JPS60102750A - Conductive adhesive film for fixing semiconductor element - Google Patents

Conductive adhesive film for fixing semiconductor element

Info

Publication number
JPS60102750A
JPS60102750A JP58212652A JP21265283A JPS60102750A JP S60102750 A JPS60102750 A JP S60102750A JP 58212652 A JP58212652 A JP 58212652A JP 21265283 A JP21265283 A JP 21265283A JP S60102750 A JPS60102750 A JP S60102750A
Authority
JP
Japan
Prior art keywords
film
adhesive film
conductive
thermoplastic resin
conductive adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58212652A
Other languages
Japanese (ja)
Other versions
JPH0636416B2 (en
Inventor
Akiko Ono
小野 彰子
Hideto Suzuki
秀人 鈴木
Kazuo Iko
伊香 和夫
Haruo Tabata
田畑 晴夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP58212652A priority Critical patent/JPH0636416B2/en
Publication of JPS60102750A publication Critical patent/JPS60102750A/en
Publication of JPH0636416B2 publication Critical patent/JPH0636416B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49503Lead-frames or other flat leads characterised by the die pad
    • H01L23/49513Lead-frames or other flat leads characterised by the die pad having bonding material between chip and die pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Adhesive Tapes (AREA)
  • Die Bonding (AREA)

Abstract

PURPOSE:To obtain a conductive adhesive film capable of being applied to a semiconductor element, the back thereof requires metallization, by applying a mixture consisting of a thermoplastic resin and conductive fillers on both surfaces of the conductive film as a fusion agent. CONSTITUTION:A mixture manufactured by compounding conductive fillers such as carbon to a thermoplastic resin is applied on both surfaces of a conductive film through solution coating to form a layer of a fusion agent, thus manufacturing the conductive adhesive film 1. When a semiconductor element 4 is die- bonded on a lead frame 5a as a semiconductor substrate through said film 1, the film 1 cut in predetermined size is placed on the lead frame 5a, the element 4 is placed on the film 1, and the lead frame, the film and the element are heated and contact-bonded at a temperature where the fusion agent for the film 1 is melted and softened. The element 4 and lead frames 5b, 5c are connected by bonding wires 6.

Description

【発明の詳細な説明】 この発明は半導体素子をステムやリードフレームの如き
基板上に固定するだめのいわゆるダイボンディング用接
着フィルムに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a so-called die bonding adhesive film for fixing a semiconductor element onto a substrate such as a stem or lead frame.

ダイボンディングとはステムやリードフレームの如き半
導体基板に半導体素子を接着固定することであり、従来
この接着固定のだめのダイボンディング用材料として、
基板と素子との間の電気的な接続機能を兼ね備えだAu
−5i共晶や導電性銀ペースト組成物が知られている。
Die bonding is the process of adhesively fixing a semiconductor element to a semiconductor substrate such as a stem or lead frame. Conventionally, die bonding materials for this adhesive fixation are
Au has the function of electrical connection between the substrate and the element.
-5i eutectic and conductive silver paste compositions are known.

上記A、−5i共晶とは基板上に予めA、メッキを施し
この王に半導体素子としてのシリコンチップを高温下で
圧着してAu−Si共晶合金からなる金属接着層を形成
するものであり、また導電性銀ペースト組成物はエポキ
シ樹脂やポリイミド系樹脂の前駆体の溶液に導電性材料
としての銀粉を混練してベースト化しこれを基板と素子
との間に介装塗着したのち加熱硬化させるものである。
The above-mentioned A, -5i eutectic is one in which a substrate is pre-plated with A, and a silicon chip as a semiconductor element is bonded to this plate under high temperature to form a metal adhesive layer made of an Au-Si eutectic alloy. A conductive silver paste composition is made by kneading silver powder as a conductive material into a solution of a precursor of an epoxy resin or polyimide resin to form a base, which is applied as an intermediary between a substrate and an element, and then heated. It hardens.

しかるに、上記Au Si共晶による接着では、短時間
で信頼性の高い接着が可能であるが高価なA IJを必
要とするため経済的に不利である。
However, although adhesion using the AuSi eutectic described above enables highly reliable adhesion in a short time, it requires expensive AIJ, which is economically disadvantageous.

一方、導電性銀ペースト組成物にあっては、銀粉のバイ
ンダとしてエポキシ樹脂やポリイミド系樹脂の前駆体を
用いているため、本来その硬化に長時間を要しAuSi
共晶に比しダイボンディングの作業性に劣る欠点がある
ほか、特にエポキシ樹脂では高温での耐湿特性に欠は素
子の配線パターンが経時的に腐食する欠点があった。ま
た、この種のベースト組成物では基板上に均一厚みに塗
工しにくく、これが半導体素子を傾斜させる原因となっ
てワイヤボンディングに支障をきたしたり素子に不均一
な歪みを生じさせる欠点もあった。
On the other hand, since conductive silver paste compositions use precursors of epoxy resins and polyimide resins as binders for silver powder, it takes a long time to harden, and AuSi
In addition to being inferior in die bonding workability compared to eutectic, epoxy resins in particular lack moisture resistance at high temperatures and have the disadvantage that the wiring patterns of the elements corrode over time. In addition, this type of base composition has the disadvantage that it is difficult to apply it to a uniform thickness on the substrate, which causes the semiconductor device to tilt, hindering wire bonding and causing uneven distortion of the device. .

これらの欠点はいずれもバインダ樹脂の特性および液状
(ペースト状)塗工方式を採用していることに基づくも
のである。
These drawbacks are all due to the characteristics of the binder resin and the adoption of a liquid (paste) coating method.

この発明者らは、以上の観点から、裏面のメタライゼー
ションが不要な半導体素子に対して好適なダイボンディ
ング用材料を探究するべく鋭意検討した結果、耐熱性フ
ィルムの両面に熱可塑性樹脂を融着剤として塗工してな
るフィルム状物が上記材料としてきわめて有用であるこ
とを知り、これを特願昭58−111286号としてす
でに提案している。
From the above point of view, the inventors conducted extensive research to find a material for die bonding suitable for semiconductor devices that do not require metallization on the back side, and as a result, they fused thermoplastic resin on both sides of a heat-resistant film. It has been found that a film-like material coated as an agent is extremely useful as the above-mentioned material, and has already been proposed in Japanese Patent Application No. 111286/1986.

この接着フィルムによれば、このフィルムを介して基板
と半導体素子とを熱圧着することにより、上記フィルム
の融着剤の熱融着性によって瞬時のうちにダイボンディ
ングすることができ、従来のエポキシ樹脂やポリイミド
系樹脂の前駆体の如き熱硬化性樹脂を用いたものに較べ
てダイボンディングの作業性を大巾に改善することがで
きる。しかも高価なAllを使用しないものであるため
半導体装置のコスト低減に寄与できる。
According to this adhesive film, by thermocompression bonding a substrate and a semiconductor element through this film, die bonding can be performed instantly due to the heat fusion properties of the adhesive of the film, which is different from conventional epoxy. The workability of die bonding can be greatly improved compared to those using thermosetting resins such as resins and precursors of polyimide resins. Moreover, since expensive Al is not used, it can contribute to cost reduction of semiconductor devices.

また、上記フィルムによれば従来のエポキシ樹脂を用い
た銀ペースト組成物の如き耐湿特性の低下をきたすおそ
れはない。特に融着剤としてフッ素系ポリマーを用いる
と上記耐湿特性の大巾な向上を期待できる。
Furthermore, the above film does not have the risk of deterioration in moisture resistance, unlike conventional silver paste compositions using epoxy resins. In particular, when a fluoropolymer is used as a fusion agent, a significant improvement in the above-mentioned moisture resistance properties can be expected.

さらに、この種のフィルムによるダイボンディングでは
、従来のペースト状物の塗工方式にみられたような接着
層厚の不均一化をきたすおそれがナイタメ、引き続くワ
イヤボンディングに支障をきたしたり半導体素子に不均
一な歪みを生じさせる問題をもたず、この点からも高信
頼性の半導体装置を得ることができる。
Furthermore, in die bonding using this type of film, there is a risk that the thickness of the adhesive layer may become uneven, as seen in conventional paste coating methods, which may interfere with subsequent wire bonding or cause damage to semiconductor devices. There is no problem of non-uniform distortion, and from this point of view as well, a highly reliable semiconductor device can be obtained.

以上のように、上記接着フィルムによれば、生産性およ
び経済性良好にして高信頼性の半導体装置を得ることが
できる。
As described above, according to the adhesive film, it is possible to obtain a highly reliable semiconductor device with good productivity and economy.

しかしながら、すでに提案している上記接着フィルムは
、裏面のメタライゼーションが不要な半導体素子もしく
はサブ電極を半導体素子上のポンディングパッドよシ引
き出すことができる半導体素子にのみ適用できるもので
ある。
However, the above-mentioned adhesive films that have already been proposed are applicable only to semiconductor elements that do not require metallization on the back side or to semiconductor elements in which sub-electrodes can be drawn out from the bonding pads on the semiconductor element.

そこで、この発明者らは上記接着フィルムの利点を生か
したまま裏面のメタライゼーションが必要な半導体素子
に適用できる導電性接着フィルムを得ることを目的とし
て上記接着フィルムに導電性を付与すべく鋭意検討した
結果、この発明をなすに至った。
Therefore, the inventors have conducted intensive studies to impart conductivity to the adhesive film, with the aim of obtaining a conductive adhesive film that can be applied to semiconductor devices that require metallization on the back side while taking advantage of the advantages of the adhesive film. As a result, this invention was made.

すなわち、この発明は、導電性フィルムの両面に熱可塑
性樹脂と導電性フィラーとからなる混合物を融着剤とし
て塗工してなる半導体素子固定用導電性接着フィルムに
係るものである。
That is, the present invention relates to a conductive adhesive film for fixing a semiconductor element, which is formed by coating both sides of a conductive film with a mixture of a thermoplastic resin and a conductive filler as a fusion agent.

この発明の半導体素子固定用導電性接着フィルムは、す
でに提案している上記接着フィルムの利点、すなわち、
従来のエポキシ樹脂やポリイミド系樹脂の前駆体の如き
熱可塑性樹脂を用いたものに較べてダイボンディングの
作業性を大巾に改善することができ、しかも高価なAU
を使用しないため半導体装置のコスト低減に寄与できる
、従来のエポキシ樹脂を用いた銀ペースト組成物の如き
耐湿特性の低下をきたすおそれがなく、シかも従来のペ
ースト状物の塗工方式にみられた欠点がないなどの利点
を有するとともに、Al1−5i共晶や導電性銀ペース
ト組成物に比べて遜色のない電気的な接続機能を兼ね備
えているので、この導電性接着フィルムによれば、裏面
のメタライゼーションが必要な半導体素子に適用でき、
生産性および経済性良好にして高信頼性の半導体装置を
得ることができる。
The conductive adhesive film for fixing semiconductor elements of the present invention has the advantages of the above-mentioned adhesive films already proposed, namely:
Compared to conventional methods using thermoplastic resins such as epoxy resins and polyimide resin precursors, the workability of die bonding can be greatly improved, and moreover, it is possible to use expensive AU.
Because it does not use silver paste compositions, it can contribute to reducing the cost of semiconductor devices, and there is no risk of deterioration in moisture resistance, which is the case with conventional silver paste compositions using epoxy resins, and there is no risk of deterioration in moisture resistance, which is seen in conventional paste coating methods. This conductive adhesive film has advantages such as having no disadvantages, and also has an electrical connection function comparable to that of Al1-5i eutectic and conductive silver paste compositions. It can be applied to semiconductor devices that require metallization.
A highly reliable semiconductor device can be obtained with good productivity and economy.

以下、この発明を図面(を参考にI・し−て、説、明す
る。
Hereinafter, this invention will be explained and explained with reference to the drawings.

第1図はこの発明の半導体素子固定用導電性接着フィル
ムの断面図を示したものであり、この接着フィルム1は
、AtやCuなどの金属薄膜や、ポリイミド樹脂、ボリ
テ1゛ラフルオロエチレンなどの耐熱性樹脂に銀粒子な
どの導電体を配合して薄膜化することにより得られたフ
ィルムなどからなる導電性フィルム2の両面に、熱可塑
性樹脂にカーボン、銀粒子などの導電性フィラーを配合
してなる混合物を、溶液塗工ないし溶融塗工により塗工
してなる融着剤3,3′とから構成されている。
FIG. 1 shows a cross-sectional view of a conductive adhesive film for fixing a semiconductor element according to the present invention. Conductive filler such as carbon and silver particles is blended into thermoplastic resin on both sides of the conductive film 2, which is made of a film obtained by blending a conductor such as silver particles into a heat-resistant resin and forming a thin film. and a fusion agent 3, 3' which is obtained by applying a mixture obtained by coating the mixture by solution coating or melt coating.

」二記導電性フィルム2における耐熱性樹脂は、通常」
二記融着剤3,3′の融着温度以上の耐熱性を有するも
のである。一方、融着剤3,3′における熱可塑性樹脂
としては、A)導電性フィルム2の両面に融点の等しい
樹脂を用いてもよいし、B)面によって互いに融点の異
なる樹脂を用いてもよい。
``The heat-resistant resin in the conductive film 2 is usually ``
It has a heat resistance higher than the fusing temperature of the second fusing agent 3, 3'. On the other hand, as the thermoplastic resin in the fusing agents 3 and 3', A) a resin having the same melting point on both sides of the conductive film 2 may be used, or B) a resin having a different melting point on each side may be used. .

前記Aの場合に用いる熱可塑性樹脂としては融点が17
0〜320℃のものが好ましい。この場合に得られる導
電性接着フィルムは、ダイポンディングに使用する際に
は、シリコンウェハーから切り取られた半導体素子の大
きさに合わせて切り取って使用する。
The thermoplastic resin used in the case of A has a melting point of 17
A temperature of 0 to 320°C is preferred. When the conductive adhesive film obtained in this case is used for die bonding, it is cut to match the size of a semiconductor element cut from a silicon wafer.

前記Bの場合に用いる熱可塑性樹脂としては、融点が1
70〜820℃の範囲にあり、一方の熱可塑性樹脂の融
点が他方の熱可塑性樹脂の融点より15℃以上高く、か
つ両方の樹脂の熱分解温度が高融点側の樹脂の融点よp
so℃以上高いものであることが好ましい。この場合に
得られる導電性接着フィルムによれば、融点の低い方の
熱可塑性樹脂を含む融着剤を介してこの接着フィルムを
シリコンウェハーの裏面にあらかじめ融着させて導電性
接着フィルレム付きウェハーとすることがでキ、このウ
ェハーをフルカットでスクライビングして導電性接着フ
ィルム付き半導体素子とし、この半導体素子を融点の高
い方の熱可塑性樹脂を含む融着剤を介してステムやリー
ドフレームなどにダイボンディングすることができるの
で、導電性接着フィルムを半導体素子の大きさに合わせ
て切り取る必要がなく、ダイボンディングの作業性をさ
らに改善することができる。
The thermoplastic resin used in case B has a melting point of 1
in the range of 70 to 820°C, the melting point of one thermoplastic resin is 15°C or more higher than the melting point of the other thermoplastic resin, and the thermal decomposition temperature of both resins is higher than the melting point of the resin on the higher melting point side.
It is preferable that the temperature is higher than soC. According to the conductive adhesive film obtained in this case, this adhesive film is preliminarily fused to the back side of a silicon wafer via a fusing agent containing a thermoplastic resin having a lower melting point, and a wafer with a conductive adhesive film rem is formed. This wafer can be fully cut and scribed into semiconductor elements with a conductive adhesive film, and this semiconductor element can be attached to stems, lead frames, etc. via a fusing agent containing a thermoplastic resin with a higher melting point. Since die bonding can be performed, there is no need to cut the conductive adhesive film to match the size of the semiconductor element, and the workability of die bonding can be further improved.

前記A、Bいずれの場合にも熱可塑性樹脂の融点が低す
ぎるものでは半導体装置としての耐熱性に問題を生じや
すく、また高くな9すぎるとダイポンディング時に高温
を要し、いずれも好ましくない。また、Bの場合、融点
の異なる熱可塑性樹脂の融点が差が小さすぎると、低融
点側の熱可塑性樹脂を含む融着剤を介して前記の接着フ
ィルムをシリコンウェハー裏面に融着させるときに高融
点側の樹脂を含む融着剤に粘着性がでてごみなどが付着
するため好ましくない。さらに、高融点側の樹脂の融点
といずれか一方または両方の樹脂の熱分解温度との差が
小さすぎると、高融点側の樹脂を含む融着剤によってダ
イボンディングする際に熱可塑性樹脂が熱分解するため
好ましくない。
In either case A or B, if the melting point of the thermoplastic resin is too low, problems tend to occur in the heat resistance of the semiconductor device, and if it is too high, a high temperature is required during die bonding, which is not preferable. In the case of B, if the difference in the melting points of thermoplastic resins with different melting points is too small, when the adhesive film is fused to the back surface of the silicon wafer using a fusing agent containing a thermoplastic resin with a lower melting point, This is undesirable because a fusing agent containing a resin with a high melting point becomes sticky and attracts dust. Furthermore, if the difference between the melting point of the higher melting point resin and the thermal decomposition temperature of one or both resins is too small, the thermoplastic resin will heat up during die bonding with a fusing agent containing the higher melting point resin. Undesirable because it decomposes.

また、上記A、Bいずれの場合にも熱可塑性樹脂として
はフッ素系ポリマーが好ましく、場合により上記同様の
融点を有するボリエヌテル、ナイロン6・6、ポリパラ
フェニレンサルファイドなどの他の熱可塑性樹脂を使用
してもよい。
In both cases A and B above, the thermoplastic resin is preferably a fluorine-based polymer, and other thermoplastic resins having the same melting point as above, such as Borienether, nylon 6/6, and polyparaphenylene sulfide, may be used in some cases. You may.

上記フッ素系ポリマーとしてはフッ素含有量が通常20
重量%以上、好ましくは50〜76重量%のものが用い
られる。特に、パーフルオロアルケンないしパーフルオ
ロビニルエーテルリマーまたはコポリマーが好適であり
、その代表例トシてはテトラフルオロエチレンーヘキザ
フルオロプロピレン共重合体(以下、FEPという)、
構造式ニーE CF2−CF2−CF2−CF (O 
R f )−F(ただし、式中Rfは炭素数7以下、好
ましくは1〜3のフッ化アルキル基を意味する)で表わ
されるテトラフルオロエチレン−パーフルオロビニルエ
ーテル共重合体(以下、PFAという)を挙げることが
できる。上記PFAの市販品としてはダイキン工業社製
商品名ネオフロンPFA、デュポン社製商品名テフロン
PFAなどがある。
The fluorine content of the above fluorine-based polymer is usually 20
The amount used is at least 50% by weight, preferably from 50 to 76% by weight. Particularly suitable are perfluoroalkene or perfluorovinyl ether remers or copolymers, typical examples of which are tetrafluoroethylene-hexafluoropropylene copolymer (hereinafter referred to as FEP),
Structural formula: E CF2-CF2-CF2-CF (O
Tetrafluoroethylene-perfluorovinylether copolymer (hereinafter referred to as PFA) represented by Rf)-F (wherein Rf means a fluorinated alkyl group having 7 or less carbon atoms, preferably 1 to 3) can be mentioned. Commercial products of the above PFA include Neoflon PFA (trade name) manufactured by Daikin Industries, Ltd. and Teflon PFA (trade name) manufactured by DuPont.

その他の上記フッ素系ポリマーとして、上記構造式で表
わされるPFAのフッ素の一部が水素に置換されたもの
や、ポリクロロトリフルオロエチレン(以下、PCTF
Eという)、エチレンーテ1−ラフルオロエチレン共重
合体(以下、ETFEといつ)、エチレン−クロルトリ
フルオロエチレン共重合体なども使用可能である。
Other examples of the above-mentioned fluorine-based polymers include those in which part of the fluorine in PFA represented by the above structural formula is replaced with hydrogen, and polychlorotrifluoroethylene (hereinafter referred to as PCTF).
Ethylene-te-1-lafluoroethylene copolymer (hereinafter referred to as ETFE), ethylene-chlorotrifluoroethylene copolymer, etc. can also be used.

これらのフッ素系ポリマーは常温では非接着性であるが
融点以上に加熱すると金属などに対して容易に融着する
性質を有しているとともに、溶融時のポリマーの流れが
少ないという特徴を有している。
These fluoropolymers are non-adhesive at room temperature, but when heated above their melting point, they easily fuse to metals, etc., and the polymer flows less when melted. ing.

上記のような熱可塑性樹脂に配合される導電性フィラー
としては、カーボン、銀などの粒子が好ましいが、その
他の金属粒子も使用できる。なおこの導電性フィラーは
、導電性フィルムの面によって異なるものを使用しても
よい。これら導電性フィラーの使用割合としては、これ
ら導電性フィラーと熱可塑性樹脂との合計量中に占める
割合が、カーボンでは通常3〜5重量%とするのがよく
、銀では通常70〜85重量%とするのがよい。これら
の割合が少なすぎると導電性接着フィルムの導電性が不
充分となり、また多すぎると均一に分散させるのが困難
であったり接着性が低下するため好ましくない。
As the conductive filler to be mixed into the above thermoplastic resin, particles of carbon, silver, etc. are preferable, but particles of other metals can also be used. Note that different conductive fillers may be used depending on the surface of the conductive film. The proportion of these conductive fillers in the total amount of these conductive fillers and thermoplastic resin is usually 3 to 5% by weight for carbon, and usually 70 to 85% by weight for silver. It is better to If these proportions are too small, the conductivity of the conductive adhesive film will be insufficient, and if they are too large, it will be difficult to uniformly disperse them or the adhesiveness will deteriorate, which is not preferable.

なお、上記導電性フィラーと熱可塑性樹脂との組み合わ
せは特に限定されない。しかし、この組み合わせによっ
ては得られる導電性接着フィルムの導電性が若干低下す
る場合があるが、その場合にはスパッタエッチ等の方法
で接着フィルムの融着剤表面をエツチングすることによ
り充分な導電性が得られる。
Note that the combination of the conductive filler and thermoplastic resin is not particularly limited. However, depending on this combination, the conductivity of the resulting conductive adhesive film may decrease slightly, but in that case, sufficient conductivity can be achieved by etching the surface of the adhesive on the adhesive film using a method such as sputter etching. is obtained.

上記のような構成からなる導電性接着フィルム1の厚み
としては、一般に7〜150μm1好適には20〜11
0μmであシ、このうち導電性フィルム2の厚みが5〜
90μm1好ましくは10〜70μmで、このフィルム
2の両面に塗工される前記熱可塑性樹脂と導電性フィラ
ーとからなる融着剤のそれぞれの厚みが1〜30μm1
好適には5〜20μmである。
The thickness of the conductive adhesive film 1 having the above structure is generally 7 to 150 μm, preferably 20 to 11 μm.
The thickness of the conductive film 2 is 5 to 0 μm.
90 μm 1 preferably 10 to 70 μm, and the thickness of each of the adhesives made of the thermoplastic resin and conductive filler coated on both sides of the film 2 is 1 to 30 μm 1
It is preferably 5 to 20 μm.

第2図および第3図は、融着剤3,3′における熱可塑
性樹脂として融点の同じものを用いて得られた導電性接
着フィルム1を用いて半導体素子をダイポンディングし
てなる半導体装置の一例を示したもので、4は半導体基
板としてのリードフレーム5a上に前記フィルム1によ
ってダイボンディングつまり接着固定された半導体素子
、6,6は」二記素子4上に形成された電極7,7と他
のリードフレーム5b、5cとを接続したポンディング
ワイヤ、8は上記各構成要素を一体に包囲した刺止樹脂
である。
FIGS. 2 and 3 show a semiconductor device obtained by die-bonding a semiconductor element using a conductive adhesive film 1 obtained by using thermoplastic resins having the same melting point as the thermoplastic resins in the fusing agents 3 and 3'. An example is shown in which 4 is a semiconductor element die-bonded or adhesively fixed by the film 1 on a lead frame 5a serving as a semiconductor substrate, and 6 and 6 are electrodes 7 and 7 formed on the element 4. A bonding wire 8 connecting the lead frames 5b and 5c is a stabbing resin that integrally surrounds each of the above components.

上記導電性接着フィルム1による素子4のダイボンディ
ングは、リードフレーム5a上に所定の大きさに切断し
た上記フィルム1を載置しこの」ユに素子4をのせたの
ち、フィルム1の融着剤3゜3′が溶融軟化する温度下
で加熱圧着することにより行われる。
Die bonding of the element 4 using the conductive adhesive film 1 is carried out by placing the film 1 cut into a predetermined size on the lead frame 5a, placing the element 4 on the lead frame 5a, and applying the adhesive for the film 1. This is done by heating and pressing at a temperature at which 3°3' melts and softens.

また、導電性接着フィルムが融着剤における熱可塑性樹
脂として前述したような融点の異なるものを用いて得ら
れた場合には、まずこの導電性接着フィルム1をシリコ
ンウェハーの裏面に接着させて導電性接着フィルム付き
ウェハーとしておく。
In addition, if the conductive adhesive film is obtained by using thermoplastic resins having different melting points as described above as the thermoplastic resin in the fusion agent, the conductive adhesive film 1 is first adhered to the back surface of a silicon wafer, and then the conductive adhesive film 1 is Leave as a wafer with adhesive film.

第4図はこの導電性接着フィルム付きウェハーの一例を
示すものであシ、9はシリコンウェハー、10はこのウ
ェハー9に導電性接着フィルム1を接着させてなる導電
性接着フィルム付きウェハーである。なお、導電性接着
フィルム1における融着剤3に含まれる熱可塑性樹脂の
融点の方が融着剤3′に含まれる樹脂の融点に比べて低
いものである。
FIG. 4 shows an example of a wafer with a conductive adhesive film, where 9 is a silicon wafer, and 10 is a wafer with a conductive adhesive film made by adhering the conductive adhesive film 1 to the wafer 9. Note that the melting point of the thermoplastic resin contained in the fusing agent 3 in the conductive adhesive film 1 is lower than that of the resin contained in the fusing agent 3'.

この導電性接着フィルム付きウェハー9をフルカットで
スクライビングして導電性接着フィルム付き半導体素子
として、これを半導体基板としてのリードフレーム上に
前記フィルム1の高融点側の樹脂を含む融着剤3′が溶
融軟化する温度下で加熱圧着することによりダイボンデ
ィングが行われる。
This conductive adhesive film-coated wafer 9 is fully cut and scribed to produce a conductive adhesive film-coated semiconductor element, and this is placed on a lead frame as a semiconductor substrate using a fusing agent 3' containing a resin on the high melting point side of the film 1. Die bonding is performed by heating and pressing at a temperature at which the material melts and softens.

このようにして、この発明の導電性接着フィルムをダイ
ボンディング用材料として用いて得られた半導体装置で
は、基板と素子との間がこの接着フィルムにより電気的
に接続しており、このときの基板と素−トとの間の抵抗
は接着フィルムの厚みなどにもよるが通常10−3〜2
×102Ω程度でありAu−5i共晶や導電性銀ペース
ト組成物の導電性に比べて遜色のないものである。
In the semiconductor device thus obtained using the conductive adhesive film of the present invention as a die bonding material, the substrate and the element are electrically connected by the adhesive film. The resistance between the material and the substrate is usually 10-3 to 2, although it depends on the thickness of the adhesive film.
The conductivity is approximately 102Ω, which is comparable to the conductivity of Au-5i eutectic and conductive silver paste compositions.

以下にこの発明の実施例を記載してより具体的に説明す
る。なお、以下において%とあるのは重量%を意味する
Examples of the present invention will be described below to explain it more specifically. In addition, below, % means weight %.

実施例1〜5 下記の第1表に示すような導電性フィルムの両面に同表
に示す熱可塑性樹脂および導電性フィラー(粉末)から
なる融着剤を同表に示す塗工厚みに溶融塗工してこの発
明の半導体素子固定用導電性接着フィルムを得た。
Examples 1 to 5 A fusion agent consisting of a thermoplastic resin and a conductive filler (powder) shown in the table was melt-coated on both sides of a conductive film as shown in Table 1 below to a coating thickness shown in the table. Thus, a conductive adhesive film for fixing a semiconductor element of the present invention was obtained.

なお、同表および後記の第3表において導電性ポリイミ
ドとあるのは、日東電気工業社製のポリイミド樹脂前駆
体と銀粉からなるペースト(商品名■R1000)をフ
ィ)V lx状に硬化させて得られた導電性ポリイミド
フィルムである。
In addition, in the same table and Table 3 below, conductive polyimide refers to a paste (trade name ■R1000) made from Nitto Electric Kogyo Co., Ltd. consisting of a polyimide resin precursor and silver powder that is cured into a fi) Vlx shape. This is the obtained conductive polyimide film.

第 1 表 上記のようにして得られた導電性接着フィルムを用いて
リードフレーム材質である42アロイ板上にシリコンチ
ップ(3爾x 8 m+n ) f 350 ℃、5 
K9 / cA 、 5秒の条件で加熱圧着した。接着
後室温まで冷却し、プッシュプルゲージを用いて剪断接
着力を測定しようとしだが、いずれも接着強度が大きく
素子が破壊した。さらに、200℃で剪断接着ノJを測
定したところ、次の第2表に記載するような接着力を示
し、いずれもワイヤボンディング時に必要な接着力以上
の値であった。
Table 1 Using the conductive adhesive film obtained as described above, silicon chips (3 x 8 m+n) were placed on a 42 alloy plate, which is a lead frame material, at f 350 °C, 5
Heat and pressure bonding was carried out under the conditions of K9/cA and 5 seconds. After adhesion, it was cooled to room temperature and attempts were made to measure the shear adhesion force using a push-pull gauge, but in both cases the adhesion strength was so large that the device was destroyed. Furthermore, when the shear adhesion J was measured at 200° C., the adhesive strength shown in Table 2 below was shown, and all values were greater than the adhesive strength required for wire bonding.

また、上記接着時のシリコンチップと42アロイ板との
間の抵抗を測定した結果を次の第2表に併記した。
Furthermore, the results of measuring the resistance between the silicon chip and the 42 alloy plate during the bonding process are also listed in Table 2 below.

第2表 つぎに、上記フィルムを用いてアルミ腐食性測定用のモ
デル素子を上記同様にして16ピンDIPのリードフレ
ームにグイボンディングし、所定のワイヤボンディング
を行い、さらに日東電気工業社製のエポキシ成形材料M
P−10で成形封止して半導体装置をつくった。この装
置につき、143℃、4気圧、95%RH,10ボルト
バイアスのプレッシャークツカーバイアステストを行っ
た。
Table 2 Next, using the above film, a model element for aluminum corrosion measurement was bonded to a 16-pin DIP lead frame in the same manner as above, and the prescribed wire bonding was performed, and then epoxy Molding material M
A semiconductor device was manufactured by molding and sealing with P-10. A pressure puller bias test was performed on this device at 143° C., 4 atmospheres, 95% RH, and 10 volt bias.

結果は後記の第5表に示されるとおりであった。The results were as shown in Table 5 below.

実施例6〜10 下記の第3表に示すような導電性フィルムの両面の面ご
とにそれぞれ同表に示す互いに融点の異なる熱可塑性樹
脂に導電性フィラー(粉末)を含む融着剤を10μm(
ただし、実施例10では20μm)の塗工厚みで溶融塗
工してこの発明の半導体素子固定用導電性接着フィルム
を得た。
Examples 6 to 10 A fusion agent containing a conductive filler (powder) was applied to each surface of both sides of a conductive film as shown in Table 3 below to a thickness of 10 μm (
However, in Example 10, the conductive adhesive film for fixing a semiconductor element of the present invention was obtained by melt coating with a coating thickness of 20 μm.

第3表 上記のようにして得られた導電性接着フィルムをシリコ
ンウェハーの裏面に上記熱可塑性樹脂のうち融点の低い
方の樹脂を含む面を融着剤とじてそれぞれ290℃のホ
ットプレート上でロールを用いて融着させ接着フィルム
付きウェハーを得た。
Table 3: The conductive adhesive film obtained as described above was placed on the back side of a silicon wafer, with the side containing the thermoplastic resin having the lower melting point sealed with a fusing agent, and placed on a hot plate at 290°C. A wafer with an adhesive film was obtained by fusing using a roll.

得られた接着フィルム付きウェハーをスクライビングし
てそれぞれ3 mm X :3 mmの大きさの接着フ
ィルム付き半導体素子を得た。
The obtained adhesive film-coated wafers were scribed to obtain adhesive film-coated semiconductor elements each having a size of 3 mm x 3 mm.

次にこれらの接着フィルム付き半導体素子をリードフレ
ーム材質である42アロイ板上に接着フィルムの融点の
高い方の樹脂を含む融着剤を介してそれぞれ350℃、
5Kg/c4,5秒の条件で加熱圧着した。接着後室温
まで冷却し、プッシュプルゲージを用いてそれぞれの剪
断接着力を測定しようとしたが、いずれも接着強度が大
きく素子が破壊した。さらに、下記の第4表に示す測定
温度でそれぞれの剪断接着力を測定したところ、下記の
第4表に示すような接着力を示し、いずれもワイヤボン
ディング時に必要な接着力以上の値であった。
Next, these semiconductor elements with adhesive films are placed on a 42 alloy plate, which is a lead frame material, at 350°C via a fusing agent containing a resin with a higher melting point than the adhesive film.
Heat and pressure bonding was carried out under the conditions of 5 kg/c for 4.5 seconds. After adhesion, the devices were cooled to room temperature and an attempt was made to measure the shear adhesion strength of each using a push-pull gauge, but in both cases the adhesion strength was so large that the device was destroyed. Furthermore, when the shear adhesive strength of each was measured at the measurement temperature shown in Table 4 below, the adhesive strength shown in Table 4 below was obtained, and both values were greater than the adhesive strength required for wire bonding. Ta.

また、上記接着時の半導体素子と42アロイ板間の抵抗
を測定し、この結果を下記の第4表に併記した。
Furthermore, the resistance between the semiconductor element and the 42 alloy plate during the bonding process was measured, and the results are also listed in Table 4 below.

第4表 また上記接着フィルムを用いて実施例1〜5と同様にし
て半導体装置を作シ、プレッシャークツカーバイアステ
ストを行った結果は、後記の第5表に示されるとおりで
あった。
Table 4 Semiconductor devices were fabricated using the above adhesive film in the same manner as in Examples 1 to 5, and a pressure puller bias test was conducted. The results are as shown in Table 5 below.

比較例1 42アロイ板に金メッキを施し、これにシリコンチップ
を350℃、5 h / ca % 5秒の条件で圧着
してAu−5i共晶合金を形成して接着した。このとき
のシリコンチップと42アロイ板との間の抵抗は1×1
0−3Ωであった。また200℃の剪断接着力を測定し
たところ、チップが破壊した。
Comparative Example 1 A 42 alloy plate was plated with gold, and a silicon chip was pressure-bonded thereon at 350° C. and 5 h/ca % for 5 seconds to form an Au-5i eutectic alloy and adhere to it. At this time, the resistance between the silicon chip and the 42 alloy plate is 1×1
It was 0-3Ω. Furthermore, when the shear adhesive strength at 200° C. was measured, the chip was broken.

また、16ピンDIPのリードフレームの必要部分を金
メッキし、これにアルミ腐食測定用のモデル素子をAu
−5i 共晶合金の形成にてダイボンディングし、以下
実施例1と同様にしてプレッシャークツカーバイアステ
ストを行った。結果は後記の第5表に併記されるとおシ
であった。
In addition, we plated the necessary parts of the 16-pin DIP lead frame with gold, and attached a model element for aluminum corrosion measurement to this gold plated part.
-5i Die bonding was performed by forming a eutectic alloy, and a pressure puller bias test was conducted in the same manner as in Example 1. The results should be listed in Table 5 below.

比較例2 市販のエポキシ系銀ペースト組成物を用い、これを42
アロイ板上に塗工したのちこの上にシリコンチップをの
せ、180℃、1時間の条件で硬化させて上記チップを
上記42アロイ板に接着した。このときのシリコンチッ
プと42アロイ板との間の抵抗は5×10 Ωであった
。また、200℃での剪断接着力を測定したところ、2
0 Kg/c4と充分な接着強度を有していた。つぎに
、アルミ腐食測定用モデル素子を上記銀ペースト組成物
を用いて180℃、1時間の硬化条件で16ピンDIP
のリードフレーム上にダイボンディングし、以下実施例
1と同様にしてプレツシャークツカーバイアヌテストを
行った。結果は、下記の第5表に併記されるとおりであ
った。
Comparative Example 2 Using a commercially available epoxy silver paste composition, this was
After coating on the alloy plate, a silicon chip was placed thereon and cured at 180°C for 1 hour to adhere the chip to the 42 alloy plate. The resistance between the silicon chip and the 42 alloy plate at this time was 5×10 Ω. In addition, when the shear adhesive strength was measured at 200°C, it was found that 2
It had sufficient adhesive strength of 0 Kg/c4. Next, a model element for aluminum corrosion measurement was subjected to 16-pin DIP using the above silver paste composition under curing conditions of 180°C for 1 hour.
The sample was die-bonded onto a lead frame, and then a pressure test was carried out in the same manner as in Example 1. The results were as shown in Table 5 below.

第5表 上記の結果から明らかなように、この発明の導電性接着
フィルムによれば、作業性きわめて良好にして従来もつ
とも信頼性の高いといわれているAu−5i 共晶合金
による接着方式を採用したものに比し遜色のない良好な
耐湿信頼性、導電性を有する半導体装置が得られるもの
であることがわかる。
As is clear from the above results in Table 5, the conductive adhesive film of the present invention employs an adhesion method using Au-5i eutectic alloy, which has excellent workability and is said to be more reliable than conventional ones. It can be seen that a semiconductor device can be obtained which has good moisture resistance reliability and conductivity comparable to those obtained by using this method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の半導体素子固定用接着フィルム、第
2図は上記フィルムを用いて作製した半導体装置の一例
を示す断面図、第3図は同平面図、第4図は導電性接着
フィルム付きウェハーである。 2・・・耐熱性フィルム、3・・・熱可塑性樹脂と導電
性フィラーとからなる融着剤。 特許出願人 日束電気工業株式会社
FIG. 1 is an adhesive film for fixing semiconductor elements of the present invention, FIG. 2 is a sectional view showing an example of a semiconductor device manufactured using the above film, FIG. 3 is a plan view of the same, and FIG. 4 is a conductive adhesive film. It is a wafer with 2...Heat-resistant film, 3...Fusing agent consisting of thermoplastic resin and conductive filler. Patent applicant: Nichizuka Electric Industry Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] (1)導電性フィルムの両面に熱可塑性樹脂と導電性フ
ィラーとからなる混合物を融着剤として塗工してなる半
導体素子固定用導電性接着フィルム。
(1) A conductive adhesive film for fixing a semiconductor element, which is formed by coating both sides of a conductive film with a mixture of a thermoplastic resin and a conductive filler as a fusion agent.
(2)熱可塑性樹脂の融点が170〜320℃である特
許請求の範囲第+11項記載の半導体素子固定用導電性
接着フィルム。
(2) The conductive adhesive film for fixing a semiconductor element according to claim 11, wherein the thermoplastic resin has a melting point of 170 to 320°C.
(3)熱可塑性樹脂の融点が導電性フィルムの両面で異
なる特許請求の範囲第(1)項記載の半導体素子固定用
導電性接着フィルム。
(3) The conductive adhesive film for fixing a semiconductor element according to claim (1), wherein the thermoplastic resin has a different melting point on both sides of the conductive film.
(4)熱可塑性樹脂の融点が170〜820℃であり、
一方の熱可塑性樹脂の融点が他方の熱可塑性樹脂の融点
より15℃以上高く、かつ両方の熱可塑性樹脂の分解温
度が融点の高い方の熱可塑性樹脂の融点より30℃以上
高い特許請求の範囲第(3)項記載の半導体素子固定用
導電性接着フィルム。
(4) The melting point of the thermoplastic resin is 170 to 820°C,
Claims in which the melting point of one thermoplastic resin is 15°C or more higher than the melting point of the other thermoplastic resin, and the decomposition temperature of both thermoplastic resins is 30°C or more higher than the melting point of the thermoplastic resin with a higher melting point. The conductive adhesive film for fixing a semiconductor element according to item (3).
(5) 熱可塑性樹脂がフッ素系ポリマーである特許請
求の範囲第(2)〜(4)項記載の半導体素子固定用導
電性接着フィルム。
(5) The conductive adhesive film for fixing a semiconductor element according to claims (2) to (4), wherein the thermoplastic resin is a fluorine-based polymer.
(6) フッ素系ポリマーがパーフルオロアルケンない
しパーフルオロビニルエーテルのホモポリマーまたはコ
ポリマーからなる特許請求の範囲第(5)項記載の半導
体素子固定用導電性接着フィルム。
(6) The conductive adhesive film for fixing a semiconductor element according to claim (5), wherein the fluorine-based polymer is a homopolymer or copolymer of perfluoroalkene or perfluorovinyl ether.
JP58212652A 1983-11-09 1983-11-09 Conductive adhesive film for fixing semiconductor elements Expired - Lifetime JPH0636416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58212652A JPH0636416B2 (en) 1983-11-09 1983-11-09 Conductive adhesive film for fixing semiconductor elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58212652A JPH0636416B2 (en) 1983-11-09 1983-11-09 Conductive adhesive film for fixing semiconductor elements

Publications (2)

Publication Number Publication Date
JPS60102750A true JPS60102750A (en) 1985-06-06
JPH0636416B2 JPH0636416B2 (en) 1994-05-11

Family

ID=16626169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58212652A Expired - Lifetime JPH0636416B2 (en) 1983-11-09 1983-11-09 Conductive adhesive film for fixing semiconductor elements

Country Status (1)

Country Link
JP (1) JPH0636416B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141038U (en) * 1986-03-01 1987-09-05
JPH03184880A (en) * 1989-12-14 1991-08-12 Matsushita Electric Ind Co Ltd Electrostatic recording head and production thereof
JPH0476976U (en) * 1990-11-19 1992-07-06
JPH04234472A (en) * 1990-12-07 1992-08-24 Natl Starch & Chem Investment Holding Corp Thermoplastic dye-bonded adhesive film
JPH06302629A (en) * 1993-04-19 1994-10-28 Toshiba Chem Corp Mounting method of semiconductor device
JP2006520404A (en) * 2003-01-06 2006-09-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Fluoropolymer sealant
WO2009060686A1 (en) * 2007-11-08 2009-05-14 Nitto Denko Corporation Adhesive sheet for inspection
US8048690B2 (en) 2007-11-08 2011-11-01 Nitto Denko Corporation Pressure-sensitive adhesive sheet and process for producing semiconductor device having same
JP2016219523A (en) * 2015-05-18 2016-12-22 新電元工業株式会社 Semiconductor apparatus manufacturing method, semiconductor apparatus and semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645060A (en) * 1979-09-21 1981-04-24 Hitachi Ltd Semiconductor device
JPS57102137U (en) * 1980-12-12 1982-06-23
JPS5877273A (en) * 1981-11-02 1983-05-10 Hitachi Ltd Laser diode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645060A (en) * 1979-09-21 1981-04-24 Hitachi Ltd Semiconductor device
JPS57102137U (en) * 1980-12-12 1982-06-23
JPS5877273A (en) * 1981-11-02 1983-05-10 Hitachi Ltd Laser diode

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141038U (en) * 1986-03-01 1987-09-05
JPH03184880A (en) * 1989-12-14 1991-08-12 Matsushita Electric Ind Co Ltd Electrostatic recording head and production thereof
JPH0476976U (en) * 1990-11-19 1992-07-06
JPH04234472A (en) * 1990-12-07 1992-08-24 Natl Starch & Chem Investment Holding Corp Thermoplastic dye-bonded adhesive film
JPH06302629A (en) * 1993-04-19 1994-10-28 Toshiba Chem Corp Mounting method of semiconductor device
JP2512859B2 (en) * 1993-04-19 1996-07-03 東芝ケミカル株式会社 Mounting method of semiconductor element
JP2006520404A (en) * 2003-01-06 2006-09-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Fluoropolymer sealant
WO2009060686A1 (en) * 2007-11-08 2009-05-14 Nitto Denko Corporation Adhesive sheet for inspection
CN101568610A (en) * 2007-11-08 2009-10-28 日东电工株式会社 Adhesive sheet for inspection
US8048690B2 (en) 2007-11-08 2011-11-01 Nitto Denko Corporation Pressure-sensitive adhesive sheet and process for producing semiconductor device having same
US8146438B2 (en) 2007-11-08 2012-04-03 Nitto Denko Corporation Pressure-sensitive adhesive sheet for testing
JP2016219523A (en) * 2015-05-18 2016-12-22 新電元工業株式会社 Semiconductor apparatus manufacturing method, semiconductor apparatus and semiconductor device

Also Published As

Publication number Publication date
JPH0636416B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
US6034331A (en) Connection sheet and electrode connection structure for electrically interconnecting electrodes facing each other, and method using the connection sheet
TWI696681B (en) Film-shaped adhesive and method for manufacturing semiconductor package using film-shaped adhesive
US7262514B2 (en) Epoxy resin composition for semiconductor encapsulation, semiconductor device using the same, and process for producing semiconductor device
JP4537555B2 (en) Semiconductor package manufacturing method and semiconductor package
WO1998028788A1 (en) Manufacture of semiconductor device
US8569109B2 (en) Method for attaching a metal surface to a carrier, a method for attaching a chip to a chip carrier, a chip-packaging module and a packaging module
JP4449325B2 (en) Adhesive film for semiconductor, semiconductor device, and manufacturing method of semiconductor device.
JPH11150135A (en) Conductive paste of superior thermal conductivity and electronic device
JP2603543B2 (en) Adhesive tape for electronic components
JPS60102750A (en) Conductive adhesive film for fixing semiconductor element
JPH10335389A (en) Semiconductor device and sheet-shaped sealing material used for the same
JP2006339160A (en) Thermosetting circuit connection member, connection structure of electrode using it and connection method of electrode
JPH03188180A (en) Conductive film adhesive, method for adhesion, semiconductor device, and preparation of semiconductor device
JPH07179832A (en) Conductive adhesive
JP3779091B2 (en) Resin composition for sealing
JPS60102751A (en) Adhesive film for fixing semiconductor element
JPH11297904A (en) Semiconductor device
KR100248582B1 (en) A connection sheet for interconnection electrodes facing each other, and electrode connection structure and method using the connection sheet
JPS603131A (en) Adhesive film for fixation of semiconductor element
JP2000036506A (en) Manufacture of semiconductor device
JP2010010142A (en) Thermosetting circuit connection member and connection structure of electrode using it and connecting method of electrode
JP2584424B2 (en) Resin-sealed semiconductor device
JPH11219982A (en) Conductive particle and anisotropic conductive adhesive agent provided therewith
JPH01272125A (en) Manufacture of semiconductor device
JPH06302724A (en) Semiconductor device