JPS60156548A - Collecting agent of carbon monoxide and its manufacture - Google Patents

Collecting agent of carbon monoxide and its manufacture

Info

Publication number
JPS60156548A
JPS60156548A JP59012033A JP1203384A JPS60156548A JP S60156548 A JPS60156548 A JP S60156548A JP 59012033 A JP59012033 A JP 59012033A JP 1203384 A JP1203384 A JP 1203384A JP S60156548 A JPS60156548 A JP S60156548A
Authority
JP
Japan
Prior art keywords
zeolite
ratio
carbon monoxide
capan
zsh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59012033A
Other languages
Japanese (ja)
Other versions
JPH0421539B2 (en
Inventor
Tadao Takebayashi
竹林 忠夫
Keiji Itabashi
慶治 板橋
Kiyoharu Hashiba
羽柴 清晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP59012033A priority Critical patent/JPS60156548A/en
Publication of JPS60156548A publication Critical patent/JPS60156548A/en
Publication of JPH0421539B2 publication Critical patent/JPH0421539B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To obtain a CO collecting agent having excellent CO collecting performance by exchanging Na of ZSM-5 type zeolite wherein alumina per silica by molar ratio is small for Cu ion and heating the zeolite under CO atmosphere. CONSTITUTION:Na of ZSM-5 type zeolite wherein alumina per silica by molar ratio is <=19 is exchanged for Cu ion and thereafter the zeolite is heated at 150-500 deg.C under the CO atmosphere to obtain copper ( I ) type zeolite. The zeolite has more excellent collecting performance for CO than conventional performance.

Description

【発明の詳細な説明】 本発明はゼオライトに特殊な処理を施した一酸化炭素捕
集剤に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a carbon monoxide scavenger in which zeolite is specially treated.

一酸化炭素(CO)は合成化学における原料ガスとして
近年あらためで注目されつつある。例えば、Oジウム(
旧1)を触媒とし、メタノールとの反応による酢酸の合
成、あるいは水素との反応によりエチレングリコールを
合成する。更にシュウ酸、ギ酸等の合成原料としでもC
Oが利用される。酢酸、シlつ酸は既に工業規模で生産
されており、重質油からのガス化により、CO源として
いる。これらのプロセス原料としてのCOを含むガスか
らCOを得る為の分離法には、深冷分離法、調液洗浄法
、C03ORB法、金属カルボニル法、吸着分離法など
がある。
Carbon monoxide (CO) has recently received renewed attention as a raw material gas in synthetic chemistry. For example, Odium (
Using old 1) as a catalyst, acetic acid is synthesized by reaction with methanol, or ethylene glycol is synthesized by reaction with hydrogen. Furthermore, C can be used as a raw material for the synthesis of oxalic acid, formic acid, etc.
O is used. Acetic acid and silicic acid are already produced on an industrial scale and are used as a CO source by gasifying heavy oil. Separation methods for obtaining CO from a gas containing CO as a raw material for these processes include a cryogenic separation method, a liquid preparation washing method, a CO3ORB method, a metal carbonyl method, and an adsorption separation method.

深冷分離法は、COを低湿蒸溜で液化分離するもので過
大な設備を要すること、製品COが高純度の場合、00
回収率が低いという欠点を有している。特に、N2が共
存するガス処理には、これらの沸点が近接している為実
用化がきわめて回動であると言われている。調液洗浄法
はアンモニア合成原料ガス精製の脱CO工程に用いられ
(いIこ。吸収液として第一銅と炭酸、ギ酸を含んだア
ンモニノl性水溶液(cu (No3) 2)を用い、
COどの錯塩形成を行なうのでCOに対Jる高い選択性
をi!Q k’+出来る。
The cryogenic separation method involves liquefying and separating CO through low-humidity distillation, which requires excessive equipment.If the product CO is of high purity,
It has the disadvantage of low recovery rate. In particular, it is said that the practical application of gas processing in which N2 coexists is extremely difficult because the boiling points of these gases are close to each other. The liquid preparation cleaning method is used in the CO removal process of ammonia synthesis raw material gas purification.
Since complex salts such as CO are formed, high selectivity for CO is achieved. Q k'+ can be done.

しかし、この方法は操作が繁雑であり、吸収液の再生に
スチームを要り゛るなどの経演的問題を会んでいる。C
08ORB法は、銅、アルミニウムテトラクロライドと
トルエンの配位化合物が常温でCOと鎖体を形成し、高
温でCOを放出づる反応を利用覆るものでCO選択性が
高く、高純度COの回収に適している。しかし、吸収液
再生に大量のスチームを要する欠点は調液洗浄法と同様
)ある。
However, this method is complicated to operate and has practical problems such as the need for steam to regenerate the absorption liquid. C
The 08ORB method utilizes a reaction in which a coordination compound of copper, aluminum tetrachloride, and toluene forms a chain with CO at room temperature and releases CO at high temperature.It has high CO selectivity and is suitable for recovering high-purity CO. Are suitable. However, this method has the same disadvantage as the liquid preparation cleaning method in that it requires a large amount of steam to regenerate the absorption liquid.

金属カルボニル法は、Ni、 Fe、 Hなどの金属を
活性状態でCOと接触させ、カルボニル化合物を生成さ
せ、このカルボニル化合物を分離後、分解温度以上に加
熱し、coと金属とに分離する。
In the metal carbonyl method, a metal such as Ni, Fe, or H is brought into contact with CO in an active state to generate a carbonyl compound, and after the carbonyl compound is separated, it is heated to a temperature higher than its decomposition temperature to separate it into co and the metal.

例えば、COと活性側の接触によって45〜50℃で気
体状のニッケルカルボニル(Ni (CO) 、i )
を得ることができる。Ni (CO) 4は共存する成
分からこれを分111することが必要であり、その分離
法としてガス状態で分離膜により分離する、液化して取
りだす、などがある。
For example, gaseous nickel carbonyl (Ni(CO),i) at 45-50 °C by contact of the active side with CO
can be obtained. It is necessary to separate Ni (CO) 4 from coexisting components, and separation methods include separating it in a gaseous state using a separation membrane, or liquefying it and extracting it.

分離膜は共存する成分の種類にょっ(fa適なものを選
択づる必要があるが一般にNi (CO) 4より小さ
いガス分子からの分離であるから、さ程複雑なプロセス
ではない。得られるNi (CO) 4は200℃にて
熱分解すると、co及び活性状態のXiとなる。
The separation membrane needs to be selected depending on the types of coexisting components (fa), but in general, it is not a very complicated process since the separation is from gas molecules smaller than Ni (CO) 4. When (CO) 4 is thermally decomposed at 200° C., it becomes co and Xi in an active state.

この方法でのカルボニル化工程のco選択性は高いが、
続く膜分離の効率が低く必ずしも好しい方法とは言えな
い。
Although the co-selectivity of the carbonylation step in this method is high,
The efficiency of the subsequent membrane separation is low, so it cannot necessarily be said to be a preferable method.

吸着分離法は、これまで水素製造時のCO除去を目的と
する技術として利用されており、特にPSA(Pres
ser swing absorption)法と呼ば
れる加熱を要しない成分分離プロセスは既に数多くの装
置実績を有している。
Adsorption separation method has been used as a technology to remove CO during hydrogen production, especially in PSA (Pres
A component separation process that does not require heating, called the ser swing absorption method, has already been used in many devices.

例えばエチレンプラントオフガス、製鉄所コークス炉ガ
スなどの水素気流からメタン、co2などとともにCO
を除去し、高純度水素を製造している。
For example, CO along with methane and CO2 is extracted from hydrogen streams such as ethylene plant off gas and steelworks coke oven gas.
is removed to produce high-purity hydrogen.

これらの原料に用いられるガスは一般に不純物c。The gases used for these raw materials generally contain impurities.

量が少なく、例えばコークス炉ガスに含まれるc。c contained in small amounts, for example in coke oven gas.

は、7〜8v01%である。ここで用いる吸着剤は一般
にA型ゼオライトをCaイオンでイオン交換した所詮5
A型と呼ばれるゼオライトでペレットで用いられる。こ
のものは、COに対す゛る吸着能を右しているが同時に
I20 、 Co2、CI+4などを吸着する。
is 7-8v01%. The adsorbent used here is generally ion-exchanged type A zeolite with Ca ions.
Zeolite is called type A and is used in pellet form. This material has an adsorption capacity for CO, but at the same time it adsorbs I20, Co2, CI+4, etc.

ゼオライト5Aを用いて水素のごとき非吸着性成分、あ
るいは、難吸着性成分を製品として得る場合は、COは
不純物であり、他の不純物であるI20、CO2、CI
4などとともにゼオライト5Aへ共吸着させ、再生工程
にて系外排出することが出来る。
When using zeolite 5A to obtain non-adsorbable components such as hydrogen or poorly adsorbable components as products, CO is an impurity and other impurities such as I20, CO2, CI
It can be co-adsorbed onto zeolite 5A together with 4 and the like and discharged outside the system in the regeneration process.

しかし、吸着捕捉したCOを製品ガスとして回収する場
合は、他の吸着性成分、すなわち、N2、CH、CO,
1120などが吸着剤中に存在するこ2 とは好ましくない。減圧あるいは加熱によるCOの脱離
の際に、これら共吸着成分の同時脱着が起り、回収CO
の純度低下をもたらすからである。
However, when recovering adsorbed CO as a product gas, other adsorbent components, such as N2, CH, CO,
1120 etc. in the adsorbent is not preferable. When CO is desorbed by reducing pressure or heating, simultaneous desorption of these co-adsorbed components occurs, and the recovered CO
This is because it causes a decrease in purity.

従ってCOの分離回収剤はCOのみに選択1示し、かつ
、捕捉容量の大きい事が好ましい。
Therefore, it is preferable that the CO separation and recovery agent is selected only for CO and has a large capture capacity.

COに対する選択性の大きいゼオライト吸着剤としては
米国特許4,019,879号公報にその物性と性能が
開示ξれている。これによれば、シリカ対アルミナモル
比(以下ケイパン比と略称)が20〜200のゼオライ
トに、銅(’II)イオンを交換導入し、水蒸気を含む
CO気流中で加熱し銅(1)型ゼオライトを得、これを
鋭気処II!(活性化)し、CO吸着剤としている。例
えばケイパン比46のZSN−5に99%交換率でCu
イAンを導入し、湿ったCOによる還元処理を施し、し
かる後100℃にて真空脱気し、ひき続き300℃にて
活性化41co吸着平衡を測定し、50℃、7601m
HDにて2wt%COを得ている。本発明者らは、CO
捕捉聞のより大きい吸着剤につき探索した結果、ケイパ
ン比の低いZSH−5型ゼオライ1〜をCu(1)型と
することにより、従来性能を上回る勝れたCO捕捉能を
もたせることが出来ることを見出した。
As a zeolite adsorbent with high selectivity for CO, its physical properties and performance are disclosed in US Pat. No. 4,019,879. According to this, copper ('II) ions are exchange introduced into zeolite with a silica to alumina molar ratio (hereinafter referred to as Capan ratio) of 20 to 200, and heated in a CO stream containing water vapor to form a copper (1) type zeolite. I got this, and I decided to use it as Keikisho II! (activated) and used as a CO adsorbent. For example, Cu with a 99% exchange rate to ZSN-5 with a Capan ratio of 46.
ion A was introduced, subjected to reduction treatment with moist CO, then degassed under vacuum at 100°C, and subsequently measured the activated 41co adsorption equilibrium at 300°C.
2wt% CO is obtained in HD. The inventors discovered that CO
As a result of searching for an adsorbent with a larger trapping capacity, it was found that by replacing ZSH-5 type zeolites 1~ with a low Capan ratio with Cu(1) type, it was possible to have superior CO trapping ability that exceeds conventional performance. I found out.

本発明に使用しうるゼオライトは、ZSH−5型ゼオラ
イトであり、例えば特願昭57−146,911に記載
されている方法で合成することが出来る。また、米国特
許3,702,886号公報記載の方法でも可能である
The zeolite that can be used in the present invention is ZSH-5 type zeolite, which can be synthesized, for example, by the method described in Japanese Patent Application No. 57-146,911. It is also possible to use the method described in US Pat. No. 3,702,886.

これらの方法にによって合成されたZSH−5型ゼオラ
イトはケイパン比で10〜100をとり得るとされてい
るが、従来技術では合成結晶のクイパン比は、原料配合
割合によって規定され、ケイパン比15以下の合成例は
見い出されておらず実質的にはケイパン比20が合成の
下限とも言はれていた。
It is said that the ZSH-5 type zeolite synthesized by these methods can have a Capan ratio of 10 to 100, but in the conventional technology, the Kuipan ratio of synthetic crystals is determined by the blending ratio of raw materials, and the Capan ratio is 15 or less. No synthesis example has been found, and it has been said that a capan ratio of 20 is essentially the lower limit for synthesis.

しかし、優述の実施例の様に、例えばゼオライ1〜をア
ルカリと接触させるなどして、ケイパン比20未満のZ
SH−5型ゼオライトを調製し、これを銅(11)イオ
ンを含む溶液と接触させCu2+−ZSH−5型とした
後、150〜500℃、CO気流による還元処理を行な
い、Cl”−ZSH−5型としたものは、ケイパン比2
0以上のZSH−5型CO吸着剤より勝れた性能を示す
ことを見出した。
However, as in the preferred embodiments, for example, by contacting zeolites 1~ with an alkali, Z with a Capan ratio of less than 20 can be obtained.
SH-5 type zeolite was prepared, and after contacting it with a solution containing copper (11) ions to form Cu2+-ZSH-5 type, it was subjected to reduction treatment at 150 to 500°C with a CO gas stream to form Cl''-ZSH- The type 5 has a capan ratio of 2
It has been found that ZSH-5 type CO adsorbent exhibits better performance than ZSH-5 type CO adsorbent.

ケイパン比の比i的高いZSH−5型ゼオライトは、1
x〜50%のアルカリ(例えば水酸化アルカリ)溶液と
接触させることにより、同比を低下させる。
ZSH-5 type zeolite, which has a relatively high Capan ratio, has a ratio of 1
The same ratio is reduced by contacting with an alkali (e.g. alkali hydroxide) solution of x~50%.

本発明で用いる銅(II)を含む溶液は、例えば硝酸銅
、酢酸銅、硫酸銅の水溶液である。
The solution containing copper (II) used in the present invention is, for example, an aqueous solution of copper nitrate, copper acetate, or copper sulfate.

銅(II)とイオン交換したZSM−5型ゼオライトは
、分離、水洗、乾燥し、次いで一酸化炭素雰囲気下15
0〜500℃にて加熱し、銅(II)を還元しCO捕捉
剤とする。
The ZSM-5 type zeolite ion-exchanged with copper(II) was separated, washed with water, dried, and then heated for 15 hours in a carbon monoxide atmosphere.
It is heated at 0 to 500°C to reduce copper (II) and use it as a CO scavenger.

この様にして得たケイパン比の低いゼオライト捕捉剤は
、従来の同比の^いものに比較してCO捕捉能力が高い
The thus obtained zeolite scavenger with a low Capan ratio has a higher CO capture ability than conventional ones with the same low ratio.

以下に実施例を示す。Examples are shown below.

実施例1 (ケイパン比の低減処理) ケイパン比20.6のZSH−5型ゼオライトを200
0とり、5XNaOH水溶液且中に投入し、30℃に保
持した。
Example 1 (Capan ratio reduction treatment) ZSH-5 type zeolite with a Capan ratio of 20.6 was
0, poured into a 5X NaOH aqueous solution, and maintained at 30°C.

75時間攪拌の後、濾過し、60℃純水 16[をメツ
チェ上のケーキに散布し、濾液phが9に達するまで継
続した。
After stirring for 75 hours, it was filtered, and 60° C. pure water was sprinkled on the cake on the Metsche until the pH of the filtrate reached 9.

100℃にて2時間乾燥後、成分分析を行なった。After drying at 100° C. for 2 hours, component analysis was performed.

ケイパン比は12.6であった。更に、Cu−にα線に
よるX線回折パターンを観測し、反射ピーク強度が充分
大きいことから結晶構造が安定に保持されていることを
認めた。
The Capan ratio was 12.6. Furthermore, the X-ray diffraction pattern of Cu- due to alpha rays was observed, and the reflection peak intensity was sufficiently large, indicating that the crystal structure was stably maintained.

(Cu −ZSH−5型ゼオライトの調製)上述の処理
で得られたケイパン比12.6のZSH−5型ゼオライ
トは陽イオンとしてNaを含有している。
(Preparation of Cu-ZSH-5 type zeolite) The ZSH-5 type zeolite with a Capan ratio of 12.6 obtained by the above treatment contains Na as a cation.

これを10g採取し、1N硝酸銅水溶液に投入し、攪拌
しつつpH観測を行ない、酢酸でpl+を4に維持した
。60℃で2時間攪拌後濾過、水洗を行ない、100℃
にてケーキを乾燥後、組成分析を行なった。
10 g of this was collected and poured into a 1N copper nitrate aqueous solution, pH was observed while stirring, and pl+ was maintained at 4 with acetic acid. After stirring at 60°C for 2 hours, filter, wash with water, and heat to 100°C.
After drying the cake, compositional analysis was performed.

得られたケーキZSN−5型ゼAライトのCUイオン交
換率は、97%(3% Na+ )であり、淡青色を呈
していた。
The CU ion exchange rate of the obtained cake ZSN-5 type zealite was 97% (3% Na + ), and it had a pale blue color.

次に、このCu−ZSH−5型ゼオライトを100cc
/sinのCO気流中で3000に加熱した後6時間C
O気流中で空温まで冷却した。この粉末試料は脱色され
て白色を呈していた。 ESRによるCu+のCu+へ
の還元と、X線回折パターン(図−1)による結晶構造
の保持を確認した。
Next, 100cc of this Cu-ZSH-5 type zeolite
/sin of CO for 6 hours after heating to 3000 °C.
Cooled to air temperature in an O stream. This powder sample was decolorized and had a white color. The reduction of Cu+ to Cu+ by ESR and the maintenance of the crystal structure by the X-ray diffraction pattern (Figure 1) were confirmed.

(共吸着性能の評1i11i) CO+−ZSH−5型ゼAライトを350℃、2時間真
空脱気したのち、30℃に保持し、COの吸着量を測定
したところ、30℃、150ivolのCOを捕捉して
いた。
(Evaluation of co-adsorption performance 1i11i) After vacuum degassing the CO+-ZSH-5 type zeolite at 350°C for 2 hours, it was kept at 30°C and the amount of CO adsorbed was measured. At 30°C, 150 ivol of CO was captured.

これとは別にCu”、−ZSH−5型ゼオライトを30
℃、相対湿[180%の雰囲気に16時間保持し、重石
増加を観測した。
Separately, 30% of Cu”, -ZSH-5 type zeolite was added.
C. and relative humidity [180%] for 16 hours, and an increase in weight was observed.

水分聞は11.5wL%であった。また、30℃、76
0m19におけるCOWは3.9wt%であった。
The water content was 11.5wL%. Also, 30℃, 76
COW at 0 m19 was 3.9 wt%.

実施例2 ケイパン比低減処理条件を8% Na011水溶液に5
0℃で55時間接触させることにより、ケイパン比20
.6のものを、7.2とし、実施例1と同様の処理でC
u”−ZSH−5型ゼオライトを得た。CO吸WQは3
0℃、150m1gで 1.08vaol/<+であっ
た。
Example 2 Capan ratio reduction treatment conditions: 5% to 8% Na011 aqueous solution
By contacting at 0°C for 55 hours, the Capan ratio was 20.
.. 6 was changed to 7.2, and C was processed in the same manner as in Example 1.
u”-ZSH-5 type zeolite was obtained. CO absorption WQ was 3
It was 1.08 vaol/<+ at 0°C and 150ml/g.

比較例 ケイパン比の異なるZSH−5型ゼオライトにCu2”
 −1’オンを尋人し、CO気流による還元を行ない、
Cu”型ゼオライトを調製した。CO吸首ωの測定の結
果法の表に示した結果を得た。
Comparative example: ZSH-5 type zeolite with different Capan ratio and Cu2”
-1'on was removed and reduced by CO airflow,
A Cu'' type zeolite was prepared. Results of measurement of CO neck ω gave the results shown in the table of the method.

ケイパン比 Cu2+交換率 CO吸着量*25.2 
99% 0.42mn+ol/g49.8 97% 0
.22組■l/g* 30 C,150mm11g ケイパン比12.6(実施例1) 7.2(実施例2)
のCOに比較して極端に性能が劣ることが分る。
Capan ratio Cu2+ exchange rate CO adsorption amount *25.2
99% 0.42mn+ol/g49.8 97% 0
.. 22 pairs ■l/g* 30 C, 150mm 11g Capan ratio 12.6 (Example 1) 7.2 (Example 2)
It can be seen that the performance is extremely inferior to that of CO.

【図面の簡単な説明】[Brief explanation of the drawing]

図−1は本発明の実施例で用しまたCu+−15H−5
型ゼオライトのX線回折パターンを示す。 特許出願人 東洋凸達工業株式会社 手続補正書 1和59年 5月18日 特許庁長官 若 杉 和 夫 殿 1事件の表示 昭和59年特許願第 1203+ 号 2発明の名称 一酸化炭素捕集剤及びその製法 6補正をする者 代表者 森 嶋 東 三 4補正命令の日付 昭和59年4月4日 (発送日 昭和59年4月24日) 5補正の対象 明細書 6補正の内容 明細書の浄書(内容に変更なし) 手続補正山 特許庁長官 志賀 学殿 昭和59年9月10日1、事
件の表示 昭和59年特許願第12033号 2、発明の名称 一酸化炭素捕集剤及びその製法 3、補圧を゛す゛る者 事件との関係 特8!1出願人 住所〒746山l]県新南陽市大字富1(14!i60
番地4、補正により119加する発明の数 O明細書 
発明の詳細な説明の欄 7、補正の内容 1)明細前 特許請求の範囲を別紙のとうり訂正する。 2)明細書9ペ一ジ12行 「150n+mol Jをr 150mm11gにて0
.94111nIO+」に訂正。 8、添附書類の目録 別紙 1通 別紙 [2、特許請求の範囲 1、シリカ対アルミナ化が19以下で、かつ銅イオンを
含む一酸化炭素捕集剤。 2、シリカ対アルミナ比が19以下の、銅イオン交換し
たZSH−5型Lオライドを一酸化炭素捕集剤下150
〜500℃で加熱することを特徴とする一酸化炭素捕集
剤の製法。 」 以上 手続補正書 特許庁長官 志賀 学殿 昭和59年9月12日1、事
件の表示 昭和59年特許願第12033号 2、発明の名称 一酸化炭素捕集剤及びその製法 3、補正をする名 一事件との関係 特許出願人 住所〒746山ロ県新南陽市大字富田4560番地4、
補正により増加する発明の数 0 5、補正命令の日付 自発補正 6、補正の対象 :t〜曽 明細書 発明の詳細な説明の欄 7、補正の内容
Figure-1 shows Cu+-15H-5 used in the embodiment of the present invention.
The X-ray diffraction pattern of type zeolite is shown. Patent Applicant Toyo Bottatsu Kogyo Co., Ltd. Procedural Amendment No. 1 May 18, 1859 Director of the Patent Office Kazuo Wakasugi 1 Display of Case 1989 Patent Application No. 1203+ 2 Name of Invention Carbon monoxide scavenger and the person making the 6th amendment to the manufacturing method Representative: Higashi Morishima Date of the 4th amendment order: April 4, 1980 (Shipping date: April 24, 1980) 5. Specification subject to amendment 6. Description of contents of amendment 6 Engraving (no change in content) Procedural amendments Commissioner of the Patent Office Gakudono Shiga September 10, 1980 1. Indication of the incident 1982 Patent Application No. 12033 2. Name of the invention Carbon monoxide scavenger and its manufacturing method 3.Relationship with the case of the person who carried out pressure compensation Special 8!1 Applicant Address 1, Oaza Tomi (14!i60, Shinnanyo City, 746 Yamal) Prefecture
Address 4, number of inventions added by 119 due to amendment O specification
Detailed Description of the Invention Column 7, Contents of Amendment 1) Before the Specification The scope of the claims is corrected as shown in the attached sheet. 2) Page 9, line 12 of the specification “150n+mol J at r 150mm 11g 0
.. Corrected to 94111nIO+. 8. Attached sheet with list of attached documents 1 attached sheet [2. Claim 1: A carbon monoxide scavenger with a silica to aluminization ratio of 19 or less and containing copper ions. 2. Copper ion-exchanged ZSH-5 type L olide with a silica to alumina ratio of 19 or less under a carbon monoxide scavenger at 150%
A method for producing a carbon monoxide scavenger, which comprises heating at ~500°C. ” The above amendments have been made by the Commissioner of the Japan Patent Office, Gakudono Shiga, September 12, 1980. 1. Indication of the case: Patent Application No. 12033 of 1982. 2. Name of the invention: carbon monoxide scavenger and its manufacturing method. 3. Amendments are made. Relationship with the Naichi case Patent applicant address: 4560-4 Tomita, Shinnanyo City, Yamaro Prefecture, 746
Number of inventions increased by amendment 0 5, Date of amendment order Voluntary amendment 6, Subject of amendment: t~Zeng Specification Column 7 for detailed explanation of the invention, Contents of amendment

Claims (1)

【特許請求の範囲】 1、シリカ対アルミナ比が19以下ぐ、かつ銅イオンを
含む一酸化炭素捕集剤 2、シリカ対アルミナ比が19以下の、銅イオン交換し
たZSH−型ゼオライ1〜を一酸化炭素捕集剤下150
〜500℃で加熱することを特徴とする一酸化炭素捕集
剤の製法
[Claims] 1. A carbon monoxide scavenger having a silica to alumina ratio of 19 or less and containing copper ions. 2. A copper ion-exchanged ZSH-type zeolite having a silica to alumina ratio of 19 or less Carbon monoxide scavenger under 150
A method for producing a carbon monoxide scavenger characterized by heating at ~500°C
JP59012033A 1984-01-27 1984-01-27 Collecting agent of carbon monoxide and its manufacture Granted JPS60156548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59012033A JPS60156548A (en) 1984-01-27 1984-01-27 Collecting agent of carbon monoxide and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59012033A JPS60156548A (en) 1984-01-27 1984-01-27 Collecting agent of carbon monoxide and its manufacture

Publications (2)

Publication Number Publication Date
JPS60156548A true JPS60156548A (en) 1985-08-16
JPH0421539B2 JPH0421539B2 (en) 1992-04-10

Family

ID=11794292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59012033A Granted JPS60156548A (en) 1984-01-27 1984-01-27 Collecting agent of carbon monoxide and its manufacture

Country Status (1)

Country Link
JP (1) JPS60156548A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118431A (en) * 1984-07-04 1986-01-27 Nippon Kokan Kk <Nkk> Adsorbent of carbon monoxide
JPS62212211A (en) * 1985-11-19 1987-09-18 Nippon Kokan Kk <Nkk> Selective adsorbent of co and production thereof
EP0286967A2 (en) * 1987-04-17 1988-10-19 Bayer Ag Process and device for reducing nitrogen oxides
WO2007029807A1 (en) * 2005-09-09 2007-03-15 Taiyo Nippon Sanso Corporation MOLDED Cu-ZSM-5 ZEOLITE ADSORBENT, METHOD OF ACTIVATING THE SAME, TEMPERATURE SWING TYPE ADSORPTION APPARATUS, AND METHOD OF PURIFYING GAS
WO2008108354A1 (en) * 2007-03-05 2008-09-12 Taiyo Nippon Sanso Corporation Absorbent for carbon monooxide, gas purification method, and gas purification apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118431A (en) * 1984-07-04 1986-01-27 Nippon Kokan Kk <Nkk> Adsorbent of carbon monoxide
JPH0117409B2 (en) * 1984-07-04 1989-03-30 Nippon Kokan Kk
JPS62212211A (en) * 1985-11-19 1987-09-18 Nippon Kokan Kk <Nkk> Selective adsorbent of co and production thereof
EP0286967A2 (en) * 1987-04-17 1988-10-19 Bayer Ag Process and device for reducing nitrogen oxides
EP0286967A3 (en) * 1987-04-17 1989-04-19 Bayer Ag Process and device for reducing nitrogen oxides
WO2007029807A1 (en) * 2005-09-09 2007-03-15 Taiyo Nippon Sanso Corporation MOLDED Cu-ZSM-5 ZEOLITE ADSORBENT, METHOD OF ACTIVATING THE SAME, TEMPERATURE SWING TYPE ADSORPTION APPARATUS, AND METHOD OF PURIFYING GAS
US7824474B2 (en) 2005-09-09 2010-11-02 Taiyo Nippon Sanso Corporation Molded Cu-ZSM5 zeolite adsorbent, method of activating the same, temperature swing adsorption apparatus, and method of purifying gas
WO2008108354A1 (en) * 2007-03-05 2008-09-12 Taiyo Nippon Sanso Corporation Absorbent for carbon monooxide, gas purification method, and gas purification apparatus

Also Published As

Publication number Publication date
JPH0421539B2 (en) 1992-04-10

Similar Documents

Publication Publication Date Title
JP5375890B2 (en) Carbon dioxide adsorption separation method
US5488185A (en) Process for the production of ethanol and isopropanol
JP5036925B2 (en) Agglomerated zeolite adsorbent, its production method and use in non-cryogenic separation of industrial gases
EP0855209B1 (en) PSA process for purifying hydrogen
US4019879A (en) Selective adsorption of carbon monoxide from gas streams
US4019880A (en) Adsorption of carbon monoxide using silver zeolites
US5912422A (en) Method for purifying hydrogen based gas mixture using a lithium- exchanged X zeolite
AU768949B2 (en) Zeolite adsorbents, method for obtaining them and their use for removing carbonates from a gas stream
US5868818A (en) Adsorbent for air separation, production method thereof, and air-separation method using it
US4914076A (en) Method of producing an adsorbent for separation and recovery of CO
TW555587B (en) Process for the decarbonation of gas flows using zeolite adsorbents
JPH07241479A (en) Production of adsorbent involving recovery of lithium
CN108328652A (en) A kind of energy-efficient titanium tetrachloride process for purification
US3078638A (en) Carbon dioxide removal from vapor mixtures
JP4025228B2 (en) Preparation method of molecular sieve adsorbent for selective separation of air size / morphology
JPS60156548A (en) Collecting agent of carbon monoxide and its manufacture
KR100803771B1 (en) Process for the preparation of molecular sieve adsorbent for selective adsorption of oxygen from air
JP4873108B2 (en) Carbon dioxide adsorption separation method
AU674607B2 (en) Process for the production of ethanol and isopropanol
JPH0731877A (en) Refining of inert gas and device therefor
JPS61242638A (en) Adsorbent for separating and recovering co and its production and method for separating and recovering high-purity co by using it
JPS6265919A (en) Adsorbent for separating and recovering co, its production and method for separating and recovering co by using its adsorbent
KR100827634B1 (en) Process for the preparation of a molecular sieve adsorbent for the size/shape selective separation of air
JP2000202281A (en) Selective nitrogen adsorbent and separation of air using same
JPS62113710A (en) Production of adsorbent for separation and recovery of co