JPS60107552A - Analysis for composition of base material for optical fiber - Google Patents

Analysis for composition of base material for optical fiber

Info

Publication number
JPS60107552A
JPS60107552A JP58214745A JP21474583A JPS60107552A JP S60107552 A JPS60107552 A JP S60107552A JP 58214745 A JP58214745 A JP 58214745A JP 21474583 A JP21474583 A JP 21474583A JP S60107552 A JPS60107552 A JP S60107552A
Authority
JP
Japan
Prior art keywords
base material
optical fiber
radiation
ray source
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58214745A
Other languages
Japanese (ja)
Inventor
Ryoichi Hara
亮一 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP58214745A priority Critical patent/JPS60107552A/en
Publication of JPS60107552A publication Critical patent/JPS60107552A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays

Abstract

PURPOSE:To analyze non-destructively a base material for an optical fiber with good accuracy whether said material is transparent or opaque by combining adequate ray sources to constitute a composite ray source and irradiating the radiation from said ray source to the base material. CONSTITUTION:A composite ray source 4 consists of a combination of a ray source consisting of Gd<153> and other ray source (Cs<137>, Ir<192>, Ba<133>, etc.). The radiation I from the source 4 is irradiated to a base material 1 for an optical fiber and the transmitted ray J thereof enters a detecting element 6 of a radiation detector 3 via collimators 8c, 8d. The detection signal is related with the compsn. in the material 1, i.e., concn. of Ge via an amplifier 9 and a pulse height analyzer 10 and is recorded in a recorder 11. A radiation detector 2 and a transmitted ray detector 3 are scanned as shown in the figure when viewed from the section of the base material and if the Ge distribution in the base material 1 is assumed to be the distribution shown in the figure, the Ge distribution is obtd. with good accuracy by the above-mentioned analysis.

Description

【発明の詳細な説明】 本発明は非破壊手段により光フアイバ母材の組成を分析
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for analyzing the composition of an optical fiber matrix by non-destructive means.

光フアイバ母材の組成分析は、これを製造する際のフィ
ードバック制御とか、あるいは特性のよい光ファイバを
得るための研究開発にとつて有用であるとされており、
その1手段として非破壊秒桁法が採用されている。
Composition analysis of optical fiber base materials is said to be useful for feedback control during manufacturing, and for research and development to obtain optical fibers with good characteristics.
As one method, a non-destructive second digit method is adopted.

光フアイバ母材長手方向の任意箇所における組成分布(
=屈折重分布)を非破壊的に測定する手段として、レー
ザビームを当該母材に照射し、その出射光の散乱パター
ンを解析する方法、平行光線を当該母材に照射し、その
出射光の干渉縞を解析する方法などが公知となっている
が、これらの光学的方法は、母材が透明体である場合の
み有効であり、例えばV A ’D法、0■D法などに
よpつくられる多孔質ガラス製の光フアイバ母材、すな
わち不透明な母材の場合はこれを測定できない不都合が
ある。
Composition distribution at any location in the longitudinal direction of the optical fiber base material (
As a means of non-destructively measuring the refraction weight distribution), there are two methods: irradiating the base material with a laser beam and analyzing the scattering pattern of the emitted light; Methods for analyzing interference fringes are known, but these optical methods are only effective when the base material is transparent. In the case of a porous glass optical fiber base material, that is, an opaque base material, this cannot be measured.

一方、不透明母材の非破壊測定法として、単色X線を当
該母材に照射し、その−成分(例えばGe)の分布を他
成分(例えば5iO2)との関係から推定する試みもあ
るが、この方法の場合、母材成分が主に石英(SIO2
)とGeとの二成分であるとして、二種類以上のエネル
ギ成分が必要となシ、例えばその二種のエネルギ成分に
対するS i 02 とGeとの質量吸収係数が適当な
関係にないとき、高精度の分析が行なえないとされてい
る。
On the other hand, as a non-destructive measurement method for opaque base materials, there have been attempts to irradiate the base material with monochromatic X-rays and estimate the distribution of the negative component (e.g. Ge) from the relationship with other components (e.g. 5iO2). In this method, the base material component is mainly quartz (SIO2
) and Ge, two or more types of energy components are required. For example, when the mass absorption coefficients of S i 02 and Ge for the two types of energy components do not have an appropriate relationship, high It is said that it is not possible to analyze the accuracy.

殊に現状の一般的なX線発生装置が100 KeV以下
のエネルギしか発生できないことを鑑みた場合、上記高
精度分析を満足させるのに適当なエネルギ成分が得られ
ない。
Particularly in view of the fact that current general X-ray generators can only generate energy of 100 KeV or less, energy components suitable for satisfying the above-mentioned high-precision analysis cannot be obtained.

その他、γ線が利用できることも知られているが、光フ
アイバ母材の分析に関してこれの具体的な報告例は見あ
たらない。
In addition, it is known that gamma rays can be used, but there have been no specific reports regarding this in the analysis of optical fiber base materials.

本発明の目的は、適切な線源を組み合わせることにより
複合線源を構成し、該複合線源からの放射線を光ファイ
バ母料に照射することにより、透明な母材はもちろん、
不透明な母材であっても非破壊的に精度よく分析できる
方法を提供することにある。
The object of the present invention is to configure a composite radiation source by combining appropriate radiation sources, and to irradiate radiation from the composite radiation source to an optical fiber matrix, which can be used not only for a transparent matrix but also for
The purpose of the present invention is to provide a method that allows non-destructive and accurate analysis of even opaque base materials.

本発明の方法は、Cd168 からなる線源と他の線源
とを組み合わせることにより複合線源を構成して該複合
線源からの放射線を光フアイバ母材に照射し、その透過
線量を測定解析するととにより光フアイバ母材の組成分
布を分析するととを特徴としている。
The method of the present invention consists of configuring a composite radiation source by combining a radiation source made of Cd168 with another radiation source, irradiating radiation from the composite radiation source onto an optical fiber base material, and measuring and analyzing the transmitted dose. The present invention is characterized by analyzing the composition distribution of the optical fiber base material.

以下、本発明方法の実施例につき、図面を参照して説明
する。
Examples of the method of the present invention will be described below with reference to the drawings.

第1図は本発明方法を実施するための1手段を示したも
のである。
FIG. 1 shows one means for carrying out the method of the invention.

同図において、1は光フアイバ母材、2はX線、γ線な
どの放射線を上記母材1へ照射するだめの放射線発生器
、3は上記母材1を透過した放射線を検出するための透
過線検出器である。
In the figure, 1 is an optical fiber base material, 2 is a radiation generator for irradiating the base material 1 with radiation such as X-rays and γ-rays, and 3 is a radiation generator for detecting the radiation transmitted through the base material 1. It is a transmitted radiation detector.

上記放射線発生器2は、複合線源4を収納箱5内に収納
することにより構成され、その複合線源4はcx a 
7.q3からなる線源と他の線源(CS 187.1 
r 192、B a 13aなど)との組み合わせ構成
からなり、照射用開口を有する収納箱5は鉄、鉛などの
放射線遮蔽材料からなる。
The radiation generator 2 is constructed by housing a compound radiation source 4 in a storage box 5, and the compound radiation source 4 is
7. Sources consisting of q3 and other sources (CS 187.1
r 192, B a 13a, etc.), and the storage box 5 having an irradiation opening is made of a radiation shielding material such as iron or lead.

一方、透過線検出器3は厩知の検出素子6と、放射線遮
蔽材料からなる収納箱7とで構成され、検出素子6は受
承用開口を有する収納箱γ内に収納されている。
On the other hand, the transmitted radiation detector 3 is composed of a conventional detection element 6 and a storage box 7 made of a radiation shielding material, and the detection element 6 is housed in a storage box γ having a receiving opening.

放射線発生器2と透過線検出器3とは互いに対向して配
置され、これらの間に光フアイバ母材1が介在されるが
、この際、光ファイバ母料1と放射線発生器2との間、
光フアイバ母材1と透過線検出器3との間には、それぞ
れコリメータ8a、8b、および8c、8dが配置さ九
、さらに透過線検出器3の検出素子6には、その検出結
果に基づく出力を電気的に増巾する増巾器9と、各透過
線のうち、特定エネルギによるものだけを選出すべく増
「1〕器9がらの信号を選分するマルチチャンネル型な
どの波高分析器1Qと、記録器11とが順次接続されて
いる。
The radiation generator 2 and the transmitted radiation detector 3 are arranged to face each other, and the optical fiber preform 1 is interposed between them. ,
Collimators 8a, 8b, 8c, and 8d are arranged between the optical fiber base material 1 and the transmitted radiation detector 3, respectively. An amplifier 9 that electrically amplifies the output, and a pulse height analyzer such as a multi-channel type that selects signals from the amplifier 9 to select only those with specific energy from among each transmitted line. 1Q and the recorder 11 are sequentially connected.

本発明方法において測定対象となる光ファイバ母料1は
石英系であり、具体的には5in2−Ge02 系とか
、アルイハコレにP2O3、B2O2などが添加された
ものである。
The optical fiber matrix 1 to be measured in the method of the present invention is quartz-based, specifically 5in2-Ge02-based, or aluminum to which P2O3, B2O2, etc. are added.

さらに上記母材1けVAD法、OvD法によりつくられ
る多孔質ガラス製(不透明)、MCVD法によりつくら
れる透明ガラス製など、各種あυ、層構成からはコア層
のみのもの、コア層とクラッド層とからなるもの、シシ
÷÷す゛−パ′−石鵠−−コア層とク ラッド層とサポート層またはジャケット層とからなるも
のなど、各種の母料1が測定対象となる。
In addition, there are various types of base materials such as porous glass (opaque) made by the VAD method and OvD method, and transparent glass made by the MCVD method. Various types of base materials 1 are to be measured, such as those consisting of a core layer, a cladding layer, and a support layer or jacket layer.

本発明方法によるとき、光フアイバ母材1ばこれの製造
工程と同期してその組成を分析することができ、また、
該母材製造後においてその組成を分析することもできる
When using the method of the present invention, the composition of the optical fiber base material 1 can be analyzed in synchronization with the manufacturing process thereof, and
The composition of the base material can also be analyzed after it is produced.

一般に、石英系光フアイバ母材1ではSiO□が不可欠
成分となっており、GeO2が屈折率特性を決定づける
重要成分となっており、当該母料1中のGe濃度を測定
分析すれば、その屈折率特性が判明する。
Generally, SiO□ is an essential component in the silica-based optical fiber base material 1, and GeO2 is an important component that determines the refractive index characteristics.Measurement and analysis of the Ge concentration in the base material 1 reveals that the refractive index The rate characteristics become clear.

さらに上記分析結果が母材製造時のフィードバック制御
、母材の良否判別、母材研究開発の資料などに活用でき
る。
Furthermore, the above analysis results can be used for feedback control during base material manufacturing, determining the quality of the base material, and materials for base material research and development.

したがって以下に述べる本発明方法の具体例では、光フ
ァイバ母料1が5IO2−GeO2系(通常、5i02
に対するGe量はlo数係以下)である場合を説明する
Therefore, in the specific example of the method of the present invention described below, the optical fiber preform 1 is based on 5IO2-GeO2 (usually 5i02
A case will be explained in which the amount of Ge is less than or equal to the lo number coefficient.

第1図において、放射線発生器2の複合線源4から発す
る放射線工がコリメータ8a、8bを経由して光ファイ
バ母料1に照射されると、該放射線■は上記母材1tl
−透過し、その透過線Jがコリメータ8c、8dを経由
して透過線検出器3の検出素子6へ入る。
In FIG. 1, when the radiation radiation emitted from the composite radiation source 4 of the radiation generator 2 is irradiated onto the optical fiber preform 1 via the collimators 8a and 8b, the radiation ■ is emitted from the preform 1tl.
- The transmitted ray J enters the detection element 6 of the transmitted ray detector 3 via the collimators 8c and 8d.

つまり放射線■はそのエネルギに対する物質の質量吸収
係数、距離に応じて波器され、透過線Jとなって検出素
子(6)へ入る。
In other words, the radiation (2) is waved according to the mass absorption coefficient of the substance and distance relative to its energy, and enters the detection element (6) as a transmission line J.

この透過線Jを受けた検出素子6は、増巾器9、波高分
析器1oを介して上記母材1中の組成すなわちGe濃度
を分析するとともにこれを記録計11によシ記録する。
The detection element 6 that receives this transmission line J analyzes the composition, that is, the Ge concentration, in the base material 1 via the amplifier 9 and the pulse height analyzer 1o, and records this on the recorder 11.

この際、放射線発生器2および透過線検出器3は母材断
面からみて第2図のごとく走査されるのでアシ、光フア
イバ母材1におけるGe分布が第3図のようなものであ
るとすると、上記分析によF)Ge分布が第3図の通シ
精度よくあられれる。
At this time, the radiation generator 2 and the transmitted radiation detector 3 are scanned as shown in Figure 2 when viewed from the cross section of the base material, so assuming that the Ge distribution in the optical fiber base material 1 is as shown in Figure 3. According to the above analysis, the F)Ge distribution can be seen with good accuracy as shown in FIG.

光フアイバ母材1が第3図のとときGe分布を有すると
き、その透過線Jの強度を放射線■との比であられすと
次表のようKなる。
When the optical fiber base material 1 has the Ge distribution as shown in FIG. 3, the intensity of the transmission line J is expressed as a ratio of the intensity of the radiation (2) to K as shown in the following table.

つぎに本発明方法の有効性につき、測定対象物を一般化
して述べる。
Next, the effectiveness of the method of the present invention will be described by generalizing the object to be measured.

測定物の成分をj(j=1〜m)、その成分量をXj、
i番目(1−1〜m)の光量子エネルギをE l 、そ
のElに対するJ@目の成分の質量減弱吸収係数をμl
J/pH測定物に入射する上記Eiの強度を11、測定
物から波器されて出る上記E1の強度をJiとすると、
放射線の波器の原理から次式が定まる。
The component of the measurement object is j (j = 1 to m), the amount of the component is Xj,
The i-th (1-1 to m) photon energy is E l , and the mass attenuation absorption coefficient of the J@th component with respect to that El is μl
J/pH If the intensity of the above Ei incident on the measurement object is 11, and the intensity of the above E1 waveformed and output from the measurement object is Ji, then
The following formula is determined from the principle of radiation waves.

ここで(1)式を簡単にするためh 1=in (I 
i/I j )、alg−μ】J/ρ1とおくと次式の
ようになる。
Here, in order to simplify equation (1), h 1=in (I
i/I j ), alg-μ]J/ρ1, the following equation is obtained.

すなわち上記(2)式はっぎの行列式の成分となる。In other words, it becomes a component of the determinant of equation (2) above.

これは、それぞれの対応する行列をH,A。This converts the respective corresponding matrices into H and A.

Xとするとつぎのように表わせる。Letting it be X, it can be expressed as follows.

H=AX・・・・−(4) Xは未知量、Aは既知量、Hは測定により得られる量で
ある。
H=AX...-(4) X is an unknown quantity, A is a known quantity, and H is a quantity obtained by measurement.

上記(1)式または(4)式ばXj について解くこと
ができる。
The above equation (1) or equation (4) can be solved for Xj.

たたし、m=nの場合、n元1次連立方程式により数式
として解けるが、この場合の測定値はいわゆる測定誤差
を含み、その影響で解が不安定となる。
However, when m=n, it can be solved as a mathematical formula using linear simultaneous equations with n elements, but the measured values in this case include so-called measurement errors, and the solution becomes unstable due to this influence.

m ) nとし、hlの測定値力・ら最/JX2乗法で
Xjを導けば安定な解が得られる。
m) If n is the measured value of hl, a stable solution can be obtained by deriving Xj using the squared method.

ここfXよ(j −1、・・・・・、n)を解とす差を
含むかぎり必ずしも−0とならない。
Here, as long as the difference including the solution of fX (j -1, . . . , n) is not necessarily -0.

したがって下記+51式が最小に導びけるよう、ように
なる。
Therefore, the formula +51 below can be minimized as follows.

ただしA′はAの転置行列である。However, A' is the transposed matrix of A.

なお、(6)式はm > nであっても一義的に解くこ
とができ、各成分の量Xj(j−1、・・・・、n)が
最小2乗法でまることを示している。
Note that equation (6) can be uniquely solved even if m > n, indicating that the quantity of each component Xj (j-1, ..., n) can be calculated by the method of least squares. .

いま、実施例のごとく母材成分の数を2とすると、j=
12となり、A’ A、A’ Hはっぎの(71+81
式のようになる。
Now, if the number of base material components is 2 as in the example, then j=
12, A' A, A' H Haggino (71 + 81
It becomes like the expression.

上記(刀(8)式により前記(6)式は次式のようにな
る。
According to the above equation (8), the above equation (6) becomes the following equation.

これら各式からXl、X2をめると次式のようになる。Subtracting Xl and X2 from each of these equations yields the following equation.

ところで前述した(7)式であるが、第4図に示すごと
く成分L1と成分t2との吸収係数が比例関係にあると
解がなく、また、比例に近い場合も解が不安定となるこ
とがわかる。
By the way, regarding equation (7) mentioned above, there is no solution if the absorption coefficients of component L1 and component t2 are in a proportional relationship as shown in Figure 4, and even if they are close to proportionality, the solution will be unstable. I understand.

すなわち、Kを定数とした場合、圓(lH31式のよう
になυ、解がない。
That is, if K is a constant, then the circle (lH31, υ, there is no solution.

(μ/ρ)t2=K(μ/ρ)1+・・・・・圓ai2
 =に*ai1@@I+@@ Q31A’AI=に2(
Σai、2)2 K2(Σail ? )2= 0 *
・・・(131上述の説明で明らかなように、光量子エ
ネルギと測定物質の成分の質量吸収係数とは適当な関係
になければならない。
(μ/ρ)t2=K(μ/ρ)1+...En ai2
=ni*ai1@@I+@@Q31A'AI=ni2(
Σai, 2)2 K2(Σail?)2=0*
(131) As is clear from the above explanation, there must be an appropriate relationship between the photon energy and the mass absorption coefficient of the component of the substance to be measured.

前述した光フアイバ母材のように、成分が8102とG
eである場合、光量子エネルギに対するこれら成分の質
量吸収係数を詳細に調べると第5図のようになる。
Like the optical fiber base material mentioned above, the components are 8102 and G.
When e, the mass absorption coefficients of these components with respect to photon energy are examined in detail as shown in FIG.

第5図で明らかなように、上記エネルギ100KeVを
境に吸収特性が大きく変化しており、100 K e 
Vよりも小さい範囲では、(μ/ρ) Ge/(μ/ρ
)St が8〜11 程度であシ、両者の質量吸収係数
は概ね比例関係にあると見做せる。
As is clear from Fig. 5, the absorption characteristics change greatly after the above energy of 100 KeV,
In the range smaller than V, (μ/ρ) Ge/(μ/ρ
) St is about 8 to 11, and the mass absorption coefficients of both can be considered to be in a roughly proportional relationship.

つまり、この範囲内のエネルギを用いることは解が不安
定となるのて適当でなく、従来例で述べたエネルギ10
0KeV 以下のX線がこれに該当する。
In other words, it is not appropriate to use an energy within this range because the solution will become unstable, and the energy 10 described in the conventional example is not suitable.
This applies to X-rays below 0 KeV.

第5図において、2.00 KeV 以上における各成
分の質量吸収係数の比、例えば(μ/ρ)Ge/(μ/
ρ)81 は24よりも小さく、シたがって100Ke
V 以下とは大きく異なり、しかも100KeV以下の
範囲と200 KeV以上の範囲とは比例関係にないこ
とがわかる。
In Figure 5, the ratio of the mass absorption coefficients of each component at 2.00 KeV or higher, for example (μ/ρ)Ge/(μ/
ρ)81 is smaller than 24, so 100Ke
It can be seen that the range is significantly different from V2 or less, and there is no proportional relationship between the range of 100 KeV or less and the range of 200 KeV or more.

前記光フアイバ母材1のごとく成分がSiO□とGeで
ある場合、2種類の放射線エネルギとしては、一方がお
よそ100 KeV 以下、他方がおよそ200KeV
 以上の範囲になければならない。
When the components are SiO□ and Ge as in the optical fiber base material 1, the two types of radiation energies are one of approximately 100 KeV or less and the other of approximately 200 KeV.
Must be within the above range.

本発明において他の線源としたもののうち、B a 1
3B とi r 192 とは第6図、第7図を参照し
て明らかなように、上記両範囲にエネルギ成分をもち、
Ba138では31.0KeV’、 80.8KeV。
Among the other radiation sources used in the present invention, B a 1
As is clear from FIGS. 6 and 7, 3B and i r 192 have energy components in both of the above ranges,
For Ba138, it is 31.0KeV' and 80.8KeV.

356、 OK e V、 ■r x9x で、は6 
6.8 KeV、316.5KeV、 467.9Ke
Vがそれぞれ優位のレベルにある。
356, OK e V, ■r x9x, is 6
6.8 KeV, 316.5 KeV, 467.9 Ke
V is at a superior level.

第5図に併記したこれらのエネルギはそれぞれ100K
eVを境にして分布しており、B a 188、I r
 +Q2が5i02、Geなどを成分とする光ファイバ
母料1の分析に有効な線源であることを確証している。
Each of these energies shown in Figure 5 is 100K.
It is distributed around eV, B a 188, I r
It is confirmed that +Q2 is an effective radiation source for analyzing the optical fiber matrix 1 containing 5i02, Ge, etc. as components.

一方、本発明において特定した線源Gd 138と、他
の線源C813ffとは、第5図に示すとと(100K
eV を境にして片側にしか主エネルギ成分をもたず、
Q d16Bは100KeV近辺、C5187は662
 KeVにそれぞれ主エネルギ成分を有しているが、既
述のごと< G d1fi3 を特定線源とし、C81
8VXB a1′+ 、 (rIJ2 などを他の線源
とし、これら線源の組み合わせ構成からなる複合線源4
の場合は、自明の通シ光ファイバ母材1の分析に有効で
あるといえる。
On the other hand, the radiation source Gd 138 specified in the present invention and another radiation source C813ff are shown in FIG.
It has a principal energy component only on one side of eV,
Q d16B is around 100KeV, C5187 is 662
Each has a main energy component in KeV, but as mentioned above, if G d1fi3 is a specific radiation source, C81
8VXB a1'+ , (rIJ2, etc. are used as other radiation sources, and a composite radiation source 4 consisting of a combination of these radiation sources)
In this case, it can be said that it is effective for the analysis of the self-evident threaded optical fiber preform 1.

以上説明した通り、本発明方法によるときは透明な光フ
アイバ母材はもちろん、多孔質ガラス製のごとき不透明
な光フアイバ母材であってもこれを精度よく測定分析す
ることができ、母材製造時のフィードバンク制御、母材
の良否判別、母材研究開発の資料など、これらに貢献す
るところ大である。
As explained above, when using the method of the present invention, not only transparent optical fiber base materials but also opaque optical fiber base materials such as those made of porous glass can be accurately measured and analyzed. It will greatly contribute to such areas as feed bank control, determination of the quality of base materials, and materials for base material research and development.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の1実施例を示す説明図、第2図は
同上eζ尤・ける放射線のに査状況を示・す説明図1第
3図は同上におけるGe濃度の測定結果を示す説明図、
第4図、第5図は光量子エネルギと質量吸収係数との関
係を示す説明図、第6図、第7図はそれぞれB als
s、■r192の光量子エネルギスペクトラムの説明図
である。 1、・・・・・光フアイバ母材 4・・・・・複合線源 6・・・・・検出素子 ■・・・・・放射線 J・・・・・透過線 117 閃 方 lf+ − 暫 第3図 。 第4図 第bm 光量主エネルギ“(Ke71 第5図 光量子エネルギ〔Ke7〕 1J7図 宏)1子工ネルキ° rKeV) 手続補正書 1 事件の表示 特願昭58−2147452 発明の
名称 光フアイバ母材の組成分析方法3 補正をする者 事件との関係 特許出願人 古河電気工業株式会社 4復代 理 人 〒100 東京都千代田区有楽町1−8−8小谷ビル昭和59年 
2月28日 6 補正の対象 明細書全文 7 補正の内容 別紙の通り、タイプ浄書した明細書(内容に変更なし)
を捉出します。
Fig. 1 is an explanatory diagram showing one embodiment of the method of the present invention, Fig. 2 is an explanatory diagram showing the situation of radiation investigation in the same as above. Explanatory diagram,
Figures 4 and 5 are explanatory diagrams showing the relationship between photon energy and mass absorption coefficient, and Figures 6 and 7 are B als
s, ■r192 is an explanatory diagram of the photon energy spectrum of r192. 1, ... Optical fiber base material 4 ... Composite radiation source 6 ... Detection element ■ ... Radiation J ... Transmission line 117 Flash lf+ - Temporary number Figure 3. Fig. 4 bm Light amount principal energy (Ke71 Fig. 5 Photon energy [Ke7] 1J7 Fig. 1) Procedural amendment 1 Indication of the case Patent application 1982-2147452 Title of the invention Optical fiber matrix Compositional analysis method 3 Relationship with the case of the person making the amendment Patent applicant Furukawa Electric Co., Ltd. 4 Represented by Mr. Kotari Building, 1-8-8 Yurakucho, Chiyoda-ku, Tokyo 1982
February 28th 6 Full text of the specification to be amended 7 Details of the amendment Typewritten specification as shown in the attached sheet (no change in content)
I will capture it.

Claims (1)

【特許請求の範囲】 (1,Q d15fからなる線源と他の線源とを組み合
わせることにより複合線源を構成して該複合線源からの
放射線を光フアイバ母材に照射し、その透過線量を測定
解析することにより光フアイバ母材の組成分布を分析す
る光フアイバ母材の組成分析方法。 (2)他の線源がCS 、18B、工r192、B a
 +sa のいずれかからなる特許請求の範囲第1項記
載の光フアイバ母材の組成分析方法。
[Claims] (A composite radiation source is constructed by combining a radiation source consisting of 1,Q d15f with another radiation source, and radiation from the composite radiation source is irradiated onto an optical fiber base material, and its transmission is A method for analyzing the composition of an optical fiber base material, which analyzes the composition distribution of the optical fiber base material by measuring and analyzing the radiation dose. (2) Other radiation sources are CS, 18B, A192, B a
+sa. The method for analyzing the composition of an optical fiber base material according to claim 1.
JP58214745A 1983-11-15 1983-11-15 Analysis for composition of base material for optical fiber Pending JPS60107552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58214745A JPS60107552A (en) 1983-11-15 1983-11-15 Analysis for composition of base material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58214745A JPS60107552A (en) 1983-11-15 1983-11-15 Analysis for composition of base material for optical fiber

Publications (1)

Publication Number Publication Date
JPS60107552A true JPS60107552A (en) 1985-06-13

Family

ID=16660881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58214745A Pending JPS60107552A (en) 1983-11-15 1983-11-15 Analysis for composition of base material for optical fiber

Country Status (1)

Country Link
JP (1) JPS60107552A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10242829B2 (en) 2014-07-28 2019-03-26 Fujitsu Component Limited Electromagnetic relay and coil terminal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10242829B2 (en) 2014-07-28 2019-03-26 Fujitsu Component Limited Electromagnetic relay and coil terminal
US11120961B2 (en) 2014-07-28 2021-09-14 Fujitsu Component Limited Electromagnetic relay and coil terminal

Similar Documents

Publication Publication Date Title
US5003980A (en) Method and apparatus for measuring lung density by Compton backscattering
US4618975A (en) Method and apparatus for analyzing a porous nonhomogeneous cylindrical object
JPS60107551A (en) Analysis for composition of base material for optical fiber
JPS60107552A (en) Analysis for composition of base material for optical fiber
Joo et al. Radioactivity measurement of radioactive contaminated soil by using a fiber-optic radiation sensor
JPS5811594B2 (en) Radiation detection wire and radiation detection device
US3859525A (en) Method and apparatus for fluorescent x-ray analysis
JPS60107550A (en) Analysis for composition of base material for optical fiber
JP4731688B2 (en) Inspection method of nuclear fuel elements
US5553105A (en) Polychannel multiple-total-external reflection neutron radiography
US6148059A (en) Methods and apparatus using fluorescent emissions to determine concentration of material in object
JPS60107553A (en) Analysis for composition of base material for optical fiber
JPS60250225A (en) Composition analysis of material of optical fiber
Pruett et al. Gamma-ray to Cerenkov-light conversion efficiency for pure-silica-core optical fibers
US6393094B1 (en) Methods and apparatus using attenuation of radiation to determine concentration of material in object
Gahley Radiation Induced Optical Absorption in High Purity Synthetic Fused Silica
SU1385049A1 (en) Method of determining quantitative content of composites
JPS61193057A (en) Radiation analyzing instrument
JP3169346B2 (en) Fluorescent glass dosimeter measuring device
JPS60113135A (en) Apparatus for nondestructive measurement of concentration
JP2599360B2 (en) Non-destructive measuring method of object under X-ray
Abel et al. Scintillating glass fiber neutron sensors: 2, light transmission in scintillating fibers
Meyer et al. Simulation and Optimization of Optical Fiber Irradiation with X-rays at Different Energies. Radiation 2023, 3, 58–74
US4894543A (en) Method for measuring x-rays or gamma radiation and device for this
JPS62220846A (en) Method for measuring material to be measured by radiation