JPS60141695A - Method and device for growing crystal - Google Patents

Method and device for growing crystal

Info

Publication number
JPS60141695A
JPS60141695A JP25005383A JP25005383A JPS60141695A JP S60141695 A JPS60141695 A JP S60141695A JP 25005383 A JP25005383 A JP 25005383A JP 25005383 A JP25005383 A JP 25005383A JP S60141695 A JPS60141695 A JP S60141695A
Authority
JP
Japan
Prior art keywords
crystal
temp
temperature
ampoule
ampule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25005383A
Other languages
Japanese (ja)
Inventor
Mitsuo Yoshikawa
吉河 満男
Michiharu Ito
伊藤 道春
Tetsuo Saito
哲男 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP25005383A priority Critical patent/JPS60141695A/en
Publication of JPS60141695A publication Critical patent/JPS60141695A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/003Heating or cooling of the melt or the crystallised material

Abstract

PURPOSE:To grove a bulk crystal without any crystal defect by lowering the temp. of a high-temp. part as a vessel enclosing a crystal material is sent downward from the high-temp. part to the low-temp. part in a furnace core tube of a bulk crystal device by the Bridgman growth technique. CONSTITUTION:An ampule 21 enclosing a crystal material 22 is gradually sent downward in a furnace core tube 23 provided with a heater 24 at the outer circumferential part from the high-temp. part to the low-temp. part by the operation of an ampule driving part 25 in a device for growing a bulk crystal using the Bridgman technique wherein a crystal is grown at the interface between solid and liquid. In said device, the position signal of the ampule 21 with respect to said ampule driving part 25 is inputted to a furnace control panel 26, and the temp. of the high-temp. part is lowered by controlling the plural hetaters 24 to the temp. of the central part of the ampule 21, as said ampule 21 is sent downward from the high-temp. part to the low-temp. part of the furnace core tube 23. Since the solid and luquid interface is kept flat in this way, the intrusion of g a grain boundary into a crystal is prevented, and the crystal without any crystal defect is grown.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は結晶成長およびその装置、詳しくはブリッジマ
ン成長法によるバルク結晶成長において、結晶欠陥の一
つである粒界が結晶中に入ることを防止する方法とその
方法に用いる装置とに関する。
Detailed Description of the Invention (1) Technical Field of the Invention The present invention relates to crystal growth and its apparatus, specifically, in bulk crystal growth by the Bridgman growth method, grain boundaries, which are one of the crystal defects, enter the crystal. The present invention relates to a method for preventing this and a device used in the method.

(2)技術の背景 例えば赤外線センサー装置用水銀カド“ミウムテルルの
エピタキシャル成長用基板として用いるカドミウム・テ
ルル(Cd1’e)単結晶はブリッジマン成長法によっ
て成長し、この方法を実h’tするには第1図に断面図
で示される装置が使用される。同図において、1は素材
を封入する容器例えば長さ20cm程度の石英アンプル
(以下にはアンプルという)を示し、このアンプルには
その容量の半分程度の素材2が封入されており、石英ア
ンプルの先端は図示の如く尖っている。アンプル1は図
に矢印で示す如く炉芯管3内を下方に図示しない駆動機
構によって下ろされる。炉芯管3のまわりには加熱用の
ヒータが複数段けられ、上方のヒータ4aは高温部、下
方のヒータ4abは低′IAIBである。Cd−Te結
晶を作る場合を例にとると、1工程に工OH程度を要し
、この時間でアンプル1は5cm程度降下する。
(2) Background of the technology For example, cadmium telluride (Cd1'e) single crystals used as substrates for epitaxial growth of mercury cadmium telluride for infrared sensor devices are grown by the Bridgman growth method, and in order to put this method into practice, The apparatus shown in cross section in Figure 1 is used. In the figure, 1 indicates a container for enclosing a material, such as a quartz ampoule (hereinafter referred to as an ampoule) with a length of about 20 cm, and this ampoule has a capacity of About half of the material 2 is sealed in the quartz ampoule, and the tip of the quartz ampoule is pointed as shown in the figure.The ampoule 1 is lowered into the furnace core tube 3 by a drive mechanism (not shown) as shown by the arrow in the figure. A plurality of heaters are arranged around the core tube 3, and the upper heater 4a is a high temperature part, and the lower heater 4ab is a low IAIB.For example, when making a Cd-Te crystal, 1 The process requires about 1 hour, and the ampoule 1 descends about 5 cm during this time.

炉内温度とアンプルの位置との関係は第2図に示され、
図の右の線図において縦軸はアンプル1の位置を、また
横軸は炉内温度を、T、、lは素材の融点を表す。曲線
aは炉内の位置と温度の関係を示すもので、アンプル1
が図の左の位置にあるときはアンプルの先端に結晶12
が成長し始める先端部成長時であり、符号13で示ず線
は固液界面を表し、その上方には溶融した素材があり、
固液界面の温度は融点に一致する。アンプル1が図の右
に示す位置にあるときは、結晶13の量が増大しアンプ
ルの中央部で結晶が成長している中央成長時にある。
The relationship between the temperature inside the furnace and the position of the ampoule is shown in Figure 2.
In the diagram on the right side of the figure, the vertical axis represents the position of the ampoule 1, the horizontal axis represents the furnace temperature, and T, , l represent the melting point of the material. Curve a shows the relationship between the position in the furnace and the temperature.
When is at the left position in the figure, there is a crystal 12 at the tip of the ampoule.
This is the time when the tip begins to grow, and the line not shown with reference numeral 13 represents the solid-liquid interface, and above it is the molten material.
The temperature of the solid-liquid interface corresponds to the melting point. When the ampoule 1 is in the position shown on the right side of the figure, the amount of crystal 13 increases and the crystal is growing in the center of the ampoule, which is the central growth period.

右の線図はまた前記した上刃のヒータが高温部であり、
下方のヒータが低温部であることをもホす。
In the diagram on the right, the heater of the upper blade mentioned above is the high temperature part,
Also note that the lower heater is a low temperature section.

(3)従来技術と問題点 上記したブリッジマン成長法において、結晶中に結晶欠
陥の一つである大傾角粒界が入り易いが否かは、成長中
の固液界面の形状と関係がある。
(3) Conventional technology and problems In the Bridgman growth method described above, whether or not large-angle grain boundaries, which are one type of crystal defect, easily enter the crystal is related to the shape of the solid-liquid interface during growth. .

大傾角粒界は第2図に線14で示ず如く固液界面と容器
との接触部分から固液界面に垂直な方向に延びて行く傾
向があり、はとんどが結晶周辺で発生ずる。従って、第
2図の右のアンプルに示される如く固液界面が凹である
と結晶中の粒界密度は犬になる。結晶の直径が一定の領
域では、粒界が入ってくるのを防ぐため、また固液界面
側近の溶融部の対流による温度ゆらぎを防くため、固液
界面(その位置での等湯面)は平坦であることが要求さ
れる。
High-angle grain boundaries tend to extend from the contact area between the solid-liquid interface and the container in a direction perpendicular to the solid-liquid interface, as shown by line 14 in Figure 2, and most of them occur around the crystals. . Therefore, if the solid-liquid interface is concave, as shown in the right ampoule of FIG. 2, the grain boundary density in the crystal will be dog. In a region where the crystal diameter is constant, the solid-liquid interface (equal liquid surface at that position) is is required to be flat.

従来ブリッジマン成長法では炉の温度プロファイルを固
定しζ(一定に保って)成長をしていたために、界面形
状は先端部成長時第2図の左のアンプルに見られる如く
凸であるが、中央部成長時は第2図の右のアンプルに見
られるように凹になり、粒界密度が大になる欠点があっ
た。
In the conventional Bridgman growth method, the temperature profile of the furnace was fixed and ζ (kept constant) was used for growth, so the interface shape was convex as seen in the ampoule on the left in Figure 2 during the growth of the tip. When growing at the center, the ampoule on the right of FIG. 2 becomes concave and has the disadvantage of increased grain boundary density.

(4)発明の目的 本発明は上記従来の問題に鑑み、ブリッジマン成長法に
おいて、結晶欠陥である粒界が結晶中に入ることを防く
結晶成長法とその方法の実施のための装置とを提供する
ことを目的とする。
(4) Purpose of the Invention In view of the above conventional problems, the present invention provides a crystal growth method that prevents grain boundaries, which are crystal defects, from entering the crystal in the Bridgman growth method, and an apparatus for implementing the method. The purpose is to provide

(5)発明の構成 そしてこの目的は本発明によれば、ブリッジマン成長法
によるバルク結晶成長において、結晶素材を封入した容
器が炉芯管の高温部から低温部へと下がるにつれ゛C1
前記111i温邪の温度を容器中心部温度にまで降温さ
せることを特徴とする結晶成長法、および高温部と低温
部を具備した炉芯管を具備したブリッジマン成長法によ
るバルク結晶成長装置において、結晶素材封入容器を炉
芯管内で隆下させる駆動部と炉芯管を加熱する複数のヒ
ータとを炉制御盤に接続し、前記容器が降下するにつれ
て炉制御盤が前記ヒータを降温させる構成としたことを
特徴とする結晶成長装置を提供することによって達成さ
れる。
(5) Structure and object of the invention According to the present invention, in bulk crystal growth by the Bridgman growth method, as a container containing a crystal material is lowered from a high temperature part to a low temperature part of a furnace core tube, C1
In a crystal growth method characterized by lowering the temperature of the 111i hot and cold to the temperature of the center of the container, and a bulk crystal growth apparatus using the Bridgman growth method equipped with a furnace core tube having a high temperature section and a low temperature section, A drive unit for raising a crystal material enclosure container in a furnace core tube and a plurality of heaters for heating the furnace core tube are connected to a furnace control panel, and as the container is lowered, the furnace control panel lowers the temperature of the heaters. This is achieved by providing a crystal growth apparatus characterized by the following.

(6)発明の実施例 以下本発明実施例を図面によって詳説する。(6) Examples of the invention Embodiments of the present invention will be explained in detail below with reference to the drawings.

本発明者は、ブリッジマン成長法において、成長中の炉
の温度を成長アンプルの位置の移動(変化)に合せて調
整することにより成長中の固液界面の形状を平坦に保ち
、粒界の少ない結晶を成長する方法を提供するものであ
る。
In the Bridgman growth method, the present inventor kept the shape of the solid-liquid interface flat during growth by adjusting the temperature of the furnace during growth according to the movement (change) of the position of the growth ampoule. It provides a method for growing fewer crystals.

従来技術において固液界面形状が凸から凹に変る原因を
見ると、融点より低い温度にある部分(結晶部分)の形
状が変り、界面付近での熱の流れの状態が変るからであ
る。この状態を第3図を参照しアンプルの外側と中心部
の温度の変化から説明する。第3図において、横軸は温
度、縦軸は温度測定位置、TMは融点、線aはアンプル
外側温度、線すはアンプル中心部温度、al、 blは
それぞれ先端部成長時を示す。アンプル外側温度と中心
部温度は、その交点が融点よりも下の温度のところにく
るように設定され固定される。その理由は第4図の線図
から理解される如く、融点の付近で外側温度と中心部温
度とが等しければ固液界面は平坦(水平)になるからで
ある。なお第4図(alは第3図に類似の線図で曲線a
とbはそれぞれアンプル外側温度と中心温度を示し、同
図(blはアンプル内等温線であり、融点における等温
線は固液界面の形と一致する。なお同図(blの水平な
等温線は線aとbとの交点に対応する。
In the prior art, the reason why the shape of the solid-liquid interface changes from convex to concave is that the shape of the portion (crystalline portion) at a temperature lower than the melting point changes, and the state of heat flow near the interface changes. This state will be explained from the change in temperature between the outside and the center of the ampoule with reference to FIG. In FIG. 3, the horizontal axis is temperature, the vertical axis is the temperature measurement position, TM is the melting point, line a is the temperature outside the ampoule, line S is the temperature at the center of the ampoule, and al and bl represent the time of growth of the tip, respectively. The ampoule outer temperature and center temperature are set and fixed so that their intersection point is below the melting point. The reason for this is that, as understood from the diagram in FIG. 4, if the outside temperature and center temperature are equal near the melting point, the solid-liquid interface becomes flat (horizontal). In addition, Figure 4 (al is a diagram similar to Figure 3 and curve a
and b indicate the temperature outside the ampoule and the temperature at the center, respectively. It corresponds to the intersection of lines a and b.

しかし、アンプルが下がり中心1B成長時(図にb2で
示す)に近付くにつれて中心部からの放熱が少なくなる
ため、アンプル中心部温度は現実にば破線bbで示すよ
うに上がり、融点より高いところでアンプルは外側より
中心部が温度が商くなり、かくして等湯面(固液界面)
は凹になった。
However, as the ampoule lowers and approaches the center 1B growth period (indicated by b2 in the figure), the heat radiation from the center decreases, so the temperature at the ampoule center actually rises as shown by the broken line bb, and the temperature at the ampoule center is higher than the melting point. The temperature is higher at the center than at the outside, and thus the temperature is equal to the surface (solid-liquid interface).
became concave.

それ故に本発明においては、第3図に類似の第5図に示
守れる如く、アンプルの降下と共に炉の高温部の温度を
下げて行く。すなわち、アンプル外側温度と中心部温度
を、先端部成長時al+ btに始まり最初は破線a、
bで示す如くに設定する。
Therefore, in the present invention, as shown in FIG. 5, which is similar to FIG. 3, the temperature of the high temperature part of the furnace is lowered as the ampoule descends. That is, the temperature on the outside of the ampoule and the temperature at the center are initially changed to the dotted line a, starting from al+ bt during the growth of the tip.
Set as shown in b.

しかし、この温度状態は固定することなく、中央部成長
時a2. b2においては、アンプル外側温度、中心部
温度を実線aa、 bbで示ず如くに、アンプル外側温
度と中心部温度が融点付近で一致するように下げる。そ
うなると第4図に示した如く、等湯面(固液界面)は平
坦に保たれ、粒界が結晶中にのびることが防止される。
However, this temperature condition is not fixed, and when the central portion grows a2. In b2, the ampoule outer temperature and center temperature are lowered so that the ampoule outer temperature and center temperature coincide around the melting point, as shown by solid lines aa and bb. In this case, as shown in FIG. 4, the liquid surface (solid-liquid interface) is kept flat, and grain boundaries are prevented from extending into the crystal.

1実施例において、CdTe結晶(融点1092℃)の
成長において、アンプル外側温度を最初1150°Cに
設定し、中央部成長時には11.30’cに下げ、降下
期間10日でアンプルを5cm下げ、結晶欠陥のないC
dTe結晶を得た。
In one example, in the growth of a CdTe crystal (melting point 1092°C), the temperature outside the ampoule was initially set at 1150°C, and during the growth of the central part, it was lowered to 11.30'C, and the ampoule was lowered by 5 cm during a descending period of 10 days. C without crystal defects
A dTe crystal was obtained.

上記の方法を実施するためには第6図に示される装置を
用い、同図において、21ばアンプル、22はアンプル
21に封入された素材、23は炉芯管、24はヒータ、
25はアンプル21を降下させる機構を備えたアンプル
駆動部(以上の部分は従来例と同じものである)、26
は駆動部25とヒータ24とに接続された炉制御盤を示
す。それ故に、図示の実施例は、従来例に比べると、炉
制御盤26および、それと駆動部25、ヒータ24との
接続が設けられた点が従来例と異なるものである。アン
プル21の降下が始まると、炉制御盤は駆動部25から
信号を受け、中央部成長時において(それまでの時間は
アンプル21の降下距離に連関する)図示上方2個の高
温部を構成するヒータの温度を例えば前記した如き所定
値にまで下げる。成長が終った後は、アンプルをフン酸
で熔かしてCdTe結晶を取り出す。前記した如くアン
プルは10日経過して5cm一方的に降下するのである
から、温度変化は直線型に変更させればよく、炉の制御
盤26は通常の技術で構成可能である。
In order to carry out the above method, an apparatus shown in FIG. 6 is used, in which 21 is an ampoule, 22 is a material sealed in the ampoule 21, 23 is a furnace core tube, 24 is a heater,
25 is an ampoule drive unit equipped with a mechanism for lowering the ampoule 21 (the above parts are the same as in the conventional example); 26
shows a furnace control panel connected to the drive section 25 and heater 24. Therefore, the illustrated embodiment differs from the conventional example in that a furnace control panel 26 and connections between it and the drive unit 25 and heater 24 are provided. When the ampoule 21 begins to descend, the furnace control panel receives a signal from the drive unit 25, and during the central region growth (the time up to that point is related to the descending distance of the ampoule 21), the two upper high temperature regions in the figure are formed. The temperature of the heater is lowered to a predetermined value, for example, as described above. After the growth is completed, the ampoule is melted with hydronic acid to take out the CdTe crystal. As mentioned above, since the ampoule unilaterally drops by 5 cm after 10 days, the temperature change can be changed to a linear type, and the furnace control panel 26 can be constructed using ordinary technology.

(7)発明の効果 以上詳細に説明した如く本発明によれば、ブリッジマン
成長法によるバルク結晶成長において、結晶成長中富に
固液界面を平坦に保つことができるので、結晶中に大傾
角粒界がのびることが防止され、結晶中の粒界密度を小
に抑えるに効果大である。なお以上の説明においてはC
dTeを例に説明し、ヒータは4個具備した装置を図示
したが、本発明の適用範囲はその場合に限られるもので
なく、その他の結晶の成長およびヒータ構成をもつ装置
の場合にも及ぶものである。
(7) Effects of the Invention As explained in detail above, according to the present invention, in bulk crystal growth using the Bridgman growth method, the solid-liquid interface can be kept flat during crystal growth, so large-angle grains can be formed in the crystal. This prevents the boundaries from extending and is highly effective in keeping the grain boundary density in the crystal low. In addition, in the above explanation, C
Although dTe is used as an example and an apparatus equipped with four heaters is illustrated, the scope of application of the present invention is not limited to that case, but also extends to apparatuses for growing other crystals and having heater configurations. It is something.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はブリッジマン成長法に用いる装置の断面図、第
2図は従来法による結晶成長中の温度プ1コファイルと
固液界面形状を示す図、第3図は従来法における温度プ
ロファイルの変化を示す線図、第4図は温度プロファイ
ルとアンプル内等温線を示す図、第5図は本発明の方法
による場合の温度プロファイルの変化を示す図、第6図
は本発明の方法を実施する装置の配置を示す図である。 21−アンプル、22−素材、23−炉芯管、24− 
ヒータ、25− アンプル駆動l111.26−炉制御
盤 第1図 3、 第2図 第3図 第4図
Figure 1 is a cross-sectional view of the equipment used in the Bridgman growth method, Figure 2 is a diagram showing the temperature profile and solid-liquid interface shape during crystal growth by the conventional method, and Figure 3 is the temperature profile in the conventional method. Figure 4 is a diagram showing the temperature profile and isotherm inside the ampoule; Figure 5 is a diagram showing the change in temperature profile when the method of the present invention is used; Figure 6 is a diagram showing the temperature profile when the method of the present invention is carried out. FIG. 21-Ampoule, 22-Material, 23-Furnace core tube, 24-
Heater, 25- Ampoule drive l111.26-Furnace control panel Fig. 1 3, Fig. 2 Fig. 3 Fig. 4

Claims (2)

【特許請求の範囲】[Claims] (1)ブリッジマン成長法によるバルク結晶成長におい
て、結晶素材を封入した容器が炉芯管の高温部から低温
部へと下がるにつれて、前記高温部の温度を降温させる
ことを特徴とする結晶成長法。
(1) In bulk crystal growth using the Bridgman growth method, a crystal growth method characterized by lowering the temperature of the high-temperature section as the container containing the crystal material is lowered from the high-temperature section of the furnace core tube to the low-temperature section. .
(2)高温部と低温部を具備した炉芯管を具備したブリ
ッジマン成長法によるバルク結晶成長装置において、結
晶素材封入容器を炉芯管内で降下させる駆動部と炉芯管
を加熱する複数のヒータとを炉制御盤に接続し、前記容
器が降下するにつれて炉制御盤が前記ヒータを降温させ
る構成としたことを特徴とする結晶成長装置。
(2) In a bulk crystal growth apparatus using the Bridgman growth method that is equipped with a furnace core tube that has a high-temperature section and a low-temperature section, there is a drive section that lowers the crystal material enclosure container within the furnace core tube, and a plurality of drive sections that heat the furnace core tube. A crystal growth apparatus characterized in that a heater is connected to a furnace control panel, and the furnace control panel lowers the temperature of the heater as the container descends.
JP25005383A 1983-12-28 1983-12-28 Method and device for growing crystal Pending JPS60141695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25005383A JPS60141695A (en) 1983-12-28 1983-12-28 Method and device for growing crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25005383A JPS60141695A (en) 1983-12-28 1983-12-28 Method and device for growing crystal

Publications (1)

Publication Number Publication Date
JPS60141695A true JPS60141695A (en) 1985-07-26

Family

ID=17202099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25005383A Pending JPS60141695A (en) 1983-12-28 1983-12-28 Method and device for growing crystal

Country Status (1)

Country Link
JP (1) JPS60141695A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5116456A (en) * 1988-04-18 1992-05-26 Solon Technologies, Inc. Apparatus and method for growth of large single crystals in plate/slab form

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5116456A (en) * 1988-04-18 1992-05-26 Solon Technologies, Inc. Apparatus and method for growth of large single crystals in plate/slab form

Similar Documents

Publication Publication Date Title
JPS5854115B2 (en) How to use tankets
US3240568A (en) Process and apparatus for the production of single crystal compounds
CN103774210A (en) Equipment and method for producing crystal by vertical boat method
CN112680781A (en) Cadmium telluride crystal growth device and growth method thereof
JPS60141695A (en) Method and device for growing crystal
JPH09175889A (en) Single crystal pull-up apparatus
JP3109950B2 (en) Method for growing semiconductor single crystal
JPH01317188A (en) Production of single crystal of semiconductor and device therefor
JPS62167284A (en) Method and device for producing single crystal by bridgman technique
JP3042097B2 (en) Apparatus and method for growing single crystal
JP2612897B2 (en) Single crystal growing equipment
KR100193051B1 (en) Single crystal growth apparatus
JPS61261287A (en) Crystal growth apparatus of cdte
JP2543449B2 (en) Crystal growth method and apparatus
JPH02239181A (en) Device and method for crystal growth
JPS60195082A (en) Apparatus for producing semiconductor crystal
RU2633899C2 (en) Method for cd1-xznxte single crystals growing, where 0≤x≤1, for inoculation at high pressure of inert gas
JPS62148389A (en) Method for growing single crystal
JPS62226885A (en) Device for growing cdte crystal
CN117684250A (en) Device and method for realizing growth of CdZnTe monocrystal in narrow-peak temperature field
JPH0559873B2 (en)
JPH02124792A (en) Method for growing single crystal
JP2943419B2 (en) Single crystal growth method
JPH0940492A (en) Production of single crystal and apparatus for production therefor
CN109898136A (en) Multiple Sapphire Crystal Growth device and growing method