JPS60151542A - Method for testing low-cycle fatigue of material - Google Patents

Method for testing low-cycle fatigue of material

Info

Publication number
JPS60151542A
JPS60151542A JP675184A JP675184A JPS60151542A JP S60151542 A JPS60151542 A JP S60151542A JP 675184 A JP675184 A JP 675184A JP 675184 A JP675184 A JP 675184A JP S60151542 A JPS60151542 A JP S60151542A
Authority
JP
Japan
Prior art keywords
load
test piece
repeated
tensile
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP675184A
Other languages
Japanese (ja)
Inventor
Mitsuo Yamashita
満男 山下
Akira Kitami
北見 彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP675184A priority Critical patent/JPS60151542A/en
Publication of JPS60151542A publication Critical patent/JPS60151542A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To prevent damage on a ruptured surface by judging the time point when a ratio of the tension-side max. load to the compression-side max. load at each cycle of repeated tensile and compressive loads becomes a prescribed value as the rupture life of a test piece and stopping the load supply. CONSTITUTION:The repeated tensile and compressive loads are loaded on the test piece 2 by an actuater 3, the load generated thereat is detected by a load cell 6, the strain quantity is detected by a strain meter 4, measured and recorded by a measuring unit 7. As the test proceeds, cracks occur and grow in the piece 2. An arithmetic 8 judges that the rupture life is attained when a ratio of the tension-side max. load to the compression-side max. load becomes the prescribed value, outputs the signal to a waveform generator 9, and it generates the signal for stopping operation of the actuater 3 to a control unit 10. In such a way, the repeated load supply is stopped exactly at the time point when the piece 2 attains the rupture life.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、試験片にひずみ量が一定振幅となるように制
御して引張り圧縮の繰返し荷重を与えて材料の低サイク
ル疲れをめる試験方法に関する。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a test in which a test piece undergoes low-cycle fatigue by applying repeated tensile and compression loads to a test piece while controlling the amount of strain to be at a constant amplitude. Regarding the method.

〔従来技術とその問題点〕[Prior art and its problems]

耐用期間中に受ける応力繰返し数が105回程度板下で
ある場合、一般の疲れ試験によるよりも大きな応力で行
なわれた疲れ試験の結果が参考になり、このような場合
の疲れ現象を低サイクル疲れあるいは塑性疲れなどとい
う。この低サイクル疲れは試験片に一定振幅のひずみを
繰返すかあるいは一定振幅の荷重を繰返す引張り圧縮荷
重を与えてめられる。
If the number of stress repetitions under the plate is approximately 105 times during the service life, the results of a fatigue test conducted at a higher stress than a general fatigue test can be helpful, and fatigue phenomena in such cases can be reduced to a lower cycle. This is called fatigue or plastic fatigue. This low-cycle fatigue can be measured by subjecting a test piece to repeated strain with a constant amplitude or a tensile/compressive load with a repeated load of a constant amplitude.

試験中における試験片の破断け、まず試験片に亀裂が発
生し、これが成長して最終破断に至るという経過をたど
る。しかし一定振幅のひずみを繰返す一定ひずみ低サイ
クル疲れ試験の場合、その試験機の制御機能上、試験片
が完全に分離破断しても、ひずみ振幅を繰返す可能性が
あり、とのためにひずみ繰返し回数からは破断寿命を正
確に知ることができず、まだ破断後において破断面が相
互にぶつかり合って損傷し、その材料の破壊機構を知る
上で不可欠な破面観察ができなくなってしまう。
When a test piece breaks during a test, a crack first occurs in the test piece, and this crack grows until it finally breaks. However, in the case of a constant strain low cycle fatigue test in which a constant amplitude strain is repeated, due to the control function of the testing machine, even if the specimen completely separates and breaks, the strain amplitude may be repeated. The fracture life cannot be accurately determined from the number of times the material is broken, and the fracture surfaces collide with each other even after fracture, resulting in damage, making it impossible to observe the fracture surface, which is essential for understanding the fracture mechanism of the material.

これらの問題を防止するために従来次のような方法が採
られていた。すなわち試験片に一定振幅のひずみを繰返
すとそのサイクル毎に引張り圧縮荷重が生ずる。試験片
に亀裂が発生して成長するに伴ない、未破断部の断面積
が減少し、このため引張り側荷重が低下してくる。そこ
でこの引張り測量大荷重が所定の値以下になった時点を
、試験片の破断寿命と判断し、その時点で試験片への引
張り圧縮荷重の供給を停止する方法が採られていた。
Conventionally, the following methods have been adopted to prevent these problems. That is, when a test piece is repeatedly subjected to strain with a constant amplitude, a tensile and compressive load is generated with each cycle. As cracks occur and grow in the test piece, the cross-sectional area of the unbroken portion decreases, and therefore the tensile load decreases. Therefore, a method has been adopted in which the point at which this tensile survey large load falls below a predetermined value is determined to be the rupture life of the test piece, and at that point the supply of the tensile and compressive load to the test piece is stopped.

一般に金属材料は、繰返し荷重が負荷されるとその繰返
し回数の増加と共に軟化したり硬化したりする。一定振
幅のひずみを繰返すと、荷重の大きさにこの現象が現わ
れ、材料が軟化する場合には荷重が低くなり、硬化する
場合には高くなる。
Generally, when a metal material is subjected to repeated loads, it softens or hardens as the number of repetitions increases. When a strain of constant amplitude is repeated, this phenomenon appears in the magnitude of the load, which becomes lower when the material softens and higher when it hardens.

この軟化および硬化現象は繰返し回数が100回位まで
にほぼ飽和し、荷重レベルも一定の値に安定してくる。
This softening and hardening phenomenon becomes almost saturated by about 100 repetitions, and the load level also stabilizes at a constant value.

上述の方法ではこの安定した時の引張り測量大荷重から
所定の割合(たとえば5%。
In the method described above, a predetermined percentage (for example, 5%) is determined from the tensile survey large load when it is stable.

10%、25%)だけその引張り測量大荷重が低下した
時点を、試験片の破断寿命と定めて、その時点で試験片
への引張り圧縮荷重の供給を停止するようにしていた。
The point in time when the tensile survey large load decreased by 10%, 25%) was defined as the fracture life of the test piece, and at that point, the supply of the tensile compression load to the test piece was stopped.

しかし一定ひずみ低サイクル疲れ試験の場合、発生する
荷重レベルが材料、試験温度、ひずみ振幅、繰返し速度
によって変動すると共に繰返し硬化、軟化現象が生じる
ために、安定した状態での荷重レベルを予測することが
困難である。従って試験前に予め設定された荷重値のレ
ベルによっては、実際に破断寿命に達する前に繰返し荷
重が停止されたり、あるいは破断寿命後も試験が続行さ
れてしまうという欠点がある。
However, in the case of a constant strain low cycle fatigue test, the load level that occurs varies depending on the material, test temperature, strain amplitude, and repetition rate, and repeated hardening and softening phenomena occur, so it is difficult to predict the load level in a stable state. is difficult. Therefore, depending on the level of the load value preset before the test, there is a drawback that the cyclic loading may be stopped before the actual rupture life is reached, or the test may be continued even after the rupture life.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、材料の低サイクル疲れによる破断寿命
を正確にめることができ、その破断面の損傷も防止でき
るような材料の低サイクル疲れ試験方法を提供すること
にある。
An object of the present invention is to provide a low-cycle fatigue testing method for materials that can accurately determine the fracture life of a material due to low-cycle fatigue and can also prevent damage to the fracture surface.

〔発明の要点〕[Key points of the invention]

本発明によればこの目的は、冒頭に述べた形式の材料の
低サイクル疲れ試験方法において、試験中における引張
り圧縮の繰返し荷重の各サイクルの引張り測量大荷重と
圧縮側最大荷重とを比較し、両者の比率が所定の値にな
った時点を試験片の破断寿命と判断し、その時点で試験
片への引張シ圧縮荷重の供給を停止することによって達
成することができる。
According to the invention, this object is achieved in a low-cycle fatigue test method for materials of the type mentioned at the outset, by comparing the tensile survey maximum load and the maximum compressive load for each cycle of repeated tensile-compressive loading during the test; This can be achieved by determining the time at which the ratio of both reaches a predetermined value as the rupture life of the test piece, and stopping the supply of tensile and compressive loads to the test piece at that time.

〔発明の実施例〕[Embodiments of the invention]

次に図面に示す実施例に基づいて本発明の詳細な説明す
る。
Next, the present invention will be described in detail based on embodiments shown in the drawings.

第1図において電気油圧サーボ形の疲れ試験機1には、
この実施例の場合5TJS304ステンレス鋼の試験片
2がセットされている。この試験片2には550℃に加
熱した状態でア先チと一夕3によって引張り圧縮の繰返
し荷重が負荷される。
In Fig. 1, the electro-hydraulic servo type fatigue testing machine 1 includes:
In this example, a test piece 2 of 5TJS304 stainless steel is set. This test piece 2 was heated to 550° C. and was subjected to repeated tensile and compressive loads in the first and second stages.

この引張り圧縮の繰返し荷重は、一定ひずみ低サイクル
試験を行なうために、試験片2に設けられた伸び計4で
検出されるひずみ量が第2図aに示すように一定振幅と
なるようにサーボコントローラ5で制御される。その際
に発生する荷重は試験機に設けられたロードセル6で検
出され、この荷重は第2図aに示した波形のひずみ量に
相応して第2図すに示したように変化する。ひずみおよ
び荷重は連続的に計測ユニット7で計測、記録される。
In order to conduct a constant strain low cycle test, this tensile and compressive repeated load is applied using a servo so that the strain detected by the extensometer 4 installed on the test piece 2 has a constant amplitude as shown in Figure 2a. It is controlled by a controller 5. The load generated at this time is detected by a load cell 6 provided in the testing machine, and this load changes as shown in FIG. 2 in accordance with the amount of distortion in the waveform shown in FIG. 2a. Strains and loads are continuously measured and recorded by a measuring unit 7.

この材料の試験片2は繰返し加工硬化現象を示すが、加
工硬化後の安定状態において荷重(図中応力に換算され
てい、る)−ひずみのヒステリシス曲線は第3図aのよ
うになり(4,500サイクル時点)、引張り測量大荷
重と圧縮側最大荷重はほぼ等しく、この場合約20.に
9/m1n2である。一定ひずみの繰返し回数が進み、
試験片2に亀裂が生ずると、このヒステリシス曲線は第
3図すのように変化しく8,700サイクル時点)、圧
縮側最大荷重は安定状態の時と同じであるが、試験片2
の断面積の減少に伴なって引張り側の最大荷重が低下す
る。
Test piece 2 of this material shows a repeated work hardening phenomenon, but in the stable state after work hardening, the load (converted to stress in the figure) - strain hysteresis curve becomes as shown in Figure 3a (4 , 500 cycles), the tensile survey large load and the compression side maximum load are almost equal, in this case about 20. 9/m1n2. The number of repetitions of constant strain increases,
When a crack occurs in specimen 2, this hysteresis curve changes as shown in Figure 3 (at 8,700 cycles), and the maximum load on the compression side is the same as in the stable state, but
The maximum load on the tensile side decreases as the cross-sectional area decreases.

本発明はこの点に着目し、試験中における引張り圧縮の
繰返し荷重の各サイクルの引張り測量大荷重と圧縮側最
大荷重とを比較し、両者の比率が所定の値たとえば3:
4になった時点を破断寿命と判断して、この時点で試験
片2への引張り圧縮荷重の供給を停止するようにしたも
のである。
The present invention focuses on this point, and compares the tensile measurement large load and the compression side maximum load of each cycle of repeated tension and compression loads during the test, and the ratio of the two is set to a predetermined value, for example, 3:
4 is determined to be the rupture life, and the supply of tensile and compressive load to the test piece 2 is stopped at this point.

このために各繰返しサイクルにおいて検出された引張り
測量大荷重と圧縮側最大荷重とを比較する演算器8が設
けられている。一定振幅に制御(7てひずみ波形を出力
する波形発生器9はこの演算器8の出力によって制御さ
れる。波形発゛砥器9はその出力によって制御二二ッ)
10を介してサーボコントローラ5を制御する。波形発
生器9はまた計測ユニット7にも引張り側および圧縮側
のピーク点で電気信号を出力する。
For this purpose, a computing unit 8 is provided which compares the tensile measurement large load detected in each repeated cycle with the compression side maximum load. Control to a constant amplitude (7) The waveform generator 9 that outputs the distorted waveform is controlled by the output of this calculator 8. The waveform sharpener 9 is controlled by the output.
The servo controller 5 is controlled via the servo controller 10. The waveform generator 9 also outputs electrical signals to the measurement unit 7 at the peak points on the tension and compression sides.

試験中において波形発生器9の出力に応じてアクチュエ
ータ3が、試験片2に一定振幅のひずみ(第2図a)と
なるように制御された引張り圧縮の繰返し荷重(第2図
b)を連続的に与える。試験が進むにつれて竺験片2に
亀裂が発生し成長する。い1演算器8が、引張り測量大
荷重と圧縮側最大荷重とが予め設定した所定の比率にな
ったこと、すなわち破断寿命に達したことを知らせる信
号を出力すると、この出力信号により波形発生器9は制
御二二ッ)10にアクチュエータ3の、作動停止信号を
発する。このようにして試験片2が破断寿命に達した時
点で、正確に繰返し荷重の供給が停止される。
During the test, according to the output of the waveform generator 9, the actuator 3 continuously applies a controlled repeated tensile and compressive load (Fig. 2b) to the specimen 2 so as to cause a constant amplitude strain (Fig. 2a). give to the target. As the test progresses, cracks occur and grow in the test piece 2. 1 When the calculator 8 outputs a signal indicating that the tensile survey large load and the compression side maximum load have reached a predetermined ratio, that is, the rupture life has been reached, this output signal causes the waveform generator to 9 issues a signal to the control 22) 10 to stop the operation of the actuator 3. In this way, when the test piece 2 reaches its rupture life, the supply of repeated loads is accurately stopped.

なお繰返し荷重によって軟化する材料に対しても上述し
たと同様に本発明は適用できる。なお場合によっては破
断寿命を荷重レベルではなく、試験片の断面積中におけ
る亀裂進展部の比率で定義づけることも可能である。
Note that the present invention can also be applied to materials that soften due to repeated loads in the same manner as described above. In some cases, it is also possible to define the rupture life not by the load level but by the ratio of the crack propagation area in the cross-sectional area of the test piece.

〔発明の効果〕〔Effect of the invention〕

本発明によれば次のような利点が得られる。 According to the present invention, the following advantages can be obtained.

(1)引張り測量大荷重と圧縮側最大荷重との比率によ
って引張り測量大荷重の低下度合を検知するようにしだ
ので、材料が加工硬化ないし軟化するにも拘らず正確に
破断寿命を判断できる。
(1) Since the degree of decrease in the tensile survey large load is detected based on the ratio of the tensile survey large load to the compression side maximum load, the rupture life can be accurately determined even if the material hardens or softens due to work.

(2) ロードセルで引張り測量大荷重および圧縮側最
大荷重を検出し、両者を演算器で比較するだけで破断寿
命が検知できるので、試験片への繰返し荷重の供給を最
適な時点で停止でき、試験の効率が向上する。
(2) The fracture life can be detected simply by detecting the tensile survey large load and the compression side maximum load with a load cell and comparing the two with a calculator, so the supply of repeated loads to the test piece can be stopped at the optimal point. Improves testing efficiency.

(3)試験片の分離破断面の相互接触による損傷を最小
限にでき、破面観察に支障をきだすことがない。
(3) Damage caused by mutual contact between the separated fracture surfaces of the test piece can be minimized, and fracture surface observation will not be hindered.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に基づく低サイクル疲れ試験機の制御系
統図、第2図aおよび第2図すはそれぞれひずみ波形図
およびそれに伴なう荷重変化を示す線図、第3図aおよ
び第3図すはそれぞれ試験片の亀裂発生の前および後に
おける荷重−ひずみヒステリシス曲線図である。 1;疲れ試験機、 2:試験片、 3;アクチュエータ
、 4:伸び計、 5:サーボコントローラ、 6:ロ
ードセル、 7°計測ユニツト、8;演算器、 9:波
形発生器、 1o:制御ユニット。 第1図 第2図α W・力(K9/Tnm2) 応力(Kg/mTT12)
Fig. 1 is a control system diagram of a low cycle fatigue testing machine based on the present invention, Figs. Figure 3 shows load-strain hysteresis curves of the test piece before and after crack initiation, respectively. 1: Fatigue tester, 2: Test piece, 3: Actuator, 4: Extensometer, 5: Servo controller, 6: Load cell, 7° measurement unit, 8: Arithmetic unit, 9: Waveform generator, 1o: Control unit. Figure 1 Figure 2 α W・Force (K9/Tnm2) Stress (Kg/mTT12)

Claims (1)

【特許請求の範囲】 ■)試験片にひずみ量が一定振幅となるよう1:制御し
て引張り圧縮の繰返し荷重を与えて材料の低サイクル疲
れをめる試験方法C二おいで、試験中における引張り圧
縮の繰返し荷重の各サイクルの引張り制量大荷重と圧縮
預り最大荷重とを比較し、両者の比率75;所定のイ直
C二なった時点を試験片の破断寿命と判断し、その時点
で試験片への引張り圧縮荷重の供給を停止することを特
徴とする材料の低サイクル疲れ試験方法。 2、特許請求の範囲第1項(:記載の方法C二おいて、
各サイクルの引張り制量大荷重と圧縮9AII最大荷重
が試験機(=設けられたロードセルで検出され、両者が
演算器で比較され、この演算器の出力信号によって試験
片に繰返し荷重を与えるアクチュエータが停止されるこ
とを特徴とする材料の低サイクル疲れ試験方法。
[Claims] ■) Test method C in which the material is subject to low-cycle fatigue by applying controlled repeated loads of tension and compression so that the amount of strain is at a constant amplitude on the test piece. Compare the maximum tensile limit load and the maximum compressive load for each cycle of repeated compression loading, and determine the rupture life of the test piece when the ratio of the two reaches a predetermined value of 75; A method for low-cycle fatigue testing of materials, characterized by stopping the application of tensile and compressive loads to the specimen. 2. Claim 1 (: In the method described in C2,
The maximum tensile limit load and the maximum compressive 9AII load for each cycle are detected by a load cell installed in the testing machine, and both are compared by a computing unit, and the output signal of this computing unit is used to control the actuator that repeatedly loads the test piece. A low cycle fatigue testing method for materials characterized in that the material is stopped.
JP675184A 1984-01-18 1984-01-18 Method for testing low-cycle fatigue of material Pending JPS60151542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP675184A JPS60151542A (en) 1984-01-18 1984-01-18 Method for testing low-cycle fatigue of material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP675184A JPS60151542A (en) 1984-01-18 1984-01-18 Method for testing low-cycle fatigue of material

Publications (1)

Publication Number Publication Date
JPS60151542A true JPS60151542A (en) 1985-08-09

Family

ID=11646892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP675184A Pending JPS60151542A (en) 1984-01-18 1984-01-18 Method for testing low-cycle fatigue of material

Country Status (1)

Country Link
JP (1) JPS60151542A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288942A (en) * 1988-09-26 1990-03-29 Shimadzu Corp Recorder for fatigue test result
JP2015163840A (en) * 2013-03-19 2015-09-10 日立金属株式会社 Estimation method of corrosion, fatigue and operating life of steel material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288942A (en) * 1988-09-26 1990-03-29 Shimadzu Corp Recorder for fatigue test result
JP2015163840A (en) * 2013-03-19 2015-09-10 日立金属株式会社 Estimation method of corrosion, fatigue and operating life of steel material

Similar Documents

Publication Publication Date Title
Schmidt et al. Threshold for fatigue crack propagation and the effects of load ratio and frequency
CN103760036B (en) A kind of method of testing of steel fiber reinforced concrete destructive test initial cracking load
Gan et al. Crack closure and crack propagation rates in 7050 aluminum
Robin et al. Influence of an overload on the fatigue crack growth in steels
CN110987791B (en) Test method for determining normal bonding parameters of steel plate and concrete
CN106404534A (en) Existing structure concrete fatigue residual strain testing method based on deformation modulus
JPS60151542A (en) Method for testing low-cycle fatigue of material
CN113607580A (en) Metal component fatigue test method and residual life prediction method
Curà et al. Fatigue damage identification by means of modal parameters
Subramaniam et al. Fatigue fracture of concrete subjected to biaxial stresses in the tensile C-T Region
Salvini et al. Fatigue life prediction on complex spot welded joints
SU1714357A1 (en) Method of determining deformation of article
Kar Diagonal cracking in prestressed concrete beams
RU2204817C1 (en) Procedure establishing technical state of materials of structural members
RU2238535C2 (en) Method of determining resistance of material to damaging
Bannikov et al. A kinetic equation for fatigue crack initiation and growth in the very high cycle range based on fractography and nonlinear dynamics
Ismail et al. Detection of defects in reinforced concrete beams using modal data
JPH03144344A (en) Testing apparatus for fatigue of material
Samadian et al. Effects of flaw shape (idealization) on the interaction of co-planar surface flaws
JPS6161618B2 (en)
De Wilder et al. Experimental Investigation on the Cyclic Behaviour of Steel Fibre Reinforced Concrete Under Bending
ELIGEHAUSEN et al. Guidance for testing laboratories: how to generate cracks
Burger et al. Application of photoelasticity to a weld-penetration problem: Photoelastic tests on models of typical weld-penetration defects in butt welds predict that the largest acceptable length of such defects should be around 0.2 times the plate thickness
SU1756078A1 (en) Method of estimating metal strength of welded joint to forming of cold cracks
CN116086953A (en) Method for detecting pressing in of spherical pressure head with single-axis mechanical property under self-adaptive working condition