JPS6011048A - Air-conditioner - Google Patents

Air-conditioner

Info

Publication number
JPS6011048A
JPS6011048A JP58119326A JP11932683A JPS6011048A JP S6011048 A JPS6011048 A JP S6011048A JP 58119326 A JP58119326 A JP 58119326A JP 11932683 A JP11932683 A JP 11932683A JP S6011048 A JPS6011048 A JP S6011048A
Authority
JP
Japan
Prior art keywords
motor
outdoor fan
compressor
capacitor
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58119326A
Other languages
Japanese (ja)
Inventor
Nobuo Kawai
信夫 川合
Hitoshi Konemura
仁 古根村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58119326A priority Critical patent/JPS6011048A/en
Publication of JPS6011048A publication Critical patent/JPS6011048A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To contrive the torque increase as well as the input current reduction of a compressor motor upon overload of room heating and permit the always stabilized operation of the compressor by a method wherein an operation capacitor for an outdoor fan motor is conncted in parallel to the operation capacitor for the compressor motor when the operation of the outdoor fan is stopped upon the overload of room heating. CONSTITUTION:The temperature of an indoor heat exchanger 5 is being detected by an indoor heat exchanger temperature sensor 15 upon room heating operation and when the detected temperature has become higher than a predetermined value, a main control unit 12 dicides that the operation is brought into an overload condition and puts off a relay contact 12c. When the relay contact 12c is put OFF, the operation of the outdoor fan motor 6m is stopped. According to this method, the reduction of load may be contrived. The operation of relay 17 is also stopped simultaneously with the OFF of the relay contact 12c and the always closed side of the contact 17a is closed to connect the operation capacitor 18 in parallel to the operation capacitor 19. As a result, the operation capacitors 18, 19 are thrown into the compressor motor 1m.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、圧縮機およびファンモータの動力源として
それぞれ単相誘導モータを用いる空気調和機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an air conditioner that uses single-phase induction motors as power sources for a compressor and a fan motor, respectively.

〔発明の技術的背景〕[Technical background of the invention]

従来、商用交流電源を用いる家庭用のヒートヂンプ式空
気調和機にあっては、圧縮機およびファンモータの動力
源としてそれぞれ単相誌導モータを用いるものがある。
2. Description of the Related Art Conventionally, some home heat pump air conditioners using a commercial AC power source use single-phase induction motors as power sources for a compressor and a fan motor, respectively.

この場合、各モータには起動兼用の運転コンデンサをそ
れぞれ接続している。
In this case, each motor is connected to an operating capacitor that also serves as a starting capacitor.

ところで、このような空気調和機においては、暖房運転
時、高圧側圧力あるいは室内熱交温度を検知して負荷の
状態を監視しており、過負荷状態になると室外ファンの
運転を停止し、負荷の低減を計るようにしている。すな
わち、これは、過負荷状態になると圧縮機のモータ(以
下、圧縮機モータと称す)がトルク不足を生じてブレー
クダウンしたシ、圧縮機モータの入力′電流が犬きくな
ってしまうからである。
By the way, in such air conditioners, during heating operation, the load condition is monitored by detecting the high pressure side pressure or the indoor heat exchanger temperature, and when an overload condition occurs, the operation of the outdoor fan is stopped and the load is We are trying to reduce this. In other words, this is because when an overload condition occurs, the compressor motor (hereinafter referred to as the compressor motor) will break down due to insufficient torque, and the input current of the compressor motor will become too high. .

しかしながら、風が強い場合、たとえ室外ファンの運転
を停止しても、室内熱交換器の熱交換量を減らすことが
できず、負荷を低減できなくなる。このため、結局は上
述したような問題を引き起こすことが多く、圧縮機の安
定運転が困難であった。
However, when the wind is strong, even if the operation of the outdoor fan is stopped, the amount of heat exchanged by the indoor heat exchanger cannot be reduced, and the load cannot be reduced. As a result, problems such as those described above often occur, making stable operation of the compressor difficult.

〔発明の目的〕[Purpose of the invention]

この発明は上記のような事情に鑑みてなされたもので、
その目的とするところは、暖房過負荷時において、圧縮
機モータのトルク増大並びに入力電流低減を図ることが
でき、圧縮機の常に安定した運転を可能とする空気調和
機を提供することにある。
This invention was made in view of the above circumstances,
The purpose is to provide an air conditioner that can increase the torque of the compressor motor and reduce the input current during heating overload, and that enables stable operation of the compressor at all times.

〔発明の概要〕[Summary of the invention]

この発明は、運転コンデンサの容量が大きい程、単相誘
導モータのトルクが大きく、しかも入力電流が小さくて
済むという特性に着目し、暖房過負荷時に室外ファンの
運転を停止したとき、その室外ファンモータ用の運転コ
ンデンサを圧鰯機モータ用の運転コンデンサに対して並
列に接続するようにしたものである。
This invention focuses on the characteristic that the larger the capacity of the operating capacitor, the larger the torque of the single-phase induction motor, and the smaller the input current. The operating capacitor for the motor is connected in parallel to the operating capacitor for the sardine machine motor.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例について図面を参照して説明
する。
An embodiment of the present invention will be described below with reference to the drawings.

まず、単相誘導モータの回転数−トルク特性および負荷
−入力端子特性をそれぞれ運転コンデンサの容量をパラ
メータとして第1図および第2図に示す。すなわち、運
転コンデンサの容量が大きいとトルクも大きくなる。ま
た、負荷が小さい状態では運転コンデンサの容量が小さ
い方が入力電流を小さくできるが、負荷が大きい状態で
は運転コンデンサの容量が大きい方が入力電流を小さく
できる。
First, the rotation speed-torque characteristic and load-input terminal characteristic of a single-phase induction motor are shown in FIGS. 1 and 2, respectively, using the capacity of the operating capacitor as a parameter. That is, the larger the capacity of the operating capacitor, the larger the torque. Further, when the load is small, the smaller the capacity of the operating capacitor, the smaller the input current, but when the load is larger, the larger the capacity of the operating capacitor, the smaller the input current can be.

しかして、第3図に示すように、圧縮機1゜四方弁2.
室外熱交換器3.減圧装置たとえは膨張弁4.室内熱交
換器5などが順次連通されてヒートポンプ式冷凍サイク
ルが構成される。
As shown in FIG. 3, the compressor 1° four-way valve 2.
Outdoor heat exchanger 3. Pressure reducing device (Example: expansion valve) 4. The indoor heat exchanger 5 and the like are successively connected to form a heat pump type refrigeration cycle.

この場合、冷房運転時は図示実線矢印の方向に冷媒が流
れ、暖房運転時は四方−7P2が切換作動することによ
シ図示破線矢印の方向に冷媒が流れる。そして、室外熱
交換器3の近傍には室外ファン6が配設され、室内熱交
換器5の近傍には室内ファン7が配設される。
In this case, during the cooling operation, the refrigerant flows in the direction of the solid arrow shown in the figure, and during the heating operation, the refrigerant flows in the direction of the broken line arrow as shown by the switching operation of the four-way -7P2. An outdoor fan 6 is arranged near the outdoor heat exchanger 3, and an indoor fan 7 is arranged near the indoor heat exchanger 5.

第4図は制御回路である。10は商用交流電源で、この
電源10にはトランスll’ff介して主制御部12が
接続される。この主制御部12は、マイクロコンピュー
タおよび各種リレーなどから成シ、運転操作部13から
の指令、室内温朋センサ14の出力および室内熱交温度
センサ15の出力などに応じてリレー接点12a。
FIG. 4 shows the control circuit. 10 is a commercial AC power source, and a main control section 12 is connected to this power source 10 via a transformer ll'ff. The main control section 12 is composed of a microcomputer, various relays, etc., and operates the relay contacts 12a according to commands from the operation section 13, the output of the indoor temperature sensor 14, the output of the indoor heat exchanger temperature sensor 15, etc.

12b、12c、12dを制御するものである〇しかし
て、電源10にはリレー接点12aを介して室内ファン
モータ(単相帥導モータ)。
12b, 12c, and 12d. 〇The power source 10 is connected to an indoor fan motor (single-phase current motor) via a relay contact 12a.

7mの主巻線Mが接続され、その主巻線Mには起動兼用
の運転コンデンサ16’ft介して補助巻線Aが並列に
接続される。さらに、電源10にはリレー接点12bf
:介して前記四方弁2が接続される。また、電源10に
はリレー接点12cを介して室外ファンモータ6mの主
巻線Mおよびリレー17の励磁コイル17tがそれぞれ
接続され、その主巻線Mにはリレー接点77aの常開側
および起動兼用の運転コンデンサ18を直列に介して補
助巻線Aが接続される。さらに、電源10にはリレー接
点12dを介して圧縮機モータ1mの主巻線Mが接続さ
れ、その主巻線MKは起動兼用の運転コンデンサJ9を
介して補助巻線Aが接続される。そして、運転コンデン
サ19には上記リレー接点17aの常閉側を介して上記
運転コンデンサ18が並列に接続される。
A 7 m long main winding M is connected to the main winding M, and an auxiliary winding A is connected in parallel to the main winding M via a 16'ft running capacitor which also serves as a start-up. Furthermore, the power supply 10 has a relay contact 12bf.
: The four-way valve 2 is connected through. Further, the main winding M of the outdoor fan motor 6m and the excitation coil 17t of the relay 17 are connected to the power supply 10 via the relay contact 12c, and the main winding M is used for both the normally open side and the starting side of the relay contact 77a. The auxiliary winding A is connected in series with the operating capacitor 18 . Furthermore, the main winding M of the compressor motor 1m is connected to the power supply 10 via a relay contact 12d, and the main winding MK is connected to an auxiliary winding A via an operation capacitor J9 which also serves as a start-up. The operating capacitor 18 is connected in parallel to the operating capacitor 19 via the normally closed side of the relay contact 17a.

次に、上記のような構成において動作を説明する。Next, the operation in the above configuration will be explained.

いま、運転操作部13で暖房運転の開始操作を行なうと
、リレー接点12a+ 12b*12cr12dがオン
し、四方弁2が切換作動するとともに、室内ファンモー
タ7m、室外ファンモータ6m、圧縮機モータ1mがそ
れぞれ起動する〇こうして、暖房運転が開始される。こ
の場合、リレー接点12cのオンによってリレー17が
作動することによシ、室外ファンモータ6mに運転コン
デンサ18が投入される。なお、リレー17の作動によ
シ、運転コンデンサ18は圧縮機モータ1mから切離さ
れた状態となる。
Now, when the heating operation is started using the operation unit 13, the relay contacts 12a+12b*12cr12d are turned on, the four-way valve 2 is switched, and the indoor fan motor 7m, outdoor fan motor 6m, and compressor motor 1m are switched on. Start each 〇 In this way, heating operation starts. In this case, the operation capacitor 18 is connected to the outdoor fan motor 6m by activating the relay 17 by turning on the relay contact 12c. Note that, due to the operation of the relay 17, the operating capacitor 18 is disconnected from the compressor motor 1m.

ところで、この暖房運転時、室内熱交換器5の温度が宰
内熱交温度七ンサ15で検知されておシ、その検知温度
が一定値以上になると、主制御部12は過負荷状態にな
ったと判断してリレー接点12cをオフする。リレー接
点12cがオフすると、室外ファンモータ6mの動作が
停止し、室外ファン6の運転が停止する。これによシ、
負荷の低減が計られる。同時に、リレー接点12cのオ
フによってリレー17の作動も停止し、接点17aの常
閉側が閉成して運転コンデンサ18が運転コンデンサ1
9に並例に接続される。つまシ、圧縮機モータ1mに運
転コンデンサ18.19が共に投入される。
By the way, during this heating operation, the temperature of the indoor heat exchanger 5 is detected by the indoor heat exchanger temperature sensor 15, and when the detected temperature exceeds a certain value, the main control unit 12 becomes overloaded. It is determined that the relay contact 12c is turned off. When the relay contact 12c is turned off, the operation of the outdoor fan motor 6m is stopped, and the operation of the outdoor fan 6 is stopped. For this,
The load is reduced. At the same time, the operation of the relay 17 is also stopped by turning off the relay contact 12c, the normally closed side of the contact 17a is closed, and the operating capacitor 18 is connected to the operating capacitor 1.
9 is connected in parallel. The operating capacitors 18 and 19 are connected to the compressor motor 1m.

このように、暖房過負荷時に圧縮機モータ1mに対する
運転コンデンサの容量を増大するようにすれば、第1図
および第2図で説明したように圧縮機モータ1mのトル
クの増大および入力電流の低減を計ることができる。よ
って、室外ファン6の運転停止にもかかわらず、たとえ
ば風が強いために室外熱交換器3の熱交換量が減らず、
負荷の低減が計れない場合においても、ブレーキダウン
に至ることなく圧縮機1の安定運転を行なうことができ
る。特に、圧縮機モータ1mに対する運転コンデンサの
容量を増大しようとすれば、運転コンデンサ19を初め
から大容量にしておくことも考えられるが、そうすると
コストの上昇を招くという問題があシ、その点について
考慮すれば室外ファンモータ用の運転コンデンサ18を
利用することは実用上きわめて有効である。
In this way, by increasing the capacity of the operating capacitor for 1 m of compressor motor during heating overload, the torque of 1 m of compressor motor 1 m can be increased and the input current can be reduced as explained in Figs. 1 and 2. can be measured. Therefore, even though the outdoor fan 6 has stopped operating, the amount of heat exchanged by the outdoor heat exchanger 3 does not decrease due to strong wind, for example.
Even if the load cannot be reduced, the compressor 1 can be operated stably without causing a brake down. In particular, if you are trying to increase the capacity of the operating capacitor for 1 m of compressor motor, it may be possible to increase the capacity of the operating capacitor 19 from the beginning, but this poses the problem of increasing costs. Taking this into consideration, it is extremely effective in practice to use the operation capacitor 18 for the outdoor fan motor.

一方、リレー接点12bがオフして四方弁2が復帰し、
かつリレー接点12Qがオフして室内ファン6の運転が
停止することによシ室内熱交換器5に対する除側運転が
行なわれるが、このときリレー接点12cのオフに基づ
くリレー17の作動停止によって上記過負荷時と同様に
運転コンデンサ18.19が共に圧縮機モータ1mに投
入される。この除籍運転時、負荷は小さくなっておシ、
この状態で運転コンデンサの容量が増大すれば、第2図
から明らかなように圧縮機モータ1mの入力電流が大き
くなる。入力電流が大きくなれば、圧縮機モータ1mの
回転数が増大し、トルクの増大が計れる。トルりが増大
すれば圧縮機1の能力増大となシ、除霜能力が増えて除
霜時間の大幅な短縮が可能となる。
On the other hand, the relay contact 12b is turned off and the four-way valve 2 is restored.
In addition, when the relay contact 12Q is turned off and the operation of the indoor fan 6 is stopped, the indoor heat exchanger 5 is operated to remove the side. As in the case of an overload, both operating capacitors 18 and 19 are connected to the compressor motor 1m. During this unregistered operation, the load is reduced and
If the capacity of the operating capacitor increases in this state, the input current to the compressor motor 1m increases, as is clear from FIG. As the input current increases, the rotation speed of the compressor motor 1m increases, and an increase in torque can be measured. If the torque increases, the capacity of the compressor 1 increases, the defrosting capacity increases, and the defrosting time can be significantly shortened.

なお、この発明は上記実施例に限定されるものではなく
、要旨を変えない範囲で種々変形実施可能なことは勿論
である。
It should be noted that the present invention is not limited to the above-mentioned embodiments, and it goes without saying that various modifications can be made without changing the gist.

〔発明の効果〕〔Effect of the invention〕

以上述べたようにこの発明によれば、暖房過負荷時にお
いて、圧縮機モータのトルク増大並びに入力電流低減を
計ることができ、圧縮機の常に安定した運転を可能とす
る空気調和機を提供できる。
As described above, according to the present invention, it is possible to increase the torque of the compressor motor and reduce the input current during heating overload, thereby providing an air conditioner that enables stable operation of the compressor at all times. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る単相誘導モータの回転数−トル
ク特性図、第2図はこの発明に係る単相誘導モータの貴
荷−入力端子特性図、第3図はこの発明の一実施例にお
けるヒー)&ンプ式冷凍サイクルの構成図、第4図は同
実施例における制御回路の構成図である。 1・・・圧m機、1m・・・圧縮機モータ(単相誘導モ
ータ)、6・・・室外ファン、6m・・・室外ファンモ
ータ(単相誘導モータ)、12・・・主制御部、17・
・・リレー、18・・・室外ファンモータ用の運転コン
デンサ、19・・・圧縮機モータ用の運転コンデンサ。 出願人体属人 弁理士 鈴 江 武 彦第1図 @2図 第3図 −さマ 第4図 0
Fig. 1 is a rotation speed-torque characteristic diagram of a single-phase induction motor according to the present invention, Fig. 2 is a precious load-input terminal characteristic diagram of a single-phase induction motor according to the present invention, and Fig. 3 is an embodiment of the present invention. FIG. 4 is a block diagram of the heat & pump type refrigeration cycle in the example, and FIG. 4 is a block diagram of the control circuit in the same embodiment. 1... Pressure m machine, 1m... Compressor motor (single phase induction motor), 6... Outdoor fan, 6m... Outdoor fan motor (single phase induction motor), 12... Main control unit , 17・
... Relay, 18... Operating capacitor for outdoor fan motor, 19... Operating capacitor for compressor motor. Applicant Patent Attorney Takehiko Suzue Figure 1 @ Figure 2 Figure 3 - Figure 4 Figure 0

Claims (1)

【特許請求の範囲】[Claims] 単相誘導モータを動力源とする圧縮機、四方弁、室外熱
交換器、減圧装置、室内熱交換器などを順次連通してな
るヒートポンプ式冷凍サイクルと、前記圧縮機モータ用
の運転コンデンサと、単相蒔溝モータを動力源とする室
外ファンと、この室外ファンモータ用の運転コンデンサ
と、暖房運転時、過負荷状態になると前記室外ファンの
運転を停止せしめる制御手段と、室外ファンの運転停止
時、その室外ファンモータ用の運転コンデンサを前記圧
縮機モータ用の運転コンデンサに対して並列に接続する
制御手段とを具備したことを特徴とする空気調和機。
A heat pump refrigeration cycle consisting of a compressor powered by a single-phase induction motor, a four-way valve, an outdoor heat exchanger, a pressure reducing device, an indoor heat exchanger, etc. connected in sequence, and an operating capacitor for the compressor motor; An outdoor fan powered by a single-phase mower motor, an operating capacitor for the outdoor fan motor, a control means for stopping the outdoor fan when an overload condition occurs during heating operation, and stopping the operation of the outdoor fan. and control means for connecting an operating capacitor for the outdoor fan motor in parallel to the operating capacitor for the compressor motor.
JP58119326A 1983-06-30 1983-06-30 Air-conditioner Pending JPS6011048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58119326A JPS6011048A (en) 1983-06-30 1983-06-30 Air-conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58119326A JPS6011048A (en) 1983-06-30 1983-06-30 Air-conditioner

Publications (1)

Publication Number Publication Date
JPS6011048A true JPS6011048A (en) 1985-01-21

Family

ID=14758694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58119326A Pending JPS6011048A (en) 1983-06-30 1983-06-30 Air-conditioner

Country Status (1)

Country Link
JP (1) JPS6011048A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060731A1 (en) * 1999-04-06 2000-10-12 York International Corporation Method and apparatus for controlling a compressor
KR100474330B1 (en) * 2002-05-13 2005-03-08 엘지전자 주식회사 Driving comtrol apparatus of reciprocating compressor for refrigerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060731A1 (en) * 1999-04-06 2000-10-12 York International Corporation Method and apparatus for controlling a compressor
US6318966B1 (en) 1999-04-06 2001-11-20 York International Corporation Method and system for controlling a compressor
KR100474330B1 (en) * 2002-05-13 2005-03-08 엘지전자 주식회사 Driving comtrol apparatus of reciprocating compressor for refrigerator

Similar Documents

Publication Publication Date Title
CA1076684A (en) Control system for pole-changing-motor-driven compressor
KR100540508B1 (en) Compressor Control System of Air Conditioning Equipment
JPS6011048A (en) Air-conditioner
JPH07190458A (en) Indoor/outdoor unit separate type air conditioner
JPH023093Y2 (en)
JPS59189243A (en) Defrosting control device of air conditioner
JP4190098B2 (en) Air conditioner control device
JP2001065947A (en) Control method of air conditioner
JPH0618103A (en) Air conditioner
JPS6080046A (en) Air-conditioning device
KR200147716Y1 (en) Outdoor fan control device of multi airconditioner
JPS5927145A (en) Air conditioner
JP2001099459A (en) Method of evaluating test run of air conditioner
JP2517269B2 (en) Air conditioner control method
US20240035724A1 (en) Hvac system with outdoor fan speed control bypass
JP4404420B2 (en) Air conditioner control device
JPH0623879Y2 (en) Air conditioner
US11125449B2 (en) Systems and methods for transitioning between a cooling operating mode and a reheat operating mode
JP2557383B2 (en) Air conditioner
JPS6229853A (en) Air conditioner
JPS62213634A (en) Capacity control device for air conditioner
JP4510964B2 (en) Air conditioner control device
JP2001133016A (en) Controller for air conditioner
JPH0118862Y2 (en)
JPS6154149B2 (en)