JPS60124873A - Protective circuit for input to mos type semiconductor device - Google Patents

Protective circuit for input to mos type semiconductor device

Info

Publication number
JPS60124873A
JPS60124873A JP58233013A JP23301383A JPS60124873A JP S60124873 A JPS60124873 A JP S60124873A JP 58233013 A JP58233013 A JP 58233013A JP 23301383 A JP23301383 A JP 23301383A JP S60124873 A JPS60124873 A JP S60124873A
Authority
JP
Japan
Prior art keywords
gate
potential
well
region
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58233013A
Other languages
Japanese (ja)
Inventor
Takeya Ezaki
豪弥 江崎
Osamu Ishikawa
修 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58233013A priority Critical patent/JPS60124873A/en
Publication of JPS60124873A publication Critical patent/JPS60124873A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0266Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Protection Of Static Devices (AREA)
  • Amplifiers (AREA)

Abstract

PURPOSE:To increase withstanding voltage by preventing the floating of a P well, making the potential of the P well the same as the lower potential of an N region connected to a source or an N region connected to a gate at all times and obviating positive potential to the N regions of the P well. CONSTITUTION:The potential of a P well 11 and an N region 10, a gate G, is made the same by a metallic electrode 17 because an MOSFET2 is conducted and the potential of N regions 10 and 13 is made the same on gate potential of VGS<O. An MOSFET1 is conducted and the potential of N regions 9 and 12 is made the same-that is, the potential of the P well 11 is made the same as that of a source S on gate potential of VGS>O. The MOSFETs 1 and 2 are not conducted when gate potential VGS is equal to O volt or is lower than the thresholds VT1, VT2 of the MOSFETs 1 and 2, but an MOSFET3 is conducted and the potential of N regions 19 and 9 is made the same. The potential of the P well 11 is made the same as that of the source S because the N region 19 is connected to the P well 11 by a metallic electrode 20.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電力用MO8型半導体装置のゲート保護ダイ
オードの構成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to the structure of a gate protection diode for an MO8 type semiconductor device for power use.

従来例の構成とその問題点 一般に電力用MO8FETの駆動においてはゲートには
正および負電位が印加される。これはスイッチング動作
においては、適渡応答を速くするため、またマイクロ波
動作においては、0級のように効率向上のために必要と
なる。それらの要求に答えるには、ゲート保護ダイオー
ドは両極性でなければならない。ダイオードを2ヶ逆向
きに接続すればこの目的は達せられるが、その結果、半
導体基板内にnpn(又はpnp )構造が出来る3ペ
ージ ので、耐圧力が制限されるという問題があった。
Conventional Structure and Problems Generally, when driving a power MO8FET, positive and negative potentials are applied to the gate. This is necessary in switching operation to speed up the voltage response, and in microwave operation to improve efficiency as in class 0. To meet those requirements, gate protection diodes must be bipolar. Although this purpose can be achieved by connecting two diodes in opposite directions, this results in the creation of an npn (or pnp) structure within the semiconductor substrate, which poses a problem in that the withstand pressure is limited.

その様な従来例を第1図に示す。図に於て、耐基板1−
1上にN型エピ層1−2が約10ミクロン厚で形成され
ていて基板1を構成し、ゲート2がその基板表面に0.
1ミクロン厚のゲート酸化膜3を介して形成されている
。ゲート2に自己整合してP型ベース領域4および一°
ソース6がイオン注入および拡散により形成されていて
、Pベース4とN1ソース5は金属電極6で短絡されて
いる。
FIG. 1 shows such a conventional example. In the figure, the resistant substrate 1-
An N-type epitaxial layer 1-2 is formed on the substrate 1 with a thickness of about 10 microns to constitute a substrate 1, and a gate 2 is formed on the surface of the substrate with a thickness of about 10 microns.
It is formed through a gate oxide film 3 with a thickness of 1 micron. P-type base region 4 and 1° self-aligned to gate 2
A source 6 is formed by ion implantation and diffusion, and the P base 4 and the N1 source 5 are short-circuited by the metal electrode 6.

基板1はドレインである。基板1表面にPウェル11お
よびその中にN型領域9,1oが形成されていてそれぞ
れ金属電極7,8により、本体MO8FETのソース6
およびゲート2へ接続されてゲート保護回路が構成され
ている。
Substrate 1 is the drain. A P-well 11 and N-type regions 9, 1o are formed on the surface of the substrate 1, and metal electrodes 7, 8 connect the source 6 of the main body MO8FET.
and is connected to gate 2 to form a gate protection circuit.

N型領域9,10とPウェル11および基板1とにより
、npnトランジスタが作り込まれた構成になっている
。ドレイン耐圧は、こうして構成されるnpn )ラン
ジスタのBV (ペース開EO 放時のコレクターエミッタ間耐圧)の影響を受ける。B
vcEoを高めるには、ベースとして作用するPウェル
11がエミッタとして作用するN型領域9,1oに対し
て正電位にならないようにしなければならない。しかし
第1図の構成では、Pウェル11はフローティングであ
るため、正又は角へ変化するゲート電位およびドレイン
電位の影響を受けて、この条件を満たすことが出来なか
った。
N-type regions 9 and 10, P-well 11, and substrate 1 form an npn transistor. The drain breakdown voltage is affected by the BV (collector-emitter breakdown voltage when the pace is released) of the npn transistor thus constructed. B
In order to increase vcEo, it is necessary to prevent the P-well 11, which acts as a base, from becoming a positive potential with respect to the N-type regions 9, 1o, which act as emitters. However, in the configuration shown in FIG. 1, since the P well 11 is floating, it is affected by the gate potential and drain potential that change to positive or angular directions, and this condition cannot be satisfied.

ゲート・ソース間にも同様にフローティングベースのn
pnトランジスタが作り込まれているので、ゲート・ソ
ース間耐圧も低く抑えられていた。点線で寄生トランジ
スタを図中に示した。
Similarly, there is a floating base n between the gate and source.
Since a pn transistor is incorporated, the breakdown voltage between the gate and source is also kept low. The parasitic transistors are shown in the figure by dotted lines.

発明の目的 本発明は、正負両極の電圧が印加出来る両極性ゲート保
護回路の耐圧を向上せしめることを目的とする。
OBJECTS OF THE INVENTION An object of the present invention is to improve the withstand voltage of a bipolar gate protection circuit to which both positive and negative voltages can be applied.

発明の構成 本発明に於ては、Pウェル11はフローティングになら
ず、ソースSへ接続されたN領域9またはゲートGへ接
続されたN領域10のいずれかのうち、より低い電位と
常に同電位になり、Pウェル11が、N領域9,10に
対して正電位になる6ページ ことのない様にゲート保護回路が構成される。
Structure of the Invention In the present invention, the P well 11 is not floating and is always at the same potential as the lower of either the N region 9 connected to the source S or the N region 10 connected to the gate G. The gate protection circuit is configured to prevent the P well 11 from becoming a positive potential with respect to the N regions 9 and 10.

実施例の説明 本発明の実施例を第2図に示す。番号1〜11までは第
1図と対応している。但し、第1図の本体MO8FET
2〜6は省略しである。GおよびSの矢印は、それぞれ
本体MO8FETのゲートおよびソースへ接続されるこ
とを示している。
DESCRIPTION OF THE EMBODIMENTS An embodiment of the present invention is shown in FIG. Numbers 1 to 11 correspond to those in FIG. However, the main body MO8FET in Figure 1
2 to 6 are omitted. The G and S arrows indicate connections to the gate and source of the body MO8FET, respectively.

N領域9,12,10,13.19および絶縁膜14a
 、 14b 、 14cを介して形成されたグー)1
5,16.18とで、MO8FET1.2 。
N regions 9, 12, 10, 13.19 and insulating film 14a
, 14b, 14c) 1
5, 16.18, MO8FET1.2.

3が構成されている。金属電極17は、N領域12゜1
3とPウェル11とを接続している。また金属電極2o
はN領域19とPウェル11とを接続している。ゲート
端子GはN領域10およびMO9FET1のゲート16
へ、ソース端子SはN領域9およびMO8FET2のゲ
ート16へ接続されている。基板であるドレインは、M
O8FET3のゲート18へ金属電極22で接続されて
いる。
3 are made up. The metal electrode 17 has an N region of 12°1
3 and P well 11 are connected. Also metal electrode 2o
connects the N region 19 and the P well 11. Gate terminal G is connected to N region 10 and gate 16 of MO9FET1.
, the source terminal S is connected to the N region 9 and the gate 16 of MO8FET2. The drain, which is the substrate, is M
It is connected to the gate 18 of the O8FET 3 through a metal electrode 22.

ゲート電位■Gs<oのとき、MO8FET2が導通し
、N領域1oと13が同電位に々るので、6ペ 〕゛ 金属電極17によりPウェル11とN領域1oすなわち
ゲートGとは同電位になる。
When gate potential ■Gs<o, MO8FET2 becomes conductive and N regions 1o and 13 reach the same potential. Become.

tた、ゲ−)it位VG3>Oにナルと、MO8FET
1が導通し、N領域9と12が同電位、すなわちPウェ
ル11はソースSと同電位になる。
t, game) It place VG3>O with a null, MO8FET
1 becomes conductive, N regions 9 and 12 have the same potential, that is, P well 11 has the same potential as source S.

ゲート電位vGs−Oボルトまたは、MO8FET1お
よび2の閾値vT1.vT2より低いときは、MO3F
ET1および2は非導通であるが、ドレイン電位vDs
が正の高い値になると、MO8FET3が導通し、N領
域19と9が同電位になる。N領域19は金属電極2o
によ!llPウェル11へ接続されているので、Pウェ
ル11はソースSと同電位になる。このとき、N領域9
または1oをエミッタ、Pウェル11をベース、基板1
をコレクタとする寄生トランジスタのBvcEoよりも
、MO8FET3の閾値”T3は小さくなければならな
い。
Gate potential vGs-O volts or threshold value vT1. of MO8FETs 1 and 2. When lower than vT2, MO3F
ET1 and 2 are non-conductive, but the drain potential vDs
When becomes a high positive value, MO8FET3 becomes conductive and N regions 19 and 9 are at the same potential. N region 19 is metal electrode 2o
Yo! Since it is connected to the llP well 11, the P well 11 has the same potential as the source S. At this time, N area 9
Or 1o is emitter, P well 11 is base, substrate 1
The threshold value "T3" of MO8FET3 must be smaller than BvcEo of the parasitic transistor whose collector is "T3".

ドレイン電位vDsが寄生トランジスタのBvcEoに
達する以前にPウェルをソース電位に固定しておくため
である。同様に、MO8FET1および2の閾値vT1
.vT2は、N領域9,12,13゜7ペーゾ 1c間の横方向寄生トランジスタのBVoEoよりも低
い事が望ましい。この様に、閾値vT1.vT2および
vT3 と、縦および横方向寄生トランジスタのBvc
EOとの関係が設定されると、ゲート・ソース耐圧BV
Gsは、N領域9寸たは10とPウェル11間の接合耐
圧であり、ソース・ドレイン間耐圧BVDssは、Pウ
ェル11と基板1間の接合耐圧となる。
This is to fix the P well to the source potential before the drain potential vDs reaches the BvcEo of the parasitic transistor. Similarly, the threshold vT1 of MO8FETs 1 and 2
.. It is desirable that vT2 be lower than BVoEo of the lateral parasitic transistor between the N regions 9, 12, and 13°7peso 1c. In this way, the threshold vT1. vT2 and vT3 and Bvc of vertical and horizontal parasitic transistors
Once the relationship with EO is set, the gate-source breakdown voltage BV
Gs is the junction breakdown voltage between the N region 9 or 10 and the P well 11, and the source-drain breakdown voltage BVDss is the junction breakdown voltage between the P well 11 and the substrate 1.

上記のゲート15,16.18直下の絶縁膜14a、1
4b、14cはすべて同一で、本体MO8FETのゲー
ト絶縁膜と同一であってもよいが、一般にドレイン耐圧
は、ゲート・ソース間耐圧よりも高いので、ゲート18
には一番高い電圧が印加されるため、絶縁膜140はよ
り厚いことが望まれる。そのため、絶縁膜14Gには、
本体1vfO3FETの周辺に形成される厚いフィール
ド酸化膜(第2図では23がこれに相当する)または本
体MO3FETのゲートを被覆する気相成長絶縁膜(第
2図では24がこれに相当する)を用いる。
Insulating films 14a and 1 directly below the gates 15 and 16.
4b and 14c are all the same, and may be the same as the gate insulating film of the main body MO8FET, but since the drain breakdown voltage is generally higher than the gate-source breakdown voltage, the gate 18
Since the highest voltage is applied to the insulating film 140, it is desirable that the insulating film 140 be thicker. Therefore, in the insulating film 14G,
A thick field oxide film (23 corresponds to this in Fig. 2) formed around the main body 1vfO3FET or a vapor phase growth insulating film (24 corresponds to this in Fig. 2) covering the gate of the main body MO3FET is formed. use

寸だ、−ト記絶縁膜14a、14b、14c直下のチャ
ネルは、寄生トランジスタの耐圧以下の閾値をもつエン
ハンスメント型で良いので、デプレーション型にするだ
めの特別の不純物導入工程は不要である。
Since the channels directly under the insulating films 14a, 14b, and 14c may be of an enhancement type having a threshold value lower than the withstand voltage of the parasitic transistor, a special impurity introduction step for making them a depletion type is not necessary.

なお、前記の接続関係から明らかな如く、N領域12と
13は同一領域であってよく、また領域19は領域12
の一部分であってもよい。
Note that, as is clear from the connection relationship described above, N areas 12 and 13 may be the same area, and area 19 may be the same area as area 12.
It may be a part of.

以上、本体MO3FETがNチャネルの場合について述
べたがPチャネルの場合は導電型を逆にすれば良い0ま
た、NチャネルMO8FETの保護回路について述べた
が、Pチャネルの場合にも、導電型を変えれば適用出来
ることは勿論である。
Above, we have described the case where the main body MO3FET is N-channel, but in the case of P-channel, the conductivity type can be reversed.Also, although we have described the protection circuit for N-channel MO8FET, the conductivity type can also be changed in the case of P-channel. Of course, it can be applied by changing it.

発明の効果 以上述べた様に、ゲートへの正、負の印加電工において
、N領域9,10に対して、Pウェル11は常により低
電位側のN領域と同電位になっているので、順バイアス
されることがない。ゲート・ソース間捷たはソース・ド
レイン間の寄生トランジスタの耐圧はBVcEoでなく
BVcEo(ベース9ページ ・コレクタ間耐圧)になる。一般にB V CE○〈B
 V CB○であるから、本発明では、ゲート・ソース
間およびソース・ドレイン間の耐圧が高い。
Effects of the Invention As described above, when applying positive and negative voltages to the gate, the P well 11 is always at the same potential as the N region on the lower potential side with respect to the N regions 9 and 10. Never forward biased. The breakdown voltage of the parasitic transistor between the gate and source or between the source and drain is not BVcEo but BVcEo (base 9 page-collector breakdown voltage). Generally B V CE○〈B
Since V CB○, in the present invention, the withstand voltage between the gate and source and between the source and drain is high.

保護回路を導入することにより耐圧の低下という従来例
の問題を解決するのに、何ら工程の増加・変更を要しな
いことが本発明の特徴である。すべて、本体MO8FE
Tの製造工程で出来る。この事は、製造コストの増大を
招く事なく、高耐圧化が達せられることを意味している
A feature of the present invention is that it does not require any increase or change in the number of steps in order to solve the conventional problem of a reduction in breakdown voltage by introducing a protection circuit. All, main body MO8FE
Made in the T manufacturing process. This means that high voltage resistance can be achieved without increasing manufacturing costs.

これらにより、両極性入力の場合においても、高耐圧M
O8FETの製造が容易に実現され、高速化・高耐圧化
の両立が達成される。
As a result, even in the case of bipolar input, the high withstand voltage M
The O8FET can be manufactured easily, and both high speed and high voltage resistance can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のゲート保護回路の構造断面図、第2図は
本発明の一実施例によるゲート保護回路の構造断面図で
ある。 1・・・・・N型半導体基板、9 、10 、12 、
13゜19・・・・・・N領域、11・・・・・・Pウ
ェル、14a。 14b 、 14c・・・・・・ゲート絶縁膜、15,
16゜18・・・・・・ゲート、7,8,17,20,
22・ ・・10 −二′ 金属電極。
FIG. 1 is a structural sectional view of a conventional gate protection circuit, and FIG. 2 is a structural sectional view of a gate protection circuit according to an embodiment of the present invention. 1...N-type semiconductor substrate, 9, 10, 12,
13°19...N region, 11...P well, 14a. 14b, 14c...gate insulating film, 15,
16゜18...Gate, 7, 8, 17, 20,
22...10 -2' Metal electrode.

Claims (2)

【特許請求の範囲】[Claims] (1)第1導電型の半導体基板に形成された本体MO8
FET、上記FET一方の主面に形成された第2導電型
のウェル領域、上記ウェル領域内に形成された第1導電
型の第1.第2.第3および第4領域、上記第1と第2
領域間、上記第2と第3領域間および上記第1と第4領
域間を導通せしめうる位置に絶縁膜を介して上記主面上
に形成された第1.第2および第3ゲートを有し、上記
第1ゲートおよび第3領域は上記本体MO8FETのゲ
ートへ、上記第2ゲートおよび第1領域は上記本体MO
8FETのソースへ、上記第3ゲートは上記本体MO8
FETのドレインへ接続されていて、さらに上記第2領
域および第4領域が上記ウェルへ接続されてなることを
特徴とするMO8型半導体装置の入力保護回路。
(1) Main body MO8 formed on a first conductivity type semiconductor substrate
FET, a well region of a second conductivity type formed on one main surface of the FET, and a first well region of a first conductivity type formed in the well region. Second. the third and fourth regions, the first and second regions above;
A first. the first gate and the third region are connected to the gate of the main body MO8FET; the second gate and the first region are connected to the main body MO8FET;
To the source of 8FET, the third gate is connected to the main body MO8.
An input protection circuit for an MO8 type semiconductor device, characterized in that the input protection circuit is connected to the drain of a FET, and the second region and the fourth region are further connected to the well.
(2)第1および第2ゲート直下の絶縁膜は、本体2 
・く−シ′ MOSFETのゲート絶縁膜で形成されていて、第3ゲ
ート直下の絶縁膜はそれよりも厚い絶縁膜であって、す
べてのゲート直下のチャネルがエンハンスメント型であ
ることを特徴とする特許請求の範囲第1項記載のMO8
型半導体装置の入力保護回路。
(2) The insulating film directly under the first and second gates is
・It is formed of a gate insulating film of a MOSFET, the insulating film directly under the third gate is a thicker insulating film, and all channels directly under the gate are of an enhancement type. MO8 according to claim 1
Input protection circuit for semiconductor devices.
JP58233013A 1983-12-09 1983-12-09 Protective circuit for input to mos type semiconductor device Pending JPS60124873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58233013A JPS60124873A (en) 1983-12-09 1983-12-09 Protective circuit for input to mos type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58233013A JPS60124873A (en) 1983-12-09 1983-12-09 Protective circuit for input to mos type semiconductor device

Publications (1)

Publication Number Publication Date
JPS60124873A true JPS60124873A (en) 1985-07-03

Family

ID=16948444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58233013A Pending JPS60124873A (en) 1983-12-09 1983-12-09 Protective circuit for input to mos type semiconductor device

Country Status (1)

Country Link
JP (1) JPS60124873A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2631167A1 (en) * 1988-05-05 1989-11-10 Nat Semiconductor Corp INTEGRATED CIRCUIT WITH PROTECTION AGAINST ELECTROSTATIC DISCHARGE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2631167A1 (en) * 1988-05-05 1989-11-10 Nat Semiconductor Corp INTEGRATED CIRCUIT WITH PROTECTION AGAINST ELECTROSTATIC DISCHARGE

Similar Documents

Publication Publication Date Title
JP3158738B2 (en) High breakdown voltage MIS field-effect transistor and semiconductor integrated circuit
US5191395A (en) Mos type semiconductor device with means to prevent parasitic bipolar transistor
US20020113286A1 (en) Semiconductor device
EP0110331A2 (en) A MOS transistor
US5072267A (en) Complementary field effect transistor
JPH08130308A (en) Semiconductor device
JP3665367B2 (en) Semiconductor device
US5504361A (en) Polarity-reversal protection for integrated electronic circuits in CMOS technology
JPS61296770A (en) Insulated gate field effect type semiconductor device
JPS62237757A (en) Semiconductor integrated circuit and manufacture of the same
US5969391A (en) Complementary insulated-gate field-effect transistors having improved anti-latchup characteristic
JPH09139633A (en) Isolation gate type semiconductor device incorporating control circuit
JPS60124873A (en) Protective circuit for input to mos type semiconductor device
JPS6211017Y2 (en)
JP3211529B2 (en) Vertical MIS transistor
JPS63197374A (en) High voltage drift type drain mos transistor
JP4175750B2 (en) Insulated gate semiconductor device
JPH0817234B2 (en) Semiconductor integrated circuit
JP2728453B2 (en) Output circuit
JPH0553074B2 (en)
JPS6066473A (en) Input protective circuit for mos semiconductor device
JPH0258372A (en) Semiconductor circuit device
JP2816985B2 (en) Vertical MOS field-effect transistor
JPH06334120A (en) Semiconductor device
JP2576758B2 (en) Semiconductor element