JPS60116896A - Vacuum pump - Google Patents

Vacuum pump

Info

Publication number
JPS60116896A
JPS60116896A JP58224161A JP22416183A JPS60116896A JP S60116896 A JPS60116896 A JP S60116896A JP 58224161 A JP58224161 A JP 58224161A JP 22416183 A JP22416183 A JP 22416183A JP S60116896 A JPS60116896 A JP S60116896A
Authority
JP
Japan
Prior art keywords
housing
pump stage
impeller
stage
vacuum pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58224161A
Other languages
Japanese (ja)
Inventor
Minoru Taniyama
実 谷山
Masahiro Mase
正弘 真瀬
Yoshitsugu Tsutsumi
芳紹 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58224161A priority Critical patent/JPS60116896A/en
Publication of JPS60116896A publication Critical patent/JPS60116896A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • F04D17/168Pumps specially adapted to produce a vacuum

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

PURPOSE:To cool heat due to friction loss by a method wherein a siegbahn molecular pump stage and a centrifugal compression pump stage, arranged with a small impeller, are provided continuously in a housing from a suction port side to a discharging port side in the vacuum pump. CONSTITUTION:The siegbahn molecular pump stage 10 and the centrifugal compression pump stage 11 are provided on the same shaft sequentially and continuously in the housing 2 from the suction port 2A to the discharging port 2B and are provided with a plurality of vanes 14 radially on the surfaces thereof. A proper clearance 18 is formed between a final stage 11An and a housing side wall 2C. GAS, compressed by both pumps, is sucked by the small vanes 6 while atmospheric air, passed through a filter 17, is sucked from a clearance 13 to cool the heat generated by the friction of the disc of an impeller 11An. According to this method, the heat, generated by the friction of the disc of the impeller, may be excluded even if the pressure in the exhaust stage is near the atmospheric pressure.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は粘性流領域に属する真空から分子流領域に属す
る真空まで、すなわち大気圧(760トルク(Torr
))近傍から10−4トルク近傍までの広範囲にわたっ
て、単一駆動源のポンプで排気作用を連続的に行うのに
好適な真空ポンプに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention is applicable to applications ranging from a vacuum belonging to the viscous flow region to a vacuum belonging to the molecular flow region, that is, atmospheric pressure (760 Torr).
)) The present invention relates to a vacuum pump suitable for continuously performing an evacuation operation over a wide range of torque from around 10 −4 to around 10 −4 with a single drive source.

〔発明の背景〕[Background of the invention]

従来の真空ポンプ(特開昭51−38113号)は第1
図に示すように、I−1線を中心として左右対称に設け
られており、この右半部の構造は次のとおりである。す
なわち吸気口2Aと排気口2Bを有するハウジング2の
内壁に取付けられた固定板3B〜6Bと、そのハウジン
グ2内に軸受7を介して回転自在に支持された回転軸l
に取付けられた回転円板3Aおよび羽根車4A〜6Aか
らなる軸流ターボ分子ポンプ段3、ジーグバーン分子ポ
ンプ段4、遠心圧縮ポンプ段5および渦流圧縮ポンブ段
6を、前記吸気1コ2A側から排気口2B側に至る間の
ハウジング2内に順次に連設して構成さILでいる。
The conventional vacuum pump (Japanese Patent Application Laid-Open No. 51-38113) was the first
As shown in the figure, it is provided symmetrically with respect to line I-1, and the structure of this right half is as follows. That is, fixed plates 3B to 6B attached to the inner wall of the housing 2 having an intake port 2A and an exhaust port 2B, and a rotating shaft l rotatably supported within the housing 2 via a bearing 7.
An axial flow turbomolecular pump stage 3, a Siegbahn molecular pump stage 4, a centrifugal compression pump stage 5, and a vortex compression pump stage 6, each consisting of a rotating disk 3A and impellers 4A to 6A attached to the They are arranged in series in the housing 2 up to the exhaust port 2B side.

上記軸流ターボ分子ポンプ段3は、前記回転板3Δと固
定板3Bを交互に組合せて構成され、またシーブバーン
分子ポンプ段4は、前記円板状羽根車4Aと固定板4B
を交互に組合せて構成され、また遠心圧縮ポンプ段5は
、前記羽根車5Aとディフューザ固定板5Bを交互に組
合せて構成され、さらに渦流圧縮ポンプ段6は、前記羽
根車6Aと固定板6Bを交互に組合せて構成されている
The axial flow turbomolecular pump stage 3 is constructed by alternately combining the rotating plate 3Δ and the fixed plate 3B, and the sieve burn molecular pump stage 4 is composed of the disc-shaped impeller 4A and the fixed plate 4B.
The centrifugal compression pump stage 5 is constructed by alternately combining the impeller 5A and the diffuser fixing plate 5B, and the vortex compression pump stage 6 is composed of the impeller 6A and the fixing plate 6B. They are composed of alternating combinations.

一方、回転軸1は駆動タービン8を介して駆動さ社、こ
の駆動タービン8はハウジング2の側壁に設けられた空
気人口9Aと空気出口9Bに連通さばtている。
On the other hand, the rotating shaft 1 is driven through a drive turbine 8, and the drive turbine 8 communicates with an air outlet 9A and an air outlet 9B provided on the side wall of the housing 2.

上述した従来の真空ポンプでは、密閉室(図示せず)か
らの流体を吸気口2Aより吸入し、上記各ポンプ段3〜
6を介して排気口2Bから大気中へ排出する場合、この
排気は前記ポンプ段の圧縮作用により、濃密度になって
粘性流体となっている。
In the conventional vacuum pump described above, fluid is sucked from a closed chamber (not shown) through the intake port 2A, and the fluid is pumped through each of the pump stages 3 to 3.
When the exhaust gas is discharged into the atmosphere from the exhaust port 2B through the pump 6, the exhaust gas becomes dense and becomes a viscous fluid due to the compression action of the pump stage.

前記渦流圧縮ポンプ段6では、回転運動により圧力が上
昇するが、この際、羽根車6Aには円板摩擦損失を生ず
る。
In the vortex compression pump stage 6, the pressure increases due to rotational motion, but at this time, disc friction loss occurs in the impeller 6A.

粘性流領域においては、上記円板摩擦損失は上記(1)
式で表わされる。
In the viscous flow region, the disk friction loss is as described in (1) above.
It is expressed by the formula.

711L=CMζw” D″/64 ・−・・ (1)
ただし、C1:レイノルズ数により異なる定数ζ:流体
の密度(K g / rri’ )W:回転円板の角速
度(γa d / s )D二回転円板の直径(m) 上記(1)式から円板摩擦損失動力は、回転円板の5乗
に比例して増加することが判る。〜・方、渦流圧縮ポン
プ段5の圧力は、渦流羽根車6Δの直径の2乗および回
転数の2乗に比例して増加する。
711L=CMζw”D”/64 ・−・・(1)
However, C1: Constant that varies depending on the Reynolds number ζ: Fluid density (K g / rri') W: Angular velocity of the rotating disk (γad/s) D Diameter of the two-rotating disk (m) From the above equation (1) It can be seen that the disk friction loss power increases in proportion to the fifth power of the rotating disk. On the other hand, the pressure of the vortex compression pump stage 5 increases in proportion to the square of the diameter of the vortex impeller 6Δ and the square of the rotational speed.

渦流圧縮ポンプ段6の圧縮比を大にするためには、その
ポンプ段6の回転数を増加させるか、渦流羽根車6Aの
直径を太きくしなければならない。
In order to increase the compression ratio of the vortex compression pump stage 6, the rotational speed of the pump stage 6 must be increased or the diameter of the vortex impeller 6A must be increased.

しかるに回転軸1の危険速度の制限から、その回転数の
上限が決定されるため、渦流羽根車6Aの直径を大きく
しなければならない。
However, since the upper limit of the rotational speed of the rotating shaft 1 is determined by the critical speed limit of the rotating shaft 1, the diameter of the vortex impeller 6A must be increased.

このように渦流羽根車6Aの直径を大きくすると、円板
摩擦損失が増加するため、駆動装置は大容量化する欠点
がある。
When the diameter of the vortex impeller 6A is increased in this way, the disk friction loss increases, so the drive device has the disadvantage of increasing the capacity.

また、渦流圧縮ポンプ段6の前段までに、流体はかなり
圧縮されているので、体積流量は小さくなる。このため
渦流羽根車6Aの円板摩擦により発生する熱の移送は小
さいから、冷却が困難となる欠点がある。
Also, by the stage before the vortex compression pump stage 6, the fluid has been considerably compressed, so that the volumetric flow rate is small. Therefore, since the transfer of heat generated by the disk friction of the swirl impeller 6A is small, there is a drawback that cooling is difficult.

〔発明の目的〕[Purpose of the invention]

本発明は」二記のような従来の°欠点をきわめて簡単な
構造による除去することが可能な真空ポンプを提供する
ことを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a vacuum pump which can eliminate the following drawbacks of the conventional vacuum pump by using an extremely simple structure.

〔発明の概要〕[Summary of the invention]

本発明は」二記1」的を達成するため、吸気口と排気口
を有するハウジングの内壁に取付けられた固定円板また
は静翼と、前記ハウジング内に回転自在に支持された回
転軸に取イ1けられた・回転円板または動翼とからなる
シーブバーン分子ポンプ段またはΦ+I+流分子流分子
役21段前記ハウジング内壁に取付けられた固定円板と
前記回転軸に取付けられた羽根車とからなる遠心圧縮ポ
ンプ段を、前記吸入口側から吐出口側に至る間のハウジ
ング内に順次に連設してなる真空ポンプにおいて、前記
遠心圧縮ポンプ後の最終羽根車の背面に、任意数の小羽
根を放射状に配設し、前記回転軸の前記ハウジング貫通
部に適宜隙間を形成させたことを特徴とするものである
In order to achieve the objectives of "2.1", the present invention includes a fixed disk or stator vane attached to the inner wall of a housing having an intake port and an exhaust port, and a stationary vane attached to a rotating shaft rotatably supported within the housing. A sieve burn molecular pump stage or Φ+I+ flow molecular flow molecular pump stage consisting of a 1-keeled rotary disk or rotor blade, or a 21st stage consisting of a fixed disk attached to the inner wall of the housing and an impeller attached to the rotating shaft. In a vacuum pump comprising centrifugal compression pump stages successively arranged in a housing from the suction port side to the discharge port side, an arbitrary number of small The present invention is characterized in that the blades are arranged radially, and a gap is appropriately formed in the housing penetrating portion of the rotating shaft.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第2図は本実施例の断面を示すもので、I−1線を中心
として左右対称に設けられており、その右半部の構造は
下記のとおりである。
FIG. 2 shows a cross section of this embodiment, which is arranged symmetrically with respect to the I-1 line, and the structure of the right half is as follows.

第2図において、1は吸気口2Aと排気口2Bを有する
ハウジング2を貫通し、軸受7により回転自在に支持さ
れた回転軸で、その一端は駆動装置(図示せず)に連結
させている。その回転軸1のハウジング側壁2Cの貫通
部には、適当な隙間13が形成され、この隙間13の大
気側、すなわちハウジング側壁2Gの外側面にフィルタ
17が取付けられている。
In FIG. 2, reference numeral 1 denotes a rotating shaft that passes through a housing 2 having an intake port 2A and an exhaust port 2B, is rotatably supported by a bearing 7, and one end thereof is connected to a drive device (not shown). . A suitable gap 13 is formed in the passage of the rotating shaft 1 through the housing side wall 2C, and a filter 17 is attached to the atmosphere side of the gap 13, that is, to the outer surface of the housing side wall 2G.

前記吸気口2A側から排気口2B側に至る間のハウジン
グ2内には、ジーグパーン分子ポンプ段10および遠心
圧縮ポンプ段11が順次に連設されている。すなわち前
記ジーグバーン分子ポンプ段IOは、回転軸1に取付け
られた回転円板10Aと、ハウジング2の内壁に取付け
らJした固定円板10Bとを交互に配置して構成されて
いる。
A Siegpern molecular pump stage 10 and a centrifugal compression pump stage 11 are successively arranged in the housing 2 from the intake port 2A side to the exhaust port 2B side. That is, the Siegbahn molecular pump stage IO is constructed by alternately arranging rotating disks 10A attached to the rotating shaft 1 and fixed disks 10B attached to the inner wall of the housing 2.

しかも、その固定円板10Bは第3図(、)(b)に示
すように、回転円板(図示せず)に対向する面(第3図
(、)の右面)にら旋状溝10BIが設けられている。
Moreover, as shown in FIG. 3(,)(b), the fixed disk 10B has a spiral groove 10BI on the surface facing the rotating disk (not shown) (the right surface in FIG. 3(,)). is provided.

また、前記遠心圧縮ポンプ段11は、第4図(8)(b
)に示すように1表面に放射状に配置された複数個の羽
根14を有し、かつ回転軸lに取付けられた羽根車11
Aと、第4図(a)に示すようにハウジング2に取付け
られ、かつ前記羽根車11Aの背面(羽根14を設けな
い而)に対向する面に。
Further, the centrifugal compression pump stage 11 is configured as shown in FIG.
), an impeller 11 has a plurality of blades 14 arranged radially on one surface and is attached to a rotating shaft l.
A and a surface that is attached to the housing 2 and faces the back surface of the impeller 11A (without the blades 14), as shown in FIG. 4(a).

複数個のリターンチャンネル15を設けた固定板11B
とを交互に配置して構成されている。前記羽根車11A
群のうちの最終羽根車11Anは第5図(a)(b)に
示すように羽根車11Aと同様に表面に羽根14が放射
状に設けられると共に、背面に小羽根16が放射状に設
けられている。このような最終羽根車11Anとハウジ
ング側壁2Cとの間に、云うまでもなく適当な間隙18
が形成されている。
Fixed plate 11B provided with a plurality of return channels 15
It is constructed by arranging them alternately. The impeller 11A
As shown in FIGS. 5(a) and 5(b), the last impeller 11An in the group has blades 14 radially provided on the front surface and small blades 16 radially provided on the back surface, similarly to the impeller 11A. There is. Needless to say, an appropriate gap 18 is created between the final impeller 11An and the housing side wall 2C.
is formed.

次に上記のような構成からなる本実施例の作用について
説明する。
Next, the operation of this embodiment configured as described above will be explained.

気体は吸気口2Aより流入し、ついでジーグバーン分子
ポンプ段10の固定板10Bのら旋状溝10J31に流
入する。このジーグバーン分子ポンプ段10では、回転
円板10Aのドラグ作用により、気体は前記ら旋状溝】
OB1内を流動し、対向した固定板1t)Bのら旋状溝
10BIに流入する。気体はこのような過程を繰返して
、ジーグバーン分子ポンプ段10から遠心圧縮ポンプ段
11に流入する。この遠心圧縮ポンプ段11では、気体
は羽根車11群により昇圧されると同時に、遂次に圧縮
さALながら最終羽根車11Anを経て排気口2Bより
大気中に排出される。
Gas flows in through the intake port 2A and then into the helical groove 10J31 of the fixed plate 10B of the Siegbahn molecular pump stage 10. In this Siegbahn molecular pump stage 10, the gas is moved into the spiral groove by the drag action of the rotating disk 10A.
It flows in OB1 and flows into the spiral groove 10BI of the opposing fixed plate 1t)B. The gas flows from the Siegbahn molecular pump stage 10 to the centrifugal compression pump stage 11 by repeating this process. In this centrifugal compression pump stage 11, the gas is pressurized by the group of impellers 11, and at the same time is sequentially compressed AL and discharged into the atmosphere from the exhaust port 2B via the final impeller 11An.

この場合、上記最終羽根車11Anに設けた小羽根J6
により、フィルター17を経た外気は軸貫通部の隙間1
3から吸入される。この吸入外気は前記羽根車11 A
 r+の円板摩擦により生じた熱を冷却した後、遠心圧
縮ポンプ段11から流出する気体と一緒に排気Ll 2
13より排出される。
In this case, the small blade J6 provided on the final impeller 11An
Therefore, the outside air that has passed through the filter 17 is passed through the gap 1 of the shaft penetration part.
Inhaled from 3. This intake outside air is supplied to the impeller 11A.
After cooling the heat generated by the disk friction of r+, the exhaust Ll 2 is discharged together with the gas flowing out from the centrifugal compression pump stage 11.
It is discharged from 13.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、遠心圧縮ポンプ段
の最終羽根車に冷却専用の小羽根を設ける極めて簡単な
構造により、排気口の圧力が大気圧イ4近であっても羽
根車の円板摩擦により発生する熱を排除することができ
る。
As explained above, according to the present invention, the final impeller of the centrifugal compression pump stage has an extremely simple structure in which a small blade dedicated to cooling is provided, so that even if the pressure at the exhaust port is close to atmospheric pressure Heat generated by disc friction can be eliminated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の真空ポンプの断面図、第2図は本発明の
真空ポンプの一実施例を示す断面図、第3図(aHb)
は同実施例のジーグバーン分子ポンプ段の固定板の断面
図および側面図、第4図は示す断面図および同(a)の
■−■線断面図、第5図は(a)(b)は同実施例の遠
心圧縮ポンプ段の最終段部を示す断面図および同(a)
のm −III線断面図である。 ■・・・回転軸、2・・・ハウジング、1o・・・ジー
グバーン分子ポンプ段、IOA・・・回転円板または動
翼、10B・・・固定円板または静翼、11・・・遠心
圧縮ポンプ段、IIA・・・羽根車、11An・・・最
終羽根車、13・・・隙間、16・・・小羽根、17・
・・フィルター。 第3図 (0″) (と) 。ユ、第′ia トーI (4)
Fig. 1 is a sectional view of a conventional vacuum pump, Fig. 2 is a sectional view showing an embodiment of the vacuum pump of the present invention, and Fig. 3 (aHb).
4 is a cross-sectional view and a side view of the fixing plate of the Siegbahn molecular pump stage of the same example, FIG. A cross-sectional view showing the final stage of the centrifugal compression pump stage of the same example, and (a)
It is a sectional view taken along the line m-III of FIG. ■... Rotating shaft, 2... Housing, 1o... Siegbahn molecular pump stage, IOA... Rotating disk or moving blade, 10B... Fixed disk or stator blade, 11... Centrifugal compression Pump stage, IIA... impeller, 11An... final impeller, 13... gap, 16... small impeller, 17.
··filter. Figure 3 (0″) (and). Yu, th’ia To I (4)

Claims (1)

【特許請求の範囲】 1、吸気口と排気口を有するハウジングの内壁に取付け
られた固定円板または静翼と、前記ハウジング内に回転
自在に支持された回転軸に取付けられた回転円板または
動翼とからなるジーグバーン分子ポンプ段、または軸流
分子ポンプ段および前記ハウジング内壁に取付けられた
固定円板と前記回転軸に取付けられた羽根車とからなる
遠心圧縮ポンプ段を、前記吸気口側から排気口側に至る
間のハウジング内に順次に連設してなる真空ポンプにお
いて、前記遠心圧縮ポンプ段の最終羽根車の背面に、任
意数の小羽根を放射状に配設し、前記回転軸の前記ハウ
ジング貫通部に適宜隙間を形成させたことを特徴とする
真空ポンプ。 2、上記回転軸のハウジング貫通部に形成した適宜隙間
の大気側にフィルタを設けたことを特徴とする特許請求
の範囲第1項記載の真空ポンプ。
[Scope of Claims] 1. A fixed disk or stator vane attached to the inner wall of a housing having an intake port and an exhaust port, and a rotating disk or vane attached to a rotating shaft rotatably supported within the housing. A Siegbahn molecular pump stage consisting of a rotor blade, or an axial flow molecular pump stage and a centrifugal compression pump stage consisting of a fixed disk attached to the inner wall of the housing and an impeller attached to the rotating shaft, on the intake port side. In a vacuum pump that is sequentially arranged in a housing from the to the exhaust port side, an arbitrary number of small blades are arranged radially on the back of the final impeller of the centrifugal compression pump stage, and the rotary shaft A vacuum pump characterized in that an appropriate gap is formed in the housing penetrating portion. 2. The vacuum pump according to claim 1, further comprising a filter provided on the atmosphere side of an appropriate gap formed in the housing penetrating portion of the rotating shaft.
JP58224161A 1983-11-30 1983-11-30 Vacuum pump Pending JPS60116896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58224161A JPS60116896A (en) 1983-11-30 1983-11-30 Vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58224161A JPS60116896A (en) 1983-11-30 1983-11-30 Vacuum pump

Publications (1)

Publication Number Publication Date
JPS60116896A true JPS60116896A (en) 1985-06-24

Family

ID=16809483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58224161A Pending JPS60116896A (en) 1983-11-30 1983-11-30 Vacuum pump

Country Status (1)

Country Link
JP (1) JPS60116896A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247794A (en) * 1988-03-29 1989-10-03 Daikin Ind Ltd Combined vacuum pump
US5695316A (en) * 1993-05-03 1997-12-09 Leybold Aktiengesellschaft Friction vacuum pump with pump sections of different designs
CN104806535A (en) * 2015-03-26 2015-07-29 储继国 Complex radial flow pump, combined radial flow pump and air extraction system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247794A (en) * 1988-03-29 1989-10-03 Daikin Ind Ltd Combined vacuum pump
US5695316A (en) * 1993-05-03 1997-12-09 Leybold Aktiengesellschaft Friction vacuum pump with pump sections of different designs
CN104806535A (en) * 2015-03-26 2015-07-29 储继国 Complex radial flow pump, combined radial flow pump and air extraction system

Similar Documents

Publication Publication Date Title
US3936240A (en) Centrifugal-vortex pump
JPH037039B2 (en)
US5143511A (en) Regenerative centrifugal compressor
JPS5817357B2 (en) Multi-stage turbo compressor
JPH04224295A (en) Turbo-molecular pump
JPH0477160B2 (en)
JPS62113887A (en) Vacuum pump
US5244352A (en) Multi-stage vacuum pump installation
JP2007510853A (en) Multi-stage friction vacuum pump
JP2003322095A (en) Pumping stage for vacuum pump
JPS60116896A (en) Vacuum pump
US3748054A (en) Reaction turbine
JPH0786357B2 (en) Oil-free vacuum pump
JP2757922B2 (en) Centrifugal compressor
JPS6355396A (en) Turbo vacuum pump
JPS61226596A (en) Turbo particle pump
JP2501275Y2 (en) Jegbaan type vacuum pump
JP2536571B2 (en) Eddy current type turbo machine
JP2680156B2 (en) Vacuum pump
JPH02264196A (en) Turbine vacuum pump
JPS6385291A (en) Vacuum pump
JP4249946B2 (en) Improved vacuum pump
JPH0311193A (en) Vacuum pump
JP2003013880A (en) Turbo molecular pump
JP2808470B2 (en) Vacuum pump