JPS60112890A - Apparatus for gasification of coal or the like - Google Patents

Apparatus for gasification of coal or the like

Info

Publication number
JPS60112890A
JPS60112890A JP21943683A JP21943683A JPS60112890A JP S60112890 A JPS60112890 A JP S60112890A JP 21943683 A JP21943683 A JP 21943683A JP 21943683 A JP21943683 A JP 21943683A JP S60112890 A JPS60112890 A JP S60112890A
Authority
JP
Japan
Prior art keywords
oxygen
coal
nozzle
amount
gasification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21943683A
Other languages
Japanese (ja)
Other versions
JPH0423679B2 (en
Inventor
Hiroshi Miyadera
博 宮寺
Shinji Tanaka
真二 田中
Tomohiko Miyamoto
知彦 宮本
Sadao Takahashi
高橋 貞夫
Shuntaro Koyama
俊太郎 小山
Atsushi Morihara
淳 森原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21943683A priority Critical patent/JPS60112890A/en
Priority to FR8417785A priority patent/FR2560207A1/en
Priority to DE19843442824 priority patent/DE3442824A1/en
Publication of JPS60112890A publication Critical patent/JPS60112890A/en
Publication of JPH0423679B2 publication Critical patent/JPH0423679B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • C10J3/56Apparatus; Plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/50Fuel charging devices
    • C10J3/503Fuel charging devices for gasifiers with stationary fluidised bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/74Construction of shells or jackets
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/152Nozzles or lances for introducing gas, liquids or suspensions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0943Coke
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0946Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam

Abstract

PURPOSE:To promote the gasification reaction of char, by contracting the lower part of the fluidized layer column to decrease the diameter of the diffusion plate, and supplying an oxygen-containing gas through a feed nozzle to the column, thereby extending the combustion zone of char and increasing the temperature of the whole fluidized layer. CONSTITUTION:A fluidized layer gasification furnace 1 is furnished with a diffusion plate 8 at its bottom, and a coal-water slurry supplying nozzle 4 to inject coal 3, oxygen 10 and steam 11 simultaneously into the furnace is attached to the middle part of the fluidized layer 2. The inner diameter of the gasification furnace 1 is enlarged gradually from its bottom toward the upper part. The oxygen 5 used as the gasification agent and the steam 6 for dilution are supplied through the diffusion plate 8, and oxygen 10 and steam 11 are ejected through the coal-water slurry nozzle 4. The space tower velocity of the fluidizing particle is maintained at a proper level considering the amount of the gasification agent introduced under the diffusion plate 8, the amount of the gas ejected through the nozzle 4, and the content of water in the slurry medium. A desirable fluidized state can be attained by contracting the bottom part of the gasification furnace 1.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は石炭類をガス化するガス化装置に係り、特に酸
素とスチームを含有したガスによる部分酸化法で流動ガ
ス化するガス化装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a gasification apparatus for gasifying coal, and more particularly to a gasification apparatus for fluidized gasification using a partial oxidation method using a gas containing oxygen and steam.

〔発明の背景〕[Background of the invention]

石炭は最大の埋蔵量を有する化石燃料のため、石油代替
エネルギーとしてその利用が見直されている。特に取扱
いや環境保全の観点から流体エネルギーへの変換が要請
され、特にガス化は燃料ガス、化学原料用合成ガス、あ
るいは石油精製や石炭液化用の水素ガス、鉄鋼業用還元
ガス、さらに大きな用途としてガス化発電等巾広く活用
できる技術であり、その開発が重要視されている。
Since coal is a fossil fuel with the largest reserves, its use as an energy alternative to oil is being reconsidered. In particular, conversion to fluid energy is required from the viewpoint of handling and environmental protection.In particular, gasification can be used to produce fuel gas, synthesis gas for chemical raw materials, hydrogen gas for oil refining and coal liquefaction, reducing gas for the steel industry, and even larger applications. It is a technology that can be widely used in gasification power generation, etc., and its development is viewed as important.

ガス化には空気あるいは酸素と水蒸気を用いる部分酸化
法、水素を用いる水添ガス化法に大別されるが、水素は
チャーを水蒸気と反応せしめて製造するため部分酸化法
の変形例とみることもできる。一方反応型式から固定層
、流動層、噴流層。
Gasification can be roughly divided into partial oxidation methods that use air or oxygen and water vapor, and hydrogen gasification methods that use hydrogen. Hydrogen is produced by reacting char with water vapor, so it is considered a modification of the partial oxidation method. You can also do that. On the other hand, the reaction types are fixed bed, fluidized bed, and spouted bed.

溶融層等に分類される。特に流動層は固定層の欠点であ
る粉炭の使用が可能であシ、また炉内の粒子がガス流れ
により混合されるため温度が均一化しやすく炉内に低温
領域が生成しにくくなり、タール分解が促進されその発
生量が少なくなる利点がある。また使用する石炭の粒径
が小さく表面積が太きいため、反応速度が太きく処理量
の増大が可能であるという利点もある。
It is classified as a molten layer. In particular, the fluidized bed allows the use of powdered coal, which is a disadvantage of the fixed bed, and since the particles in the furnace are mixed by the gas flow, it is easier to equalize the temperature, making it difficult to form a low-temperature region in the furnace, and decomposing tar. This has the advantage of promoting and reducing the amount of generation. Furthermore, since the particle size of the coal used is small and the surface area is large, there is also the advantage that the reaction rate is large and the throughput can be increased.

しかし、流動層方式では、石炭中の灰分が溶融すると互
いに凝集して固まシ、塊状の灰分が生成し、いわゆるタ
リンカートラブルをひきおこし、ガス化炉の安定な運転
が不可能になる。一般的には、ガス化剤の酸素含有ガス
は多孔板等の分散板を介して炉内に吹き込まれるので、
これら吹き込み口の酸素濃度は高く、激しい発熱を伴う
炭素質の燃焼反応が起こる。このため局部的に高温領域
が発生し、石炭中の灰分が溶融状態になシやすい。
However, in the fluidized bed method, when the ash content in the coal melts, it coagulates with each other to form lumpy ash, which causes so-called talin car trouble, making stable operation of the gasifier impossible. Generally, the oxygen-containing gas of the gasifying agent is blown into the furnace through a distribution plate such as a perforated plate.
The oxygen concentration at these inlets is high and a carbonaceous combustion reaction occurs with intense heat generation. For this reason, a high temperature region is generated locally, and the ash content in the coal tends to become molten.

そこで、酸素濃度をある程度以下に抑えるため水蒸気を
過剰に供給し、局所的高温化を防止する方法がとられて
いる。まだ、分散板の形状を工夫して、分散板直上の粒
子運動を活発化し、反応による発熱をすみやかに拡散せ
しめてクリンカーの生成を低減する方法もとられている
Therefore, in order to suppress the oxygen concentration to a certain level or less, a method has been adopted in which water vapor is supplied in excess to prevent localized increases in temperature. However, methods are being used to reduce clinker production by modifying the shape of the dispersion plate to activate the movement of particles directly above the dispersion plate, thereby quickly dispersing the heat generated by the reaction.

一方、石炭ガス化炉は、処理量の向上やガス化効率の増
大、あるいは生成ガスの用途の面から、数十気圧という
加圧下で操業することが有利となる。しかし固体の石炭
を加圧系に送シ込むには特殊な工夫が必要であり、一般
にはガス化炉と同等以上の圧力に保持したホッパー内に
貯えた石炭を供給するロックホッパーシステムが採用さ
れている。このシステムにおいては常圧で石炭をホッパ
ーに充填し、それに加圧ガスを送り込んで昇圧し、ガス
化炉に供給するだめのホッパーに移しかえた後、再び減
圧して石炭を充填する、というサイクルを繰シ返すため
、単純ではあるが、ホッパーの加圧動力が大きく、切シ
換え弁の摩耗が著しく信頼性に乏しいという欠点がある
On the other hand, it is advantageous for a coal gasifier to operate under a pressure of several tens of atmospheres in terms of improving throughput, increasing gasification efficiency, or using the generated gas. However, special measures are required to feed solid coal into a pressurized system, and generally a lock hopper system is used, which supplies coal stored in a hopper maintained at a pressure equal to or higher than that of the gasifier. ing. In this system, coal is filled into a hopper at normal pressure, pressurized gas is pumped into it to increase the pressure, the system is transferred to the hopper that supplies the gasifier, and then the pressure is reduced again and the coal is filled. Although this method is simple, it has the disadvantage that the pressurizing power of the hopper is large and the switching valve is extremely worn, making it unreliable.

これに対し、粉体の石炭をスラリー化すれば、ポンプに
よる安定供給が可能になシ、輸送、供給面での取り扱い
は極めて容易になる。本発明者等はこれまで、石炭を石
油系重質油と混合してスラリー化し、加圧流動層ガス化
炉に供給して同時にガス化するというプロセスについて
検討し、ガス化炉をはじめ周辺技術に関し種々の提案を
行ってきた。加温下で石炭を重質油と混合すればスラリ
ー状となシボンプで輸送でき、これらを同時にガス化す
ることができる。また、石炭が粘結炭の場合においても
粘着による凝集塊の生成が抑制され、原料供給にとって
有利になるだけでなく、炭種の適合性の面からも有効で
あることを確認している。
On the other hand, if powdered coal is made into a slurry, it becomes possible to stably supply it with a pump, and it becomes extremely easy to handle in terms of transportation and supply. The present inventors have previously studied a process in which coal is mixed with petroleum-based heavy oil to form a slurry, supplied to a pressurized fluidized bed gasifier, and gasified at the same time. Various proposals have been made regarding this. If coal is mixed with heavy oil under heating, it can be transported as a slurry and both can be gasified at the same time. Furthermore, even when the coal is coking coal, the formation of agglomerates due to adhesion is suppressed, which is not only advantageous for raw material supply, but has also been confirmed to be effective in terms of compatibility with coal types.

原料事情によっては石油が高価であったシ、重質油はガ
ス化よりも軽質油に変換しだいケースもあるが、この場
合にはスラリー媒体として水の使用が可能である。しか
し水スラリーとしての石炭濃度は60〜75%が限界に
なり、25〜40%の水がガス化炉に供給されることに
なる。スラリー媒体としての水は炉内で蒸発するため多
大の熱量を吸収し、炉内温度が低下する。従ってロック
ホッパ一方式で石炭を乾式供給する場合に比べ、ガス化
剤としての酸素を過剰に供給しなければならなくなる。
Depending on the raw material situation, petroleum is expensive and heavy oil may be converted into light oil rather than gasified, but in this case water can be used as a slurry medium. However, the maximum coal concentration as a water slurry is 60 to 75%, and 25 to 40% of water is supplied to the gasifier. Water as a slurry medium evaporates in the furnace, absorbing a large amount of heat and lowering the temperature inside the furnace. Therefore, compared to the case where coal is dry-supplied using a single lock hopper, oxygen as a gasifying agent must be supplied in excess.

また酸素量に応じて希釈水蒸気量を増さないとクリンカ
ーが生成しゃすく々る。
Also, if the amount of dilution steam is not increased in accordance with the amount of oxygen, clinker will be formed.

このように、一般には石炭を水スラリーとして供給した
場合には、乾式供給時にくらべ、酸素と水蒸気の供給量
を増大させる必要があシ、ガス化効率(生成ガス発熱量
/石炭発熱量)は大巾に低下する欠点がある。そこで、
水スラリーをポンプで加圧系に供給し、一旦水を蒸発さ
せた後ガス化炉に送る方法、あるいは水にくらべ蒸発潜
熱がI」・さいベンゼン、トルエン、キシレンのような
軽質油留分を媒体として送る方法も提案されている。
Generally, when coal is supplied as a water slurry, it is necessary to increase the amount of oxygen and steam supplied compared to dry supply, and the gasification efficiency (generated gas calorific value/coal calorific value) is There is a drawback that it deteriorates drastically. Therefore,
Water slurry is supplied to a pressurized system using a pump, the water is evaporated, and then sent to a gasifier. A method of sending it as a medium has also been proposed.

しかし、これらはいずれもプロセスが複雑になり、効率
的なガス化を操作性よ〈実施することは困難と考えられ
る。
However, all of these methods involve complicated processes, and it is considered difficult to implement efficient gasification due to operability.

流動層反応器においては、流動化ガス(石炭ガス化炉の
場合にはガス化剤)はガス化炉底部に配置した分散板を
介して送り込む方式が一般的であるが、特開昭54−9
7605号公報に示されるように、ノズルから送り込む
方式も知られている。
In a fluidized bed reactor, the fluidizing gas (or gasifying agent in the case of a coal gasifier) is generally fed through a dispersion plate placed at the bottom of the gasifier. 9
As shown in Japanese Patent Application No. 7605, a method of feeding from a nozzle is also known.

このような方式を石炭ガス化炉に適用した場合、分散板
の微小な穴から吹き込む方式にくらべ、気泡が大きくな
ってこの気泡周辺の粒子の動きが悪くなった9、気泡内
での燃焼反応が激しくなって、分散板を用いた場合より
クリンカーが生成しやすく、むしろ多量の希釈用水蒸気
を必要とする可能性もある。また原料石炭類の吹き込み
口付近にガス化剤を挿入するとチャー〇ガス化よりも原
料の熱分解で生成するガスが優先的に燃焼し、同一の酸
素量を供給しても、未燃チャーの量が増し、ガス化効率
が低下する可能性がある。
When this method was applied to a coal gasifier, compared to the method of blowing through tiny holes in the dispersion plate, the bubbles became larger and the movement of particles around the bubbles became slower.9 The combustion reaction within the bubbles There is a possibility that clinker will be generated more easily than when using a dispersion plate, and that a large amount of diluting steam may be required. In addition, if a gasification agent is inserted near the inlet of raw coal, the gas generated by thermal decomposition of the raw material will be burned preferentially than the char gasification, and even if the same amount of oxygen is supplied, unburned char will burn. The amount may increase and the gasification efficiency may decrease.

以上のように、分散板を使用した流動層石炭ガス化炉で
は、クリンカーの生成を回避するために過剰の水蒸気を
希釈剤として供給する必要があシ、また、供給系を単純
化するために水を媒体として石炭をスラリー化すると、
ガス化炉内での水の蒸発や加熱に要する熱量が増大し、
炉内温度の低下とガス化効率の低下を避けられない。水
スラリーとして炉内に供給する場合でも希釈用水蒸気量
が低減できれば、ガス化効率の向上が期待でき、まだ水
スラリーではなく、石炭を乾式で供給しだシあるいは石
炭−重質油スラリー等として供給する場合においても、
クリンカーの生成なしに希釈水蒸気を低減できればガス
化効率の向上に有効である。
As described above, in a fluidized bed coal gasifier using a dispersion plate, it is necessary to supply excess steam as a diluent to avoid clinker formation, and to simplify the supply system. When coal is slurried using water as a medium,
The amount of heat required to evaporate and heat water in the gasifier increases,
A decrease in furnace temperature and gasification efficiency cannot be avoided. Even if water slurry is supplied into the furnace, if the amount of water vapor for dilution can be reduced, gasification efficiency can be expected to improve. Even when supplying
If dilution steam can be reduced without producing clinker, it will be effective in improving gasification efficiency.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した加圧流動層石炭ガス化炉の種
々の欠点を解決し、高効率な流動層ガス化装置を提供す
るにある。
An object of the present invention is to solve the various drawbacks of the pressurized fluidized bed coal gasifier described above and to provide a highly efficient fluidized bed gasifier.

〔発明の概要〕[Summary of the invention]

ガス化剤として供給する酸素と水蒸気の量や吹き込み位
置が、流動層ガス化炉内の温度、生成ガス量、ガス化効
率、及びクリンカー生成に対していかなる影響を与える
かについて、種々検討した結果、次の知見を得た。
The results of various studies on the effects of the amount and injection position of oxygen and steam supplied as gasifying agents on the temperature in the fluidized bed gasifier, the amount of gas produced, gasification efficiency, and clinker production. , we obtained the following findings.

(1)分散板のみから酸素を吹き込む場合は供給するガ
ス化剤(酸素+スチーム又は空気十スチーム)中の酸素
濃度が20 VO1%以上になるとクリンカーが生成し
やすくなる。これに対し、流動化状態にある流動層、す
なわち分散板等を経て供給されるガス化剤(酸素濃度2
0 yot%)によシ炉内粒子が流動化されている状態
の中に直接ガス化剤を吹き込む場合には、酸素濃度を4
0〜50 VOj係にしても、吹き込みノズルの周辺で
のクリンカー生成は認められなかった。これは分散板直
上の粒子運動にくらべ分散板上方の流動層内の粒子運動
が激しく、熱拡散が大きいためと考えられる。
(1) When oxygen is blown only from the dispersion plate, if the oxygen concentration in the supplied gasifying agent (oxygen + steam or air + steam) is 20 VO 1% or more, clinker tends to be generated. On the other hand, the gasifying agent (oxygen concentration 2
0 yot%) When injecting the gasifying agent directly into the fluidized state of the particles in the furnace, increase the oxygen concentration to 4%.
No clinker formation was observed around the blowing nozzle even at 0 to 50 VOj. This is thought to be due to the fact that the particle motion in the fluidized bed above the dispersion plate is more intense than the particle movement directly above the dispersion plate, and thermal diffusion is large.

(2)石炭−水スラリーを原料とする場合にはこの原料
スラリーに希釈用水蒸気を含まず酸素のみを他給しても
、原料供給ノズル付近でのクリンカー生成はなかった。
(2) When a coal-water slurry was used as a raw material, no clinker was generated near the raw material supply nozzle even if the raw material slurry did not contain diluent steam and only oxygen was separately supplied.

原料スラリー中の水分が希釈用水蒸気と同じ役割をする
ため、100%の酸素を′使用してもクリンカーが生成
しにくいものと考えられる。なお、このスラリー媒体の
水が水蒸気になるとして算出すると、50チ以上の酸素
濃度のガス化剤が吹き込まれていることになる。
Since the moisture in the raw material slurry plays the same role as the diluting steam, it is thought that clinker is difficult to form even if 100% oxygen is used. Note that if the water in this slurry medium is calculated as steam, it means that the gasifying agent with an oxygen concentration of 50 or more is blown into the slurry medium.

さらに、このように原料とガス化剤を同一のノズルから
吹き込むと、原料石炭の熱分解で生成する有用なメタン
等の可燃ガス成分が酸素と接触し優先的に燃焼・消失す
ることが懸念されたが、第1図に示すように、メタン量
あるいはメタンを含む炭化水素ガス(C1−C3)の総
量は流動層温度が支配的で、ノズルから吹き込む酸素の
有無による影響は少ないことが明らかになった。即ち、
・、ム印は原料と酸素を同一ノズルから、また、○、Δ
印は原料と酸素を別々のノズルから吹き込んだものであ
る。ノズルから吹き込まれた酸素は流動粒子であるチャ
ーの燃焼・ガス化に寄与し、したがって吹き込み部分の
流動層温度を上昇せしめ、原料の熱分解を促進し、ター
ル副生の抑制にも有効と考えられる。
Furthermore, if raw materials and gasifying agents are injected from the same nozzle in this way, there is a concern that useful combustible gas components such as methane produced by thermal decomposition of coking coal will come into contact with oxygen and be preferentially burned and dissipated. However, as shown in Figure 1, it is clear that the amount of methane or the total amount of hydrocarbon gas containing methane (C1-C3) is dominated by the fluidized bed temperature, and that the presence or absence of oxygen blown from the nozzle has little effect. became. That is,
・、Mu indicates that the raw material and oxygen are supplied from the same nozzle, and ○、Δ
The mark shows that the raw material and oxygen were blown into the container from separate nozzles. The oxygen blown from the nozzle contributes to the combustion and gasification of the char, which is a fluidized particle, and therefore increases the temperature of the fluidized bed at the blown part, promoting thermal decomposition of the raw material, and is thought to be effective in suppressing tar by-products. It will be done.

第2図は石炭−重質油混合原料をガス化した時の炭化水
素ガス収率を示した。石炭−重質油スラリーをガス化す
る場合には、ポンプで送られた原料を吹き込みノズル先
端で噴霧化しながら流動層内に供給する必要があシ、一
般には噴霧化剤に水蒸気が使用される。この噴霧用水蒸
気に酸素を混合したのが第2図の・印であるが、この場
合も上記と同様、酸素吹き込みによる炭化水素ガスの消
失はほとんど認められない。
Figure 2 shows the hydrocarbon gas yield when the coal-heavy oil mixed feedstock was gasified. When gasifying a coal-heavy oil slurry, it is necessary to feed the raw material fed by a pump into the fluidized bed while atomizing it at the tip of the nozzle, and generally steam is used as the atomizing agent. . In Fig. 2, oxygen is mixed with this atomizing steam, but in this case as well, almost no disappearance of hydrocarbon gas due to oxygen injection is observed, as in the case above.

なお、第1図、第2図において示しだように、炭化水素
ガス収率は温度に支配され、炭化水素ガス(CI−03
)の和は70′O〜800C,メタンは800C付近に
極太値がある。これは高温化にともない炭化水素分の切
断によるメタンの生成が活発になるが、さらに高温に々
るとメタンのスチームリフオーミングが促進され、メタ
ンが減少することを示している。
As shown in Figures 1 and 2, the hydrocarbon gas yield is controlled by temperature, and the hydrocarbon gas (CI-03
) is 70'O to 800C, and methane has a very thick value around 800C. This indicates that as the temperature increases, methane production increases due to the cutting of hydrocarbons, but as the temperature rises further, steam reforming of methane is promoted, resulting in a decrease in methane.

以上、(1)、 (2)によシ、酸素をノズルから吹き
込む方が分散板から吹き込む場合より酸素濃度が高くて
も、すなわちスチーム量が少なくても、クリンカーが生
成しに<<、シかも、原料供給口をガス化剤供給口と併
用してもメタン等の目的とする有用ガス成分の消失はほ
とんど認められず、むしろ吹き込み口周辺の流動化チャ
ーの燃焼・ガス化に寄与し温度上昇をもたらすので、原
料の熱分解を促進し、タール副生量の低減にも有効であ
ることが明らかになった、 このように、原料供給ノズルをガス化剤供給ノズルと併
用すると、次の利点があろう (1)原料を一定量処理する場合、ガス化剤を分散板の
みから吹き込む場合にくらべて、ノズルから吹き込む方
式を採用した方が、ノズルから吹き込んだ酸素量だけ分
散板から吹き込む酸素量を減少させることができ、その
分の希釈用水蒸気を低減できる。
In accordance with (1) and (2) above, even if the oxygen concentration is higher when oxygen is blown through the nozzle than when blown through the dispersion plate, that is, even if the amount of steam is small, clinker is not generated. However, even if the raw material supply port is used in conjunction with the gasifying agent supply port, there is almost no disappearance of target useful gas components such as methane, but rather it contributes to the combustion and gasification of the fluidized char around the injection port, and the temperature rises. It has been found that this is effective in accelerating the thermal decomposition of raw materials and reducing the amount of tar by-products.In this way, when the raw material supply nozzle is used in conjunction with the gasification agent supply nozzle, the following results can be achieved. Advantages (1) When processing a fixed amount of raw material, compared to blowing the gasifying agent only through the dispersion plate, it is better to blow the gasifying agent through the nozzle, since the amount of oxygen blown through the nozzle is blown through the dispersion plate. The amount of oxygen can be reduced, and the amount of water vapor for dilution can be reduced accordingly.

(11)水スラリーを扱う場合には、スラリー媒体の水
が局所加熱防止剤となるため、ノズル吹き込み酸素に新
たな希釈水蒸気を加える必要がない、必要がある場合で
も極めて少量でよい。また媒体の水が炉内で蒸発して粒
子の流動化ガスとしても寄与する。
(11) When dealing with a water slurry, the water in the slurry medium acts as a local heating inhibitor, so there is no need to add new diluting steam to the nozzle-blown oxygen, and even if it is necessary, it can be done in a very small amount. Water as a medium evaporates in the furnace and also serves as a fluidizing gas for the particles.

(Hi)石炭−重質油スラリーのように噴霧供給を必要
とする場合においては、噴霧用水蒸気中に酸素を加える
ことによシ、新たな希釈用水蒸気の添加を必要としない
。むしろこれら酸素は噴霧化剤としても作用するため、
噴霧用水蒸気を低減することも可能である。
(Hi) In cases where spray supply is required, such as coal-heavy oil slurry, by adding oxygen to the spraying steam, there is no need to add new diluting steam. Rather, these oxygens also act as atomizing agents, so
It is also possible to reduce the atomizing water vapor.

以上のように、ノズルからの酸素吹き込み法は分散板か
ら吹き込む方法にくらべてクリンカーを生成しにくいた
め、水蒸気量の低減が可能であり、ガス化効率の向上に
有効であるが、さらにノズル吹き込みの角度を検討した
結果、ガス化炉1内に旋回流を形成するように配向させ
るとさらにクリンカーが生成しにくくなることが明らか
になった。
As mentioned above, the method of blowing oxygen through a nozzle is less likely to generate clinker than the method of blowing oxygen through a dispersion plate, so it is possible to reduce the amount of water vapor and is effective in improving gasification efficiency. As a result of examining the angle of , it became clear that if the gasifier 1 is oriented so as to form a swirling flow, it becomes even more difficult to generate clinker.

すなわち、第3図及び第4図に示したように、ガス化剤
吹き込みノズルを炉径方向から90°ずらしかつ、炉中
心から45°ずらして4本配置すると、吹き込みガスに
よシこの部分に旋回流が生じ、流動粒子が上下方向のみ
ならず、周方向の速度も有するようになるだめ、粒子運
動がさらに活発化し、熱拡散が促進され、高酸素濃度で
もクリンカーが生成しにくくなるものと思われる。
In other words, as shown in Figs. 3 and 4, if four gasifying agent injection nozzles are arranged 90° from the furnace radial direction and 45° from the furnace center, the blown gas will flow into this area. As a swirling flow occurs and the fluidized particles have velocity not only in the vertical direction but also in the circumferential direction, particle motion becomes more active, heat diffusion is promoted, and clinker is difficult to form even at high oxygen concentrations. Seem.

また、上述(1)のように、ノズルからの酸素吹き込み
によシ分散板からの酸素と水蒸気を低減することが可能
になるが、塔径が同一の場合にはこれら分散板からのガ
ス化剤量が低減した分だけガス流速が速くなシ、この部
分の粒子運動も低下し、場合によっては流動化しなくな
る場合もある。このように粒子の運動量が減少すると酸
素濃度を低く保っても熱拡散せずクリンカーの生成に到
ることもあった。そこで、ガス化剤量の低減に見合って
塔径を縮小し、ガス流速は低下しないようにした結果、
良好な流動状態を保持しクリンカーの生成を避けられる
ことが明らかになった。
In addition, as mentioned in (1) above, it is possible to reduce oxygen and water vapor from the distribution plate by blowing oxygen from the nozzle, but if the column diameter is the same, the gasification from these distribution plates The gas flow rate becomes faster as the amount of agent is reduced, and particle motion in this area also decreases, and in some cases, fluidization may not occur. When the momentum of particles decreases in this way, even if the oxygen concentration is kept low, thermal diffusion may not occur and clinker may be formed. Therefore, as a result of reducing the column diameter in proportion to the reduction in the amount of gasifying agent and ensuring that the gas flow rate did not decrease,
It has become clear that a good fluidity state can be maintained and clinker formation can be avoided.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を図面によって説明するが、その
前に従来のガス化装置を第5図及び第6図にて説明する
。第5図は分散板8の下部からすてのガス化剤を供給す
る方式であシ、分散板8上でクリンカーを生成しやすく
、これを避けるためには分散板8から希釈用水蒸気を多
量に供給しなければならず、これにともないガス化効率
が低下する欠点がある。第6図はガス化剤を分散板8と
ともに数本のノズル12に分岐して流動層2内に直接供
給する方式であり、第5図よりもガス化効率は高められ
るが、分散板8からのガス化剤吹き込み量を低下させた
分だけガス流速が減少し、分散板8からのガス化剤中の
酸素濃度を少し高めるとすなわち水蒸気量を低減すると
、クリンカーが生成しやすくなる欠点があった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings, but before that, a conventional gasification apparatus will be explained with reference to FIGS. 5 and 6. Fig. 5 shows a method in which all of the gasifying agent is supplied from the bottom of the dispersion plate 8, which tends to generate clinker on the dispersion plate 8, and in order to avoid this, a large amount of diluting steam must be supplied from the dispersion plate 8. This has the disadvantage that the gasification efficiency decreases as a result. FIG. 6 shows a system in which the gasifying agent is branched into several nozzles 12 together with the dispersion plate 8 and is directly supplied into the fluidized bed 2. Although the gasification efficiency is higher than that in FIG. The gas flow rate decreases by the amount that the gasifying agent is blown into, and if the oxygen concentration in the gasifying agent from the dispersion plate 8 is slightly increased, that is, the amount of water vapor is reduced, clinker tends to form easily. Ta.

これに対し、第7図のガス化炉はこれら従来技術の欠点
を解決した本発明の一実施例を示しだものである。流動
層ガス化炉1の下部に分散板8を有し、流動層2の中段
部分に石炭3、酸素10、水蒸気11を同時に噴出する
石炭−水スラリー供給ノズル4を設置し、ガス化炉1は
底部から上部にむかってその内径を徐々に拡大した構造
のものである。ガス化剤の酸素5と希釈用水蒸気6は分
散板8から供給されるが、石炭−水スラリー供給ノズル
4からも前述したように酸素10、水蒸気11を吹き込
む。尚、7はチャー、灰分の排出口である。第7図のよ
うに、分散板8の下部から導入するガス化剤量やノズル
4からの吹き込みガス量とスラリー媒体の水の量を考慮
して流動粒子(チャー)の流動化開始速度Uゆfの3〜
5倍以上の空塔速度が維持できるようにガス化炉1底部
の塔径を絞ることによって良好な流動状態が得られ、分
散板8直上やノズル吹き込み部でのクリンカー生成が抑
制される。また石炭−水スラリー供給ノズル4付近での
媒体の水の蒸発にともなう温度低下も抑制される。また
これら石炭−水スラリー供給ノズル4を第3図のように
旋回流を形成するように配置すると、例えば石炭濃度6
5wt%の水スラリーIK2当、!to、40Kgの酸
素を吹き込んでも石炭−水スラリー供給ノズル4の先端
でのクリンカー生成は認められなかった。旋回流型に配
置せず中心方向に配置した場合、0.32Kg/に9−
水スラリー以上の酸素を供給すると石炭−水スラリー供
給ノズル4周辺にクリンカーが生成しやすかつたが、こ
れは旋回流型配置の場合にくらべ、ノズル4周辺での粒
子の動きが不活発なだめと思われる。
On the other hand, the gasifier shown in FIG. 7 shows an embodiment of the present invention which solves these drawbacks of the prior art. A dispersion plate 8 is provided at the bottom of the fluidized bed gasifier 1, and a coal-water slurry supply nozzle 4 that simultaneously spouts out coal 3, oxygen 10, and steam 11 is installed in the middle part of the fluidized bed 2. has a structure in which the inner diameter gradually increases from the bottom to the top. Oxygen 5 as a gasifying agent and water vapor 6 for dilution are supplied from the dispersion plate 8, and oxygen 10 and water vapor 11 are also blown from the coal-water slurry supply nozzle 4 as described above. In addition, 7 is a discharge port for char and ash. As shown in FIG. 7, the fluidization start speed U of the fluidized particles (char) is adjusted by considering the amount of gasifying agent introduced from the lower part of the dispersion plate 8, the amount of gas blown from the nozzle 4, and the amount of water in the slurry medium. f3~
By narrowing down the diameter of the column at the bottom of the gasifier 1 so that a superficial velocity of 5 times or more can be maintained, a good fluidization state is obtained, and clinker formation directly above the distribution plate 8 and at the nozzle blowing part is suppressed. Further, a temperature drop in the vicinity of the coal-water slurry supply nozzle 4 due to evaporation of water in the medium is also suppressed. Furthermore, if these coal-water slurry supply nozzles 4 are arranged to form a swirling flow as shown in FIG.
5wt% water slurry IK2 units! No clinker formation was observed at the tip of the coal-water slurry supply nozzle 4 even when 40 kg of oxygen was blown into the coal-water slurry supply nozzle. If it is not arranged in a swirling flow type but placed towards the center, 0.32Kg/9-
When more oxygen was supplied than the water slurry, clinker was easily generated around the coal-water slurry supply nozzle 4, but this was because the movement of particles around the nozzle 4 was less active than in the case of the swirl flow type arrangement. Seem.

上記の各タイプのガス化炉によるガス化試験成績を下表
に示す。
The table below shows the gasification test results using each type of gasifier mentioned above.

これら試験では国内の亜瀝青炭を60wt%含有する水
スラリーを原料とした。従来型の第5図のガス化炉での
比較例1では、酸素量0.7Kr/?−石炭(以下単位
同じ)、水蒸気量1.6ではクリンカーは生成しなかっ
たが、比較例2のように酸素量を0.9に増加すると分
散板上にクリンカーが生成した。ガス化効率(冷ガス効
率、生成ガス発熱量/原料発熱量)は各々43%、55
%と低く、メタン収率も6.2%、7.6%であった。
In these tests, water slurry containing 60 wt% of domestic sub-bituminous coal was used as the raw material. In Comparative Example 1 using the conventional gasifier shown in FIG. 5, the oxygen amount was 0.7 Kr/? - Coal (units are the same below), clinker was not generated when the water vapor amount was 1.6, but when the oxygen amount was increased to 0.9 as in Comparative Example 2, clinker was generated on the dispersion plate. Gasification efficiency (cold gas efficiency, generated gas calorific value/raw material calorific value) was 43% and 55%, respectively.
%, and the methane yields were also 6.2% and 7.6%.

一方、第6図での比較例3では比較例2と同様、酸素量
を0.9とし、そのうち分散板から0.6、原料ノズル
から0.3を供給し、水蒸気はノズルから供給せず、分
散板のみから1.6で供給した。この場合ガス化剤の酸
素、水蒸気の供給量は比較例2と同一条件であるが、ノ
ズルまわシも分散板上にもクリンカーは生成せず、また
原料供給ノズル付近の温度低下も少ないためガス化効率
も59チまで上昇した。
On the other hand, in Comparative Example 3 in Figure 6, the oxygen amount was set to 0.9 as in Comparative Example 2, of which 0.6 was supplied from the dispersion plate and 0.3 from the raw material nozzle, and water vapor was not supplied from the nozzle. , 1.6 from the distribution plate only. In this case, the supply amount of gasifying agent oxygen and water vapor is the same as in Comparative Example 2, but clinker is not generated on the nozzle rotation or the dispersion plate, and the temperature drop near the raw material supply nozzle is small. The conversion efficiency also increased to 59 inches.

しかし分散板からの水蒸気量を1.3に減じた(比較例
4)ところクリンカー生成が認められた。比較例2では
分散板からのガス化剤量は酸素0.9、水蒸気1.6、
すなわち酸素濃度24 VO1%でクリンカーが生成し
たのに対し、比較例4では酸素0.6、水蒸気1.3、
すなわち酸素濃度20.6votチでクリンカー生成が
認められた。このように第6図のガス化炉は第5図のガ
ス化炉にくらべ、同一水蒸気量(1,6Ky/Ky−石
炭)では多くの酸素を供給してもクリンカーは生成しな
いが、分散板からのガス化剤に限って見ると、第5図よ
り酸素供給量が減少した分、すなわちノズルから供給し
た酸素を差し引いた分だけ少ない酸素が分散板から吹き
込まれるので、その相当分だけ水蒸気量を減らせると考
えられたが、実際にはそれよりやや多い水蒸気量にしな
いとクリンカーが生成する。
However, when the amount of water vapor from the dispersion plate was reduced to 1.3 (Comparative Example 4), clinker formation was observed. In Comparative Example 2, the amount of gasifying agent from the dispersion plate was 0.9 oxygen, 1.6 water vapor,
That is, clinker was generated at an oxygen concentration of 24 VO 1%, whereas in Comparative Example 4, oxygen was 0.6, water vapor was 1.3,
That is, clinker formation was observed at an oxygen concentration of 20.6 vot. In this way, compared to the gasifier shown in Fig. 5, the gasifier shown in Fig. 6 does not produce clinker even if a large amount of oxygen is supplied with the same amount of steam (1.6 Ky/Ky - coal), but the dispersion plate Looking only at the gasifying agent from the gasifier, as shown in Figure 5, less oxygen is blown in from the dispersion plate by the amount of oxygen supplied by the amount reduced, that is, the amount of oxygen supplied from the nozzle is subtracted, so the amount of water vapor is reduced by the equivalent amount. It was thought that the amount of water vapor could be reduced, but in reality clinker would be generated unless the amount of water vapor was slightly higher than that.

これは、分散板から吹き込む酸素、水蒸気量を減少させ
た分だけ、この領域におけるガス流速が低下し、チャー
の流動化状態が悪くなるため、酸素濃度をやや低くしな
いとクリンカーが生成したものである。
This is because by reducing the amount of oxygen and water vapor blown in from the dispersion plate, the gas flow velocity in this region decreases, making the fluidization state of the char worse, so clinker is generated unless the oxygen concentration is lowered slightly. be.

これに対し本発明の第7図のガス化炉においては、実施
例1に示したように、比較例3と同じ酸素/石炭比0.
9において、分散板から0.5、原料スラリーノズルか
ら0.4に分割して供給した時、分散板からの水蒸気量
(水蒸気/石炭)を0.9に低下させてもクリンカーは
生成しなかった。比較例2,4に較べ水蒸気量は60〜
45チ低減されるため、炉内温度も1000以上上昇し
、ガス化効率が約10%も上昇していることが明らかで
ある。
On the other hand, in the gasifier of the present invention shown in FIG. 7, as shown in Example 1, the oxygen/coal ratio is 0.
In 9, when the water was divided into 0.5 from the dispersion plate and 0.4 from the raw material slurry nozzle, clinker was not generated even if the amount of steam from the dispersion plate (steam/coal) was reduced to 0.9. Ta. Compared to Comparative Examples 2 and 4, the amount of water vapor is 60~
It is clear that because the temperature is reduced by 45 degrees, the temperature inside the furnace also increases by more than 1000 degrees, and the gasification efficiency increases by about 10%.

実施例2では原料スラリーノズルからの酸素供給割合を
増し、分散板からの酸素を減じ、その分に相当する分散
板からの水蒸気を下げたが、やけシフリンカ−は生成せ
ず、また水蒸気量をさらに減少させた分だけ炉内温度は
高まυガス化効率も向上する。
In Example 2, the oxygen supply rate from the raw material slurry nozzle was increased, the oxygen from the dispersion plate was decreased, and the water vapor from the dispersion plate was reduced by that amount, but no burnt linker was generated and the amount of water vapor was reduced. Furthermore, the temperature inside the furnace increases by the amount that is reduced, and the υ gasification efficiency also improves.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、石炭を流動層でガス化するにあたシ、
流動層下部塔径を絞って分散板径を小さくシ、上部の原
料供給ノズル、あるいは別ノズルを設け、これらからガ
ス化剤の酸素含有ガスを供給することによシ、流動粒子
であるチャーの燃焼領域が拡大し、局部的高温化が抑制
され、流動層全体の温度を高めることができる。これに
よりチャーのガス化反応が促進され、また生成ガスの顕
熱となる熱量も低下するため、ガス化効率の向上に寄与
するとともに、水蒸気を発生させるためのエネルギー消
費量も大巾に低減できる。しかも、このようなノズル吹
き込み装置は、石炭を水スラリーとして供給する場合に
は酸素を単独で供給でき、石炭を重質油等でスラリー化
して供給する場合には噴霧用の水蒸気と混合すればよい
ので、ノズルから供給する酸素を希釈するだめの水蒸気
は実質的には不要になる。また石炭を乾式でガス化炉に
供給する場合には酸素を水蒸気で希釈する必要があるが
、分散板から酸素を導入する場合に比べれば少ない水蒸
気量でよい。
According to the present invention, when coal is gasified in a fluidized bed,
By reducing the diameter of the lower column of the fluidized bed to reduce the diameter of the dispersion plate, and by providing a raw material supply nozzle at the upper part or another nozzle and supplying the oxygen-containing gas of the gasifying agent from these, char, which is a fluidized particle, can be produced. The combustion area is expanded, localized temperature increase is suppressed, and the temperature of the entire fluidized bed can be increased. This accelerates the gasification reaction of char and also reduces the amount of heat that becomes sensible heat in the produced gas, contributing to improved gasification efficiency and significantly reducing energy consumption to generate steam. . Moreover, such a nozzle blowing device can supply oxygen alone when coal is supplied as a water slurry, and when supplying coal as a slurry with heavy oil etc., it can be mixed with water vapor for spraying. Therefore, water vapor to dilute the oxygen supplied from the nozzle is substantially unnecessary. Furthermore, when coal is supplied to a gasifier in a dry manner, it is necessary to dilute oxygen with steam, but the amount of steam required is smaller than when oxygen is introduced from a dispersion plate.

まだ、石炭類とガス化剤を一緒に流動層内に噴出する効
果として、原料供給ノズル付近での粘着現象によるコー
キングトラブルに対する抑制作用がある。例えば、石炭
を重質油と混合したスラリーを供給する場合、高圧化に
よシガス化炉単位容積当シの処理量を増大せしめること
ができるが、供給ノズル1本当りの負荷量が増すとノズ
ル周迎辺の流動層温度が低下し、湿潤した粒子が凝集し
やすく、粗粒を生成したシ、噴霧対向壁側に湿った状態
で衝突し、カーボン状塊状物を形成しやすい欠点があっ
た。このような条件でも、I]J霧水蒸気に酸素を混入
すると、原料供給ノズル周辺の流動チャーが燃焼し温度
低下が抑えられるだめ、湿潤状態がほとんどなくなり、
上記のようなコーキングトラブルを回避するのに有効で
ある。
However, the effect of ejecting coal and gasifying agent together into the fluidized bed is to suppress coking troubles caused by adhesion near the raw material supply nozzle. For example, when supplying a slurry made by mixing coal with heavy oil, it is possible to increase the throughput per unit volume of the sintering furnace by increasing the pressure, but as the load per supply nozzle increases, the nozzle The temperature of the fluidized bed in the surrounding area decreased, and the wet particles tended to aggregate, producing coarse particles, and collided with the wall facing the spray in a wet state, resulting in the formation of carbon-like lumps. . Even under these conditions, if oxygen is mixed into the I]J fog steam, the fluidized char around the raw material supply nozzle will burn, suppressing the temperature drop, and the wet state will almost disappear.
It is effective in avoiding the caulking troubles mentioned above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は石炭−水スラリーを流動層でガス化した時の炭
化水素ガス収率に及ぼす温度及びガス化剤吹き込み法の
影響を示した線図、第2図は石炭−重質油スラリーを流
動層でガス化した場合における第1図と同様な線図、第
3図はガス化剤をノズルから吹き込む場合のノズル配置
の一例を示した図、第4図は第3図のA−A断面図、第
5図は分散板のみからガス化剤を供給する従来のガス化
炉概略図、第6図は第5図と同様な針形状で原料供給ノ
ズルとは別のノズルからのガ哀化剤を噴出するようにし
た従来のガス化炉概略図、第7図は本発明の一実施例を
示す石炭類ガス化炉の概略図である。 1・・・ガス化炉、2・・・流動層、3・・・石炭、4
・・・石炭−水スラリー供給ノズル、5.10・・・酸
素、6゜11・・・水蒸気、8・・・分散板。 代理人 弁理士 高橋明夫 goo 700 &(110900 反1良;シ量度 (°C) −第2図 乙Oo 700 8oo 9o。 父罠蒼度(・C) 箭3(2]
Figure 1 is a diagram showing the effects of temperature and gasifying agent injection method on hydrocarbon gas yield when coal-water slurry is gasified in a fluidized bed, and Figure 2 is a diagram showing the effects of temperature and gasifying agent injection method on the hydrocarbon gas yield when coal-water slurry is gasified in a fluidized bed. A diagram similar to Figure 1 in the case of gasification in a fluidized bed, Figure 3 is a diagram showing an example of the nozzle arrangement in the case of blowing the gasifying agent from the nozzle, and Figure 4 is a diagram showing A-A in Figure 3. 5 is a schematic diagram of a conventional gasifier that supplies gasifying agent only from a dispersion plate, and FIG. 6 is a needle-shaped one similar to that shown in FIG. FIG. 7 is a schematic view of a coal gasifier according to an embodiment of the present invention. 1... Gasifier, 2... Fluidized bed, 3... Coal, 4
Coal-water slurry supply nozzle, 5.10 Oxygen, 6°11 Steam, 8 Dispersion plate. Agent Patent attorney Akio Takahashi goo 700 & (110900 anti-1 good; quantity degree (°C) - Figure 2 Oo 700 8oo 9o. father trap blue degree (・C) 箭 3 (2)

Claims (1)

【特許請求の範囲】[Claims] 1、底部から上部にむかうにしたがって次第にその内径
が大きくなるように形成された流動層のガス化炉と、こ
のガス化炉の下部から酸素含有ガス化剤を炉内に吹き込
むノズルと、このノズルより上方のガス化炉下部に位置
し、ノズルから噴出されたガス化剤を流動層内に噴出す
る分散板と、石炭類と酸素含有ガス化剤とを一緒に流動
層内に噴出する流動層中段位置に設けられたノズルとよ
り構成したことを特徴とする石炭類ガス化装置。
1. A fluidized bed gasifier that is formed so that its inner diameter gradually increases from the bottom to the top, a nozzle that blows an oxygen-containing gasifying agent into the furnace from the bottom of the gasifier, and this nozzle. A dispersion plate located at the lower part of the gasifier above the gasifier, which spouts the gasifying agent ejected from the nozzle into the fluidized bed, and a fluidized bed, which jets the coal and oxygen-containing gasifying agent together into the fluidized bed. A coal gasification device characterized by comprising a nozzle provided in a middle position.
JP21943683A 1983-11-24 1983-11-24 Apparatus for gasification of coal or the like Granted JPS60112890A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP21943683A JPS60112890A (en) 1983-11-24 1983-11-24 Apparatus for gasification of coal or the like
FR8417785A FR2560207A1 (en) 1983-11-24 1984-11-22 Fluidised bed gasifying reactor
DE19843442824 DE3442824A1 (en) 1983-11-24 1984-11-23 Device for gasifying carbonaceous feedstock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21943683A JPS60112890A (en) 1983-11-24 1983-11-24 Apparatus for gasification of coal or the like

Publications (2)

Publication Number Publication Date
JPS60112890A true JPS60112890A (en) 1985-06-19
JPH0423679B2 JPH0423679B2 (en) 1992-04-22

Family

ID=16735370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21943683A Granted JPS60112890A (en) 1983-11-24 1983-11-24 Apparatus for gasification of coal or the like

Country Status (3)

Country Link
JP (1) JPS60112890A (en)
DE (1) DE3442824A1 (en)
FR (1) FR2560207A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113025382A (en) * 2021-02-04 2021-06-25 杨建平 Radiation waste pot, gasification furnace comprising same and gasification method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5772708A (en) * 1995-03-17 1998-06-30 Foster Wheeler Development Corp. Coaxial coal water paste feed system for gasification reactor
ES2183662B1 (en) * 1999-05-14 2003-12-16 Kemestrie Inc GASIFICATION REACTION CONTAINER AND CORRESPONDING PROCEDURE
ES2176127T1 (en) * 1999-05-14 2002-12-01 Kemestrie Inc PROCEDURE AND APPLIANCE FOR WASTE GASIFICATION.
DE102008055957B4 (en) * 2008-11-05 2010-09-02 Highterm Research Gmbh Fluidized bed reactor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD26337A (en) *
DE1074803B (en) * 1960-02-04 Badische Anilin- &. Soda-Fabrik Aktiengesellschaft, Ludwigshafen/Rhein Process for generating fuel gas by gasifying finely divided solid or liquid fuels and / or by splitting gaseous fuels in a fluidized bed
DE496343C (en) * 1928-02-10 1930-04-22 I G Farbenindustrie Akt Ges Gas generator for the production of flammable gases from grainy fuels, possibly containing dust

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113025382A (en) * 2021-02-04 2021-06-25 杨建平 Radiation waste pot, gasification furnace comprising same and gasification method

Also Published As

Publication number Publication date
FR2560207A1 (en) 1985-08-30
JPH0423679B2 (en) 1992-04-22
DE3442824A1 (en) 1985-06-05

Similar Documents

Publication Publication Date Title
JP6594206B2 (en) Second stage gasifier in staged gasification
US8920736B2 (en) Loop seal for recycling solids from a cyclone and fluidized bed reactor and method using the same
EP2380949A1 (en) High-temperature gasification process using biomass to produce synthetic gas and system therefor
US20150090938A1 (en) Method and Device for the Entrained Flow Gasification of Solid Fuels under Pressure
CN107177384B (en) Catalytic gasification device, system and method
JPH0143799B2 (en)
US4946475A (en) Apparatus for use with pressurized reactors
CN86108131A (en) Two-stage coal gasification process
CN101845326B (en) Spiral-flow melting pond gasifier
KR20110139243A (en) Process and apparatus for utilizing the enthalpy of a synthesis gas by means of additional and post-gassing of renewable fuels
CN201046953Y (en) Circulating fluidized bed gas generating furnace
CN104611063A (en) Entrained-bed gasifier
US4278445A (en) Subsonic-velocity entrained-bed gasification of coal
WO2011129192A1 (en) Coal gasification system and coal gasification method
JP6637614B2 (en) Two-stage gasifier and gasification process with raw material flexibility
JPS60112890A (en) Apparatus for gasification of coal or the like
Liang et al. Gasification of preheated coal: Experiment and thermodynamic equilibrium calculation
KR101522213B1 (en) Gasifying apparatus and gasifying method
JPS5832196B2 (en) Coal gasification method
EP0205238B1 (en) Process and apparatus for use with pressurized reactors
US20230203389A1 (en) Method for gasification of carbonaceous feedstock and device for implementing same
JPS59140291A (en) Gasification of pulverized coal under pressure
CN107916140A (en) Recirculating fluidized bed air flow bed combined vaporizing method and device
US9561483B2 (en) Process and reactor for producing synthesis gas
JPH11302665A (en) Gasification method using biomass and fossil fuel