に移動させて断
層面以外の部分の陰影をぼかすことによって、透過放射
線による任意断層面の陰影画像を得る断層撮影装置の改
良に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention provides a radiation irradiation means and a two-dimensional radiation detection means that are arranged opposite to each other with a subject in between, and both of which are placed at the center of the tomographic plane of the subject. The present invention relates to an improvement in a tomography apparatus that obtains a shadow image of an arbitrary tomographic plane using transmitted radiation by moving symmetrically around a point to blur shadows in areas other than the tomographic plane.

(ロ)従来技術 通常の平行平面式の断層撮影装置は、第1図に示すよう
に、X線管工とフィルム2とを、テーブル3上の被検者
4を間に挟んで対向配置し、被検者4の体内の任意の位
置に設定された断層面5に平行な平面6.7上をX線管
lとフィルム2とがそれぞれ移動できるようにしておい
て、これら両者を断層面5の中心点0を中心に対称的に
移動させるようにして構成されている。そして上記の面
6.7上での移動軌跡は直線、円、楕円、ハイボサイク
ロイダルおよびうず巻き軌道などの種々のものが採用さ
れている。
(B) Prior art As shown in FIG. 1, in a normal parallel plane tomography apparatus, an X-ray tube and a film 2 are placed facing each other with a subject 4 on a table 3 in between. , the X-ray tube l and the film 2 are made movable on a plane 6.7 parallel to the tomographic plane 5 set at an arbitrary position in the body of the subject 4, and both are moved to the tomographic plane. It is configured to move symmetrically around the center point 0 of 5. Various loci of movement on the surface 6.7 are adopted, such as a straight line, a circle, an ellipse, a hybocycloidal trajectory, and a spiral trajectory.

ところで、このような平行平面式の断層撮影装置におい
ては、X線焦点の移動にともなってX線管lとフィルム
2との距離が変化する。そして。
Incidentally, in such a parallel plane type tomography apparatus, the distance between the X-ray tube 1 and the film 2 changes as the X-ray focal point moves. and.

フィルム2の面に到達するX線の線量はこの距離の逆2
乗の割合で変化する関係にある。すなわち、到達線量l
は I=に/ ((ar)+L ) 但し、 a= L / L O で表わすことができる。ここで、Kは定数であり、rは
中心点Oを通る法線からX線焦点までの距III(つま
り半径)、Lは面6.7間の距離、Loは面5.6間の
距離である。したがって、X線条件を一定にして撮影す
ると、X線管の移動によるフィルム面到達線量の変化か
らフィルム上に生じる陰影像に好ましくない影響があら
れれる。
The dose of X-rays reaching the surface of film 2 is the inverse of this distance 2
There is a relationship that changes with the power of the ratio. That is, the reached dose l
is I=/((ar)+L) However, it can be expressed as a=L/LO. Here, K is a constant, r is the distance III (that is, radius) from the normal passing through the center point O to the X-ray focal point, L is the distance between surfaces 6.7, and Lo is the distance between surfaces 5.6. It is. Therefore, when taking images under constant X-ray conditions, changes in the dose reaching the film surface due to movement of the X-ray tube may have an unfavorable effect on the shadow image produced on the film.

という不都合がある。There is this inconvenience.

(ハ)目的 この発明は、放射線照射手段の移動にともなう距離の変
化によるフィルム面到達線量の変化を補正し、優れた画
質の画像を得ることができるように改良した断層撮影装
置を提供することを目的とする。
(c) Purpose This invention provides an improved tomography apparatus that can correct changes in the dose reaching the film surface due to changes in distance due to movement of radiation irradiation means and obtain images of excellent image quality. With the goal.

(ニ)構成 この発明の断層撮影装置では、放射線を多数のパルス状
に照射する放射線照射手段と2次元放射線検出手段とを
被写体を挟んで対向配置し、これら両者を被写体中の断
層面の上の中心点を中心として対称的に移動させる際に
、放射線照射手段または2次元放射線検出手段の位置を
検出し、この位置からこれら両者の間の距離をめ、この
距離に関連する信号でパルス状放射線のパルス数または
パルス幅を変えることにより単位時間当りの放射線照射
時間を制御するようにしている。
(D) Configuration In the tomography apparatus of the present invention, a radiation irradiation means for irradiating radiation in a large number of pulses and a two-dimensional radiation detection means are arranged facing each other with the object in between, and both are placed on the tomographic plane of the object. When moving symmetrically around the center point, the position of the radiation irradiation means or the two-dimensional radiation detection means is detected, the distance between them is determined from this position, and a signal related to this distance is generated in a pulsed manner. The radiation irradiation time per unit time is controlled by changing the pulse number or pulse width of the radiation.

(ホ)実施例 以下に示す実施例は、この発明を種々の軌道をとること
ができる多軌道断層撮影装置に適用したものである。種
々の軌道をとることができるようにするためには回転運
動と直線運動とを組合せなければならないので、模式的
に表現すると、第2図に示すようにX線管lは直線運動
機構9とこの ゛直線運動機構9を回転させる回転運動
機構8とによって保持されていることになる。この第2
図には示していないが、フィルム2は中心点0(第1図
参照)を支点として回動可能に支持された連結レバーを
介してX線管lと連結され、X線管lがうす巻き軌道な
どの種々の軌道上を運動したときこのX線管lの運動に
対して点Oを中心としてフィルム2が対称的に運動する
ようにされている。このような相対運動を実現する機構
は断層撮影装置において従来より一般に用いられている
ので説明は省略する。
(E) Embodiments In the embodiments shown below, the present invention is applied to a multi-orbit tomography apparatus that can take various orbits. In order to be able to take various trajectories, it is necessary to combine rotational motion and linear motion, so to express it schematically, as shown in FIG. This is held by the rotary motion mechanism 8 that rotates the linear motion mechanism 9. This second
Although not shown in the figure, the film 2 is connected to the X-ray tube l via a connecting lever that is rotatably supported around the center point 0 (see Figure 1), and the X-ray tube l is thinly wound. When the film 2 moves on various orbits such as an orbit, the film 2 moves symmetrically about a point O with respect to the movement of the X-ray tube 1. A mechanism for achieving such relative motion has been commonly used in tomography apparatuses, so its explanation will be omitted.

このようにxII管1が運動するとき、第3図に示すよ
うな制御回路でX線曝射が制御される。すなわち、この
第3図で、電源10に接続されたX線管電源装置11は
パルスX線曝射用のもので、パルス状の高電圧を発生す
る。X線管はここでは12で表わされている。点線より
左側の回路がこの発明によって付加された回路である。
When the xII tube 1 moves in this manner, X-ray exposure is controlled by a control circuit as shown in FIG. That is, in FIG. 3, the X-ray tube power supply device 11 connected to the power supply 10 is for pulsed X-ray exposure and generates a pulsed high voltage. The X-ray tube is designated here by 12. The circuit to the left of the dotted line is the circuit added according to the present invention.

X線管の軌道半径rはポテンショメータなどの検出器1
3で検出され、半径rに比例する信号(ar)が得仁柄
又 −小丘ユ(a e )+49系M敗IAプ9養され
、(ar)2 が得られる。他方、高さLに対応するL
2の出力が生じるよう高さ設定回路15の設定があらか
じめ行なわれており、(ar)2とL2 とを加算した
( (a r)2+ L21の信号がパルス数設定回路
16に入力される。このパルス数設定回路16はA/D
変換回路を含み、入力信号に逆比例した数値出力をパル
ス数設定出力として生じる。基準クロック発生回路18
からクロック信号が第4図A(または第5図A)のよう
に出力されており、このクロック信号が曝射信号発生回
路17に含まれているカウンタでカウントされ、パルス
数設定回路16から与えられたパルス数設定出力の数値
に達する毎に一定幅の曝射信号が第4図B、Cのように
生じる。したがって、1 (a r)”+ L2)つま
りX線管とフィルムとの間の距離の2乗に逆比例して曝
射間隔が変化し、この距離が小さければ間隔が広くなり
(第4図B)、大きければ狭くなる(第4図C)。その
ため距離が短いとき単位時間当りのパルス数が少なくな
ってX線曝射時間が短くなり、距離が長いとき単位時間
当りのパルス数が多くなってX線曝射時間が長くなる。
The orbital radius r of the X-ray tube is determined by a detector 1 such as a potentiometer.
3, and a signal (ar) proportional to the radius r is fed to the signal (ar), which is proportional to the radius r, to obtain (ar)2. On the other hand, L corresponding to the height L
The height setting circuit 15 is set in advance so as to generate an output of 2, and a signal of (ar)2+L21, which is the sum of (ar)2 and L2, is input to the pulse number setting circuit 16. This pulse number setting circuit 16 is an A/D
It includes a conversion circuit and produces a numerical output inversely proportional to the input signal as a pulse number setting output. Reference clock generation circuit 18
A clock signal is output as shown in FIG. 4A (or FIG. 5A) from Each time the pulse number setting output value is reached, an exposure signal of a constant width is generated as shown in FIGS. 4B and 4C. Therefore, the exposure interval changes in inverse proportion to the square of the distance between the X-ray tube and the film (1 (a r)" + L2), and the smaller this distance, the wider the interval (see Figure 4). B), the larger the distance, the narrower it becomes (Fig. 4 C). Therefore, when the distance is short, the number of pulses per unit time is small and the X-ray exposure time is shortened, and when the distance is long, the number of pulses per unit time is large. This increases the X-ray exposure time.

この例ではパルスX線のパルス幅を一定としパルス数を
変えることで単位時間当りのX線曝射時間を変えるよう
にしているが、パルス数は一定としてパルス幅を変える
ようにしてもよい。そのためには、パルス数設定回路1
6の代りに、入力信2 号((ar)+L )に比例する数値のパルス幅設定出
力を生じるパルス幅設定回路を用い、曝射信号発生回路
17がクロック信号をカウントしてパルス幅設定出力に
応じたパルス幅の曝射信号(第5図B、C)を生じるよ
うに構成する。
In this example, the pulse width of the pulsed X-ray is kept constant and the X-ray exposure time per unit time is changed by changing the number of pulses, but the pulse width may be changed while keeping the number of pulses constant. To do this, pulse number setting circuit 1
6, a pulse width setting circuit that generates a pulse width setting output with a numerical value proportional to the input signal 2 ((ar) + L) is used, and the exposure signal generation circuit 17 counts the clock signal and outputs the pulse width setting. It is configured to generate an exposure signal (FIG. 5B, C) with a pulse width corresponding to the pulse width.

2 (Car)+L )つまりX線管とフィルムとの間の距
離の2乗に比例して曝射信号発生回路17かもの曝射信
号のパルス幅が変化し、クロック信号が第5図Aのよう
であるとすると、この距離が小さいとき第5図Bに示す
ようにパルス幅が狭くなり、大きければ第5図Cに示す
ように広くなる。
2 (Car)+L) In other words, the pulse width of the exposure signal of the exposure signal generation circuit 17 changes in proportion to the square of the distance between the X-ray tube and the film, and the clock signal changes as shown in FIG. 5A. If this distance is small, the pulse width becomes narrow as shown in FIG. 5B, and if it is large, the pulse width becomes wide as shown in FIG. 5C.

このようにパルスX線曝射を行ない、そのパルス数また
はパルス幅を制御することによって単位時間当りのX線
曝射時間を距離の2乗に比例して変えるようにしている
ので、フィルム面へ到達する線量をX線管とフィルムと
の距離の変化に無関係に一定とすることができる。すな
わち、上述した到達線量Iを表わす式は、Koを定数、
mAをX線管電流、SをX線曝射時間、KVをX線管電
圧とすると、つぎのように書き換えることができる。
By performing pulsed X-ray irradiation in this way and controlling the number of pulses or pulse width, the X-ray irradiation time per unit time is changed in proportion to the square of the distance. The delivered dose can be kept constant regardless of changes in the distance between the X-ray tube and the film. In other words, the above-mentioned formula expressing the achieved dose I is such that Ko is a constant and
If mA is the X-ray tube current, S is the X-ray exposure time, and KV is the X-ray tube voltage, it can be rewritten as follows.

I = K ’−mA−3−KVN/((a r)”+
L2)但し、a=L/L。
I = K'-mA-3-KVN/((a r)"+
L2) However, a=L/L.

そこでX線曝射時間Sをつぎの式に示すように変数rの
2乗に比例して制御するようにし、S=に″・ ((a
r)+L ) 但し K T+ 、定数 このとき他のX線条件を一定とすればフィルム面到達線
量Iは、 I =K ’ eK” @mA*KVNとなって半径r
つまり距離の変化に無関係となるからである。
Therefore, the X-ray exposure time S is controlled in proportion to the square of the variable r as shown in the following formula, and S = ″・((a
r)+L) However, if K T+ is a constant and other X-ray conditions are constant, the dose I reaching the film surface is I = K'eK" @mA*KVN, and the radius r
In other words, it is unrelated to changes in distance.

なお、上記ではX線パルス数を制御する例とX線パルス
幅を制御する例とを示したが、両者を併用するようにし
てもよい。
Note that although an example in which the number of X-ray pulses is controlled and an example in which the width of the X-ray pulses is controlled are shown above, both may be used in combination.

また、上記の実施例では、フィルム面への到達線量が常
に一定になるよう単位時間当りのX線曝射時間を制御し
ているが、臨床的にはその到達線量を一定とせず多少加
減した方がよい場合もあり、そのような場合に対応して
制御を行なうよう構成してもよい。
In addition, in the above example, the X-ray exposure time per unit time is controlled so that the dose reaching the film surface is always constant, but clinically, the dose reaching the film is not constant and may be adjusted somewhat. There may be cases where it is better, and the configuration may be such that control is performed in response to such cases.

(へ)効果 この発明によれば、放射線を多数のパルス状に照射する
放射線照射手段と2次元放射線検出手段との間の距離を
め、この距離に関連する信号でパルス状放射線のパルス
数またはパルス幅を変えることにより単位時間当りの放
射線照射時間を制御するようにしているため、距離の変
化にともなうフィルム面到達線量の変動を補正すること
ができ、その結果優れた画質の画像を得ることができる
とともに、そのための構成とじてに若干の制御回路を付
加するだけでよいので実用化が容易である。
(f) Effects According to the present invention, the distance between the radiation irradiation means that irradiates radiation in the form of many pulses and the two-dimensional radiation detection means is determined, and a signal related to this distance is used to determine the number of pulses of the pulsed radiation or Since the radiation irradiation time per unit time is controlled by changing the pulse width, it is possible to compensate for fluctuations in the dose reaching the film surface due to changes in distance, and as a result, images with excellent image quality can be obtained. In addition, it is easy to put it into practical use because it is only necessary to add a few control circuits to the configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は断層撮影装置の動作を説明するための模式図、
第2図はこの発明の一実施例にかかる断層撮影装置の運
動機構を模式的に示す斜視図、第3図は同実施例の制御
回路を示すブロック図、第4図A、B、Cおよび第5図
A、B、Cはそれぞれ動作を説明するための波形図であ
る。 1.12・・・X線管 2・・・フィルム3・・・テー
ブル 4・・・被検者 5・・・断層面 8・・・回転運動機構9・・・直線運
動機構 10・・・電源11・・・xm、管電源装置 
13・・・半径検出器14・・・2乗回路 15・・・
高さ設定回路16・・・パルス数設定回路 17・・・曝射信号発生回路 18・・・基準クロック発生回路 出願人 株式会社島津製作所 簿1目 答2目 簿3臣
FIG. 1 is a schematic diagram for explaining the operation of the tomography apparatus,
FIG. 2 is a perspective view schematically showing a movement mechanism of a tomography apparatus according to an embodiment of the present invention, FIG. 3 is a block diagram showing a control circuit of the same embodiment, and FIGS. 4A, B, C, and 5A, B, and C are waveform diagrams for explaining the operation, respectively. 1.12... X-ray tube 2... Film 3... Table 4... Subject 5... Fault plane 8... Rotating motion mechanism 9... Linear motion mechanism 10... Power supply 11...xm, tube power supply device
13... Radius detector 14... Square circuit 15...
Height setting circuit 16...Pulse number setting circuit 17...Exposure signal generation circuit 18...Reference clock generation circuit Applicant: Shimadzu Corporation

Claims (1)

【特許請求の範囲】[Claims] (1)被写体に対して放射線を多数のパルス状に照射す
る放射線照射手段と、被写体を透過した放射線が入射す
るよう被写体を挟んで上記放射線照射手段に対して対向
配置される2次元放射線検出手段と、上記放射線照射手
段と2次元放射線検出手段とを被写体中に設定された断
層面上の中心点を中心として対称的に移動させる移動手
段と、上記放射線照射手段または2次元放射線検出手段
の位置を検出する手段と、検出された位置から上記放射
線照射手段と2次元放射線検出手段との距離をめる手段
と、このめた距離に関連する信号で上記パルス状放射線
のパルス数またはパルス幅を変えることにより単位時間
当りの放射線照射時間を制御する制御手段とからなる断
層撮影装置。
(1) A radiation irradiation means that irradiates the subject with radiation in the form of many pulses, and a two-dimensional radiation detection means that is arranged opposite to the radiation irradiation means with the subject in between so that the radiation that has passed through the subject is incident. a moving means for moving the radiation irradiation means and the two-dimensional radiation detection means symmetrically about a center point on a tomographic plane set in the subject; and a position of the radiation irradiation means or the two-dimensional radiation detection means. means for detecting a distance between the radiation irradiation means and the two-dimensional radiation detection means from the detected position; and means for determining the number of pulses or the pulse width of the pulsed radiation using a signal related to the distance. A tomography apparatus comprising a control means for controlling radiation irradiation time per unit time by changing the radiation irradiation time.
JP59015808A 1984-01-31 1984-01-31 Tomograph Granted JPS60160599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59015808A JPS60160599A (en) 1984-01-31 1984-01-31 Tomograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59015808A JPS60160599A (en) 1984-01-31 1984-01-31 Tomograph

Publications (2)

Publication Number Publication Date
JPS60160599A true JPS60160599A (en) 1985-08-22
JPH056458B2 JPH056458B2 (en) 1993-01-26

Family

ID=11899143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59015808A Granted JPS60160599A (en) 1984-01-31 1984-01-31 Tomograph

Country Status (1)

Country Link
JP (1) JPS60160599A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01311597A (en) * 1988-06-10 1989-12-15 Hitachi Medical Corp Pulse x-ray fluoroscopic device
JPH034500U (en) * 1989-05-31 1991-01-17
US6525804B1 (en) 1999-06-08 2003-02-25 Ushiodenki Kabushiki Kaisha Exposure device capable of aligning while moving mask
EP1711015A2 (en) 1996-02-05 2006-10-11 Matsushita Electric Industrial Co., Ltd. Video signal recording apparatus, video signal regenerating apparatus, image coding apparatus and image decoding apparatus
US7194065B1 (en) 1999-03-04 2007-03-20 Ge Medical Systems Sa Method and apparatus for control of exposure in radiological imaging systems
JP2010240063A (en) * 2009-04-02 2010-10-28 Shimadzu Corp Radiographic apparatus
JP2012024424A (en) * 2010-07-27 2012-02-09 Fujifilm Corp Radiographic apparatus, control method for the same, and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56175999U (en) * 1980-05-30 1981-12-25
JPS5820117A (en) * 1981-07-26 1983-02-05 有限会社津久井椎茸研究所 Artificial culture log of mushroom and method
JPS58147998A (en) * 1982-02-26 1983-09-02 Shimadzu Corp Tomography apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56175999U (en) * 1980-05-30 1981-12-25
JPS5820117A (en) * 1981-07-26 1983-02-05 有限会社津久井椎茸研究所 Artificial culture log of mushroom and method
JPS58147998A (en) * 1982-02-26 1983-09-02 Shimadzu Corp Tomography apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01311597A (en) * 1988-06-10 1989-12-15 Hitachi Medical Corp Pulse x-ray fluoroscopic device
JPH034500U (en) * 1989-05-31 1991-01-17
EP1711015A2 (en) 1996-02-05 2006-10-11 Matsushita Electric Industrial Co., Ltd. Video signal recording apparatus, video signal regenerating apparatus, image coding apparatus and image decoding apparatus
US7194065B1 (en) 1999-03-04 2007-03-20 Ge Medical Systems Sa Method and apparatus for control of exposure in radiological imaging systems
US6525804B1 (en) 1999-06-08 2003-02-25 Ushiodenki Kabushiki Kaisha Exposure device capable of aligning while moving mask
JP2010240063A (en) * 2009-04-02 2010-10-28 Shimadzu Corp Radiographic apparatus
JP2012024424A (en) * 2010-07-27 2012-02-09 Fujifilm Corp Radiographic apparatus, control method for the same, and program

Also Published As

Publication number Publication date
JPH056458B2 (en) 1993-01-26

Similar Documents

Publication Publication Date Title
US3924133A (en) Device for measuring density of substances by penetrating rays
US4144457A (en) Tomographic X-ray scanning system
US4773087A (en) Quality of shadowgraphic x-ray images
US7209537B2 (en) X-ray tomography apparatus and operating method for generating multiple energy images
JP4499593B2 (en) X-ray bone density measuring device
JP2007195978A (en) X-ray computer tomograph and method for operating the same
JP2010082428A (en) X-ray computer tomography apparatus
JPS6080746A (en) Method for receiving radiation image
US4081681A (en) Treatment of absorption errors in computerized tomography
JPS60160599A (en) Tomograph
JP2004136021A (en) Concentrated irradiation type radiotherapy apparatus
JPH0250736B2 (en)
US5481586A (en) Automatic position control system for x-ray machines
US4063099A (en) Dental apparatus for X-ray diagnosis
US2962594A (en) X-ray apparatus
JPH05305077A (en) X-ray ct device
WO2016051996A1 (en) Fluoroscopy device and multi-energy imaging method
EP0402876A3 (en) Radiographic apparatus
EP0049464B1 (en) Apparatus for collecting x-ray absorption data in a computerized tomographic apparatus
JPS60160598A (en) X-ray tomograph
US4097744A (en) Radiographic apparatus having repetitive movement of the origin of the radiation
Hall et al. Experimental system for dual energy scanned projection radiography
JP6377370B2 (en) X-ray tube apparatus and X-ray CT apparatus
JPS5492192A (en) Tomographic equipment
JPH03295541A (en) X-ray diagnostic device