JPS60137954A - Electrically conductive sliding material composition - Google Patents

Electrically conductive sliding material composition

Info

Publication number
JPS60137954A
JPS60137954A JP24925683A JP24925683A JPS60137954A JP S60137954 A JPS60137954 A JP S60137954A JP 24925683 A JP24925683 A JP 24925683A JP 24925683 A JP24925683 A JP 24925683A JP S60137954 A JPS60137954 A JP S60137954A
Authority
JP
Japan
Prior art keywords
volume
carbon fiber
nickel powder
tetrafluoroethylene resin
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24925683A
Other languages
Japanese (ja)
Other versions
JPH0229697B2 (en
Inventor
Masaki Egami
正樹 江上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOUBEA LE-RON KOGYO KK
Original Assignee
YOUBEA LE-RON KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOUBEA LE-RON KOGYO KK filed Critical YOUBEA LE-RON KOGYO KK
Priority to JP24925683A priority Critical patent/JPH0229697B2/en
Publication of JPS60137954A publication Critical patent/JPS60137954A/en
Publication of JPH0229697B2 publication Critical patent/JPH0229697B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce the titled composition imparted with electrical conductivity keeping excellent abrasion resistance of the base resin, by compounding a tetrafluoroethylene resin with a specific amount of a mixture of powdery nickel and carbon fiber at a specific ratio. CONSTITUTION:The objective composition is produced by compounding (A) 100pts.(vol.) of a tetrafluoroethylene resin having an average particle diameter of <=40mum with (B) 30-150pts., preferably 50-100pts. of a mixture of (i) flaky nickel powder or chain-like nickel powder consisting of amorphous particles having small cross-sectional area and (ii) carbon fiber having diameter of <=20mum, preferably 15-6mum and length of <=1mm., preferably 0.3-0.02mm., at a volume ratio (i/ii) of 15:80-80:20, preferably 40:60-70:30.

Description

【発明の詳細な説明】 この発明は摩擦係数が小さく、耐摩耗性か殴れ、同時に
体積抵抗率が小さいことを目的とする導電性摺動材組成
物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a conductive sliding material composition which is intended to have a low coefficient of friction, high wear resistance, and at the same time low volume resistivity.

各種エツジニアリングプラスチックとして、摩擦係数が
小さく、耐熱性、耐熱性、耐薬品性等が要求される用途
に、ふっ素樹脂(中でも特に四ふつ化エチレン樹脂)が
広く用いられることはよく知られているが、この樹脂は
耐摩耗性、耐圧縮クリープ性が劣ることから種々の充填
材が併用されなりればならないとか、樹脂自身の電気絶
縁性が優れていて、10′4Ω・cm以上の体積抵抗率
を示すといった特徴を有するものである。
It is well known that fluororesins (particularly tetrafluoroethylene resin) are widely used as various engineering plastics in applications that require a low coefficient of friction, heat resistance, chemical resistance, etc. However, this resin has poor abrasion resistance and compression creep resistance, so various fillers must be used in combination, and the resin itself has excellent electrical insulation properties and has a volume resistivity of 10'4 Ω・cm or more. It has the characteristic that it shows the rate.

近時、事務機械化の急速な進展に伴って、摺動特性と優
れた導電性とを兼ね備えた摺動材料か強く要望されるよ
うになり、四ふつ化エチレンAal tlMを基材とし
、これに耐摩耗性の向上と導電性のイ・]与とを目的と
して、黒鉛、導電性カーボン、金属粉、金属繊維などの
充填材を添加した材料が開発されてきた。しかし、黒鉛
、導電性カーボンを添加した材料は、摺動特性において
は良好であっても、体積抵抗率においては101〜10
2Ω・(111程度てしかなく決して好ましい材料とは
言えない。また、金属粉としては、金、銀、銅、アルミ
ニウム、ニッケル等の粉末が用いられ、金および銀は化
学的に安定であり高導電性のものであるかきわめて高価
であるために、しはしは銅、アルミニウム、ニッケル等
が用いられる。しかし、銅、アルミニウムは四ふつ化エ
チレン樹脂の成形温度で酸化されやすく、これらを添加
した製品の導電性は不安定となるので、四ふつ化エチレ
ンに対する導工性伺与材には不適合である。一方、ニッ
ケル粉は比較的安定で、四ふつ化エチレン樹脂に添加し
て得られる製品の導電性およびその安定性は良好である
ものの、耐摩耗性は著しく悪い。さらに、金属fJII
 K、Iljは、黄銅ファイバー、アルミニウムファイ
ノく−などが市販されていても、前記粉末状のものと同
様に酸化されやすくて材質的に好ましくなtI)ばかり
てなく、通常市販されているものの多くは径が60μ■
11、長さが3 mmと寸法が大きく、摺動材料用の充
填材(ここれを使用すれは、材料面より突出して相手材
表面を傷つけたりするので、決して望ましい材料とは言
えない。
Recently, with the rapid progress of office mechanization, there has been a strong demand for sliding materials that have both sliding properties and excellent conductivity. Materials containing fillers such as graphite, conductive carbon, metal powder, and metal fibers have been developed for the purpose of improving wear resistance and imparting electrical conductivity. However, although materials containing graphite and conductive carbon have good sliding properties, their volume resistivity is 101 to 10.
It is only about 2Ω・(111Ω), so it cannot be said to be a preferable material. In addition, powders of gold, silver, copper, aluminum, nickel, etc. are used as metal powders, and gold and silver are chemically stable and have high resistance. Because they are conductive or extremely expensive, copper, aluminum, nickel, etc. are used for the chopsticks.However, copper and aluminum are easily oxidized at the molding temperature of tetrafluoroethylene resin, so these materials are not added. Since the conductivity of the product becomes unstable, it is not suitable as a conductivity improving material for tetrafluoroethylene.On the other hand, nickel powder is relatively stable and can be obtained by adding it to tetrafluoroethylene resin. Although the product has good conductivity and stability, its wear resistance is extremely poor.Furthermore, metal fJII
Even if brass fibers, aluminum fins, etc. are commercially available for K and Ilj, they are not only easily oxidized like the powdered ones mentioned above, making them undesirable materials, but also those that are normally commercially available. Most have a diameter of 60μ■
11. It has a large length of 3 mm, and is a filler for sliding materials (if used, it would protrude from the surface of the material and damage the surface of the mating material, so it is not a desirable material at all).

この発明は、このような現状に着目してなされたもので
あって、四ふつ化エチレン樹脂100容量部に対して、
ニッケル粉末と炭素繊維との容量比が15 :80から
80:20の範囲にある混合物を、30〜150容量部
添加したことを特徴とする導電性摺動材組成物を提供す
るものである。
This invention was made in view of the current situation, and for 100 parts by volume of tetrafluoroethylene resin,
The present invention provides a conductive sliding material composition characterized in that 30 to 150 parts by volume of a mixture of nickel powder and carbon fiber having a volume ratio in the range of 15:80 to 80:20 is added.

以下その詳細を述べる。The details will be described below.

この発明における四ふつ化エチレン樹脂はテトラフルオ
ロエチレンの重合体であり、アルボフロン、テフロン、
フルオン、ポリフロノ等の登録商標名で市販されている
ふっ素樹脂の一種である。
The tetrafluoroethylene resin in this invention is a polymer of tetrafluoroethylene, including Alboflon, Teflon,
It is a type of fluororesin that is commercially available under registered trademarks such as Fluon and Polyfluoro.

吸水性はなく、不燃性で強酸、強アルカリ、有機溶剤に
対しきわめて安定で、通常400 ’C以上で初めて分
解が起こるほど耐熱性も良好な樹脂であるため、通常の
場合、粉末冶金と同様の方法で、粉末状の樹脂を金型に
入れ、徐々に加II(100〜600 kg/ctn”
 ) L T成形した後350〜3’80℃付近で焼成
する方法が採用されている。ここで、室温下で加圧し、
予め成形したものを常圧下で焼結させると、得られる成
形体は充填密度が小さくて、体積抵抗率の太きいものに
なることから、この発明においては加圧および加熱を同
時に行なうことが望ましい。
It is a resin that does not absorb water, is non-flammable, extremely stable against strong acids, strong alkalis, and organic solvents, and has good heat resistance so that decomposition usually occurs only at temperatures above 400'C. Powdered resin is put into a mold and gradually added (100 to 600 kg/ctn") using the method described in
) LT A method of firing at around 350 to 3'80°C after forming is adopted. Here, pressurize at room temperature,
If a preformed product is sintered under normal pressure, the resulting compact will have a low packing density and a high volume resistivity, so in this invention it is desirable to apply pressure and heat at the same time. .

つぎに、この発明におけるニッケル粉末は導電性があれ
ばその形状を特に限定するものではないが、少量の添加
であっても粉末粒子の連続性の良いものであることが望
ましいことから、鱗片状のもの(たとえば米国インコ社
製=7バメツトニツケル11’CA −1)または断面
積の小さい不定形粒子で構成されている鎖状のもの(た
とえば同社製:ニッケルパウダ255もしくは287)
等が一層好ましいものであると言える。
Next, the shape of the nickel powder in this invention is not particularly limited as long as it has conductivity, but since it is desirable that the powder particles have good continuity even when added in a small amount, it is preferable to use a scaly shape. (for example, Nickel Powder 255 or 287 manufactured by Inco, Inc., USA) or chain-shaped particles composed of irregularly shaped particles with a small cross-sectional area (for example, Nickel Powder 255 or 287 manufactured by Inco, Inc.)
etc. can be said to be more preferable.

さらに、この発明における炭素繊維は耐摩耗性、耐クリ
ープ性を向上させるという役割を果すが、分散する前記
ニッケル粉末相互に接触して、全体の導電性を高めよう
とする目的に使用されるものであるから、炭素繊維自身
に良好な導電性が必要であることは勿論であるが、さら
に高度の?n電性が要求されるようなときには、金属(
たとえはニッケル)被覆の炭素繊維(たとえは東邦ベス
ロン社製品)などを使用することもてきる。この発明に
おいては、混合、成形等の容易さおよび成形面からの突
出防市の点から、炭素繊維は径20μm以下好ましくは
15〜6μIn 、長さllnm以下好ましくは03〜
0.02 mmのものが望ましく、一般的には東し社製
:トレカMLD−39また+1呉羽化学工業社製:クレ
ノ1カーボンファイノ<−M2O2Sなどの市販品を例
示することができる。
Furthermore, the carbon fibers in this invention play the role of improving wear resistance and creep resistance, but are used for the purpose of increasing the overall electrical conductivity by contacting the dispersed nickel powder. Therefore, it goes without saying that the carbon fiber itself needs to have good conductivity, but it also needs to have an even higher degree of conductivity. When n-electrification is required, metals (
It is also possible to use carbon fiber coated with nickel (for example, a product of Toho Bethlon Co., Ltd.). In this invention, from the viewpoint of ease of mixing, molding, etc. and prevention of protrusion from the molding surface, the carbon fiber has a diameter of 20 μm or less, preferably 15 to 6 μIn, and a length of 1 nm or less, preferably 0.3 to 3 nm.
A thickness of 0.02 mm is desirable, and commercial products such as Torayka MLD-39 (manufactured by Toshisha Co., Ltd.) and +1 (+1) manufactured by Kureha Chemical Industry Co., Ltd. (Kureno 1 Carbon Phino<-M2O2S) can be exemplified.

この発明において、前記四ふつ化エチレン樹脂、ニッケ
ル粉末および炭素繊維の三者の配合割合を容量比で示し
たが、その理由は重量比では通常の炭素繊維と金属被覆
した炭素繊維とては止車が著しく異なり、同体積でも重
量が異なるため、配合比を重量比で表わしたのではこの
発明の構成を明確な範囲で示すことは不可能であって好
ましくないからであり、容量は重量と真比重とを測定し
、その重■を真比重で除した値で示す方法を採用した。
In this invention, the mixing ratio of the tetrafluoroethylene resin, nickel powder, and carbon fiber is shown in terms of volume ratio, but the reason for this is that in weight ratio, normal carbon fiber and metal-coated carbon fiber are different. This is because vehicles are significantly different, and the same volume has different weights, so expressing the compounding ratio by weight makes it impossible and undesirable to express the structure of this invention in a clear range. A method was adopted in which the true specific gravity was measured and the weight was divided by the true specific gravity.

ここて、ニッケル粉末と炭素繊維との混合割合は、ニッ
ケル粉末を15;80よりも少なくしても、また80:
20よりも多くしても導電性と摺動特性とを兼備させる
ことかできなくなり、好ましくは40:60から70:
30の範囲内にするとよい。このようなニッケル粉末と
炭素繊維との混合物を、四ふつ化エチレン樹脂100容
量部に対して30〜150容量部、好ましくは50〜1
00容量部、混合する理由は混合物が30容11部より
も少ないときは、充分な導電性が得られず、150容量
部より多いときは摺動特性が悪化するか、もしくは成形
体が非常に脆くなって好ましくないからである。
Here, the mixing ratio of nickel powder and carbon fiber is 80: even if the nickel powder is less than 15:80.
If the ratio is more than 20, it will not be possible to have both conductivity and sliding properties, so preferably 40:60 to 70:
It is recommended that it be within the range of 30. Such a mixture of nickel powder and carbon fiber is added in an amount of 30 to 150 parts by volume, preferably 50 to 1 part by volume, per 100 parts by volume of tetrafluoroethylene resin.
The reason for mixing 00 parts by volume is that if the mixture is less than 30 parts by volume, sufficient conductivity cannot be obtained, and if it is more than 150 parts by volume, the sliding properties may deteriorate or the molded product may become very difficult to obtain. This is because it becomes brittle, which is not desirable.

以上のようにして四ふつ化エチレン樹脂に混合したニッ
ケル粉末および炭素繊維の分散を均一にするためには、
四ふつ化エチレン樹脂の粒度も小さいほど望ましく、通
常の場合、平均粒径40μm以下であれば支障はない。
In order to uniformly disperse the nickel powder and carbon fibers mixed in the tetrafluoroethylene resin as described above,
The smaller the particle size of the tetrafluoroethylene resin is, the more desirable it is, and normally there will be no problem if the average particle size is 40 μm or less.

これら王者の混合物を成形出金1こ入れて400〜t 
o o o kg/cm2(四名、つ化エチレン樹脂の
みのときよりも高し)圧力で予備成形し、一度常圧に戻
して350〜380℃に加熱した後再び加圧するか、ま
たは、加圧しながら加熱するかして、粒子間の焼結を充
分に行なった後冷却し、要求される寸法安定性や形状に
対応できるよう必要に応じて形状の調整を加えれば、所
望の成形体が得られる。
400~t with 1 cup of molded mixture of these kings
o o o kg/cm2 (4 people, higher than when using only fluorinated ethylene resin) pressure to preform, return to normal pressure, heat to 350 to 380°C, and pressurize again, or pressurize again. The desired molded body can be obtained by heating while pressing to sufficiently sinter the particles, then cooling and adjusting the shape as necessary to meet the required dimensional stability and shape. can get.

得られた成形体は四ふつ化エチレン樹脂特有の低摩擦係
数を有し、その上ニッケル粉末および炭素繊維の添加に
より良好な耐摩耗性を保ちつつ導電性をも竹馬されてい
るので、耐摩耗性と導電性の二つの機能が同時に要求さ
れる軸受材−4ま最適のものであり、この発明のχ1、
義はきわめて太きいと言える。
The resulting molded product has a low coefficient of friction unique to tetrafluoroethylene resin, and it also has good abrasion resistance and conductivity due to the addition of nickel powder and carbon fiber, so it has excellent abrasion resistance. χ1 of this invention is the most suitable bearing material for which the two functions of conductivity and conductivity are required at the same time.
It can be said that righteousness is extremely strong.

以下に実施例および比較例をボす。Examples and comparative examples are listed below.

〔実施例1〕 四ふつ化エチレン樹脂(旭硝子社製:フルオ70163
)100容量部(ζ鎖状構造のニッケル粉末(米国イ/
コ社製−ニッケルパウター255)48容量部および表
面にニッケルメッキを施した炭素繊維(東邦イス0フ社
製: I−I TCF、/Ni 、繊維径75μm、繊
維長30 Q 7cm、平均ニッケル膜II O,25
μm)37容量部をヘンシェルミキサーで充分に混合し
た後、内径3 Q 111111の円筒状の金型に充填
し、800 kg/c+n2の圧力をかけて予備成形し
た。予備成形体の入った金型を常圧下で加熱し、360
℃のもとに1時間保持した。保持後爵び800 kg、
/c+n2の圧力を加え、そのまま冷却し、得られた成
形体について摩擦摩耗試験および体積抵抗率の測定を試
みた。ここで、1〒二擦係数は、mり速度100 m/
min、荷重1 kg/coン(7) 条件でX ラス
ト型摩擦試験機を用いて測定し、摩耗係数は滑り速度1
2 B nyinin 、荷重L 6 kg/cm2(
y) % 件でスラスト型摩耗試験機を用し)、0ずれ
も相手材に(ま軸受鋼5UJ−2(焼入れ、研削仕」二
げ)をイ吏月1した。得られた結果は第1表にまとめt
こ。
[Example 1] Tetrafluoroethylene resin (manufactured by Asahi Glass Co., Ltd.: Fluo 70163
) 100 parts by volume (Nickel powder with ζ chain structure (US/I)
Co., Ltd. - Nickel Powder 255) 48 volume parts and carbon fiber with nickel plating on the surface (manufactured by Toho Isufu Co., Ltd.: I-I TCF, /Ni, fiber diameter 75 μm, fiber length 30 Q 7 cm, average nickel film II O, 25
After thoroughly mixing 37 parts by volume (μm) in a Henschel mixer, the mixture was filled into a cylindrical mold with an inner diameter of 3 Q 111111, and preformed under a pressure of 800 kg/c+n2. The mold containing the preform is heated under normal pressure to 360
It was kept at ℃ for 1 hour. Holds 800 kg,
A pressure of /c+n2 was applied, the molded product was cooled as it was, and friction and wear tests and volume resistivity measurements were performed on the molded product obtained. Here, 1〒 double friction coefficient is 100 m/m/m
min, load 1 kg/con (7) X Measured using a last type friction tester, and the wear coefficient is sliding speed
2 B nyinin, load L 6 kg/cm2 (
y) % using a thrust type abrasion tester), and bearing steel 5UJ-2 (quenched and ground) was used as the mating material for both cases.The obtained results are as follows. Summarized in one table
child.

第1表 〔実施例2〕 炭素繊維として東し社製の繊維径7μm、繊Vlt。Table 1 [Example 2] The carbon fiber is made by Toshisha Co., Ltd. and has a fiber diameter of 7 μm.

長30μmnのもの37容量部を用シ)tこ以外(ま実
施例1と全く同じ方法によって圧縮加p45成ル(本を
(尋た。この成形体についても実施例1と同様に摩擦1
%粍試験および体枦抵抗率の測定を行な0、その結果を
第1表に併記した。
37 volume parts of the molded product having a length of 30 μm were used.A compression molding of P45 molding was performed in exactly the same manner as in Example 1.
% resistance test and body resistivity were measured.The results are also listed in Table 1.

〔実施例3〕 ニッケル粉末として鱗片状ニッケル粉末(米国イ7コ社
製:ノバメット・ニッケルocA−’1)48容量部を
、また、炭素繊維として実施例2て用いたと同じ東し社
製の炭素繊#fli 37容量部を用いた以外は実施例
1と全(同し方法で圧縮加熱成形体を得た。この成形体
についても実施例1と同様、摩擦摩耗試験および体積抵
抗率の測定を行ない、その結果を第1表に併記した。
[Example 3] As the nickel powder, 48 parts by volume of flaky nickel powder (Novamet Nickel ocA-'1, manufactured by I7 Co., Ltd. in the United States) was used, and as the carbon fiber, the same nickel powder manufactured by Toshi Co., Ltd. used in Example 2 was used. A compression and heating molded body was obtained in the same manner as in Example 1 except that 37 parts by volume of carbon fiber #fli was used. This molded body was also subjected to the friction abrasion test and measurement of volume resistivity in the same manner as in Example 1. The results are also listed in Table 1.

〔実施例4〕 四ふつ化エチレン樹脂100容量部に対して、ニッケル
粉末および炭素繊維の配合割合をそれぞれ73容量部お
よび70容量部とした以外は実施例1と全く同じ原料な
らびに方法を用いて圧縮加熱成形体を得た。この成形体
について実施例1と同様摩擦摩耗試験および体積抵抗率
の測定を行ない、その結果を第1表に併記した。
[Example 4] The same raw materials and method as in Example 1 were used, except that the mixing ratio of nickel powder and carbon fiber was 73 parts by volume and 70 parts by volume, respectively, with respect to 100 parts by volume of tetrafluoroethylene resin. A compression and heating molded body was obtained. Friction and wear tests and volume resistivity measurements were carried out on this molded body in the same manner as in Example 1, and the results are also listed in Table 1.

(比較例1〜5〕 実施例1と同じ四ふつ化エチレン樹脂、ニッケル粉末お
よび実施例2と同じ炭素繊維を第2表に示す配合割合で
混合した以外は実施例1と全く同し方法で圧縮加熱成形
体を丙だ。これら成形体に第 2 表 ついても実施例1と同唾に摩擦摩耗試験および体積抵抗
率の測定を行ない、その結果を一括して第3表にまとめ
た。
(Comparative Examples 1 to 5) The same method as in Example 1 was carried out except that the same tetrafluoroethylene resin and nickel powder as in Example 1 and the same carbon fiber as in Example 2 were mixed in the proportions shown in Table 2. The compression and heating molded bodies are shown in Table 2.Friction and wear tests and volume resistivity measurements were also performed on these molded bodies in the same manner as in Example 1, and the results are summarized in Table 3.

第 3 表 第1表および第3表に示した実施例1〜4および比較例
1〜5の各成形体の慴質、特に体積抵抗率と摩耗係数と
の関係、をより明確にするために、体積抵抗率を横:l
’+bとし、摩耗係数を縦軸(両軸とも対数目盛)とし
た図面に各測定値を記入すると1図のようになる。ここ
で、○印に付けた1〜4はそれぞれ実施例1〜4を、ま
た、X印に付けた1〜5はそれぞれ比較例1〜5を示し
、比較例においては、体積抵抗率か低くても摩耗係数が
著しく大きい(比(咬例2および3)か、または、摩↑
L係数が小さくても体積抵抗率か著しく高く(比較例1
.4および5)で、いずれも期待される性r↓は得られ
ていないか、実施例1〜4の、結果はいずれも体積抵抗
率は低く、しかも摩耗係数も小さいという好ましい性能
を示していることか明瞭にJ!l角イてきる。
Table 3 In order to clarify the properties of each of the molded bodies of Examples 1 to 4 and Comparative Examples 1 to 5 shown in Tables 1 and 3, particularly the relationship between volume resistivity and wear coefficient. , horizontal volume resistivity: l
'+b, and each measured value is entered in a drawing with the wear coefficient on the vertical axis (both axes are on a logarithmic scale), and the result is as shown in Fig. 1. Here, 1 to 4 marked with ○ indicate Examples 1 to 4, respectively, and 1 to 5 marked with X indicate Comparative Examples 1 to 5, respectively. However, the wear coefficient is significantly large (ratio (bite examples 2 and 3) or the wear coefficient is
Even if the L coefficient is small, the volume resistivity is extremely high (Comparative Example 1)
.. 4 and 5), the expected properties r↓ were not obtained, or the results of Examples 1 to 4 all showed favorable performance with low volume resistivity and low wear coefficient. Clearly J! I'm about to cum.

【図面の簡単な説明】[Brief explanation of the drawing]

に図はこの発明の実施例および比較例において得た成形
体の体積抵抗率と摩耗係数との関係を示す図面である。 一′、)・・・実施例、X・比較例
Figure 2 is a drawing showing the relationship between the volume resistivity and the wear coefficient of molded bodies obtained in Examples and Comparative Examples of the present invention. 1', )...Example, X/Comparative example

Claims (1)

【特許請求の範囲】[Claims] 四ふつ化エチレン樹脂100容量部に対して、ニッケル
粉末と炭素繊維との容量比が15:80から80:20
の範囲にある混合物を、30〜150容猾部添加したこ
とを特徴とする導電性摺動材組成物。
The volume ratio of nickel powder and carbon fiber to 100 parts by volume of tetrafluoroethylene resin is 15:80 to 80:20.
An electrically conductive sliding material composition, characterized in that 30 to 150 parts by volume of a mixture in the range of:
JP24925683A 1983-12-26 1983-12-26 DODENSEISHUDOZAISOSEIBUTSU Expired - Lifetime JPH0229697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24925683A JPH0229697B2 (en) 1983-12-26 1983-12-26 DODENSEISHUDOZAISOSEIBUTSU

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24925683A JPH0229697B2 (en) 1983-12-26 1983-12-26 DODENSEISHUDOZAISOSEIBUTSU

Publications (2)

Publication Number Publication Date
JPS60137954A true JPS60137954A (en) 1985-07-22
JPH0229697B2 JPH0229697B2 (en) 1990-07-02

Family

ID=17190250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24925683A Expired - Lifetime JPH0229697B2 (en) 1983-12-26 1983-12-26 DODENSEISHUDOZAISOSEIBUTSU

Country Status (1)

Country Link
JP (1) JPH0229697B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008135787A1 (en) * 2007-05-04 2008-11-13 Peratech Limited Polymer composition
US7794629B2 (en) 2003-11-25 2010-09-14 Qinetiq Limited Composite materials

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0473394U (en) * 1990-11-01 1992-06-26

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7794629B2 (en) 2003-11-25 2010-09-14 Qinetiq Limited Composite materials
WO2008135787A1 (en) * 2007-05-04 2008-11-13 Peratech Limited Polymer composition
GB2465077A (en) * 2007-05-04 2010-05-12 Peratech Ltd Polymer composition with electrically-conductive filler
GB2450587B (en) * 2007-05-04 2010-08-18 Peratech Ltd Polymer composition
US20110253948A1 (en) * 2007-05-04 2011-10-20 Peratech Limited Polymer Composition
US8765027B2 (en) 2007-05-04 2014-07-01 Peratech Limited Polymer composition

Also Published As

Publication number Publication date
JPH0229697B2 (en) 1990-07-02

Similar Documents

Publication Publication Date Title
US3342667A (en) Dry fluorocarbon bearing material
US3573976A (en) Method of making coaxial cable
US2964476A (en) Process for producing a metal-lubricant
JP2004210839A (en) Fluororesin composition
JPS6169853A (en) Electrically conductive resin composition
JPS60137954A (en) Electrically conductive sliding material composition
Kulthe et al. Microhardness and electrical properties of PVC/Cu composites prepared by ball mill
JPH0562916B2 (en)
JP2698375B2 (en) Polytetrafluoroethylene resin composition
JPH0522733B2 (en)
JPS5819397A (en) Sliding material composition
JPS61168649A (en) Electrically conductive sliding material composition
US3434996A (en) Polytetrafluoroethylene extrusion compositions and extrusion process
JP2589714B2 (en) Sliding material composition
JPH08217941A (en) Sliding member
JPS5876437A (en) Insulating heat conductive composition
JP2769319B2 (en) Complex
JPH06184385A (en) Tetrafluoroethylene resin composition
JPS58160347A (en) Resin composition
JPS6153349A (en) Tetrafluoroethylene resin composition
JPH0561305B2 (en)
JPH01299316A (en) Cage for roller bearing
JP2521201B2 (en) Conductive sliding composition
JPS6018696B2 (en) polytetrafluoroethylene composition
JP2824075B2 (en) Molded body of composition for sliding part material