JPS60100007A - Measuring device of surface by optical heterodyne interference method - Google Patents

Measuring device of surface by optical heterodyne interference method

Info

Publication number
JPS60100007A
JPS60100007A JP20727783A JP20727783A JPS60100007A JP S60100007 A JPS60100007 A JP S60100007A JP 20727783 A JP20727783 A JP 20727783A JP 20727783 A JP20727783 A JP 20727783A JP S60100007 A JPS60100007 A JP S60100007A
Authority
JP
Japan
Prior art keywords
light
reflected light
light beams
reflected
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20727783A
Other languages
Japanese (ja)
Inventor
Hiroo Fujita
宏夫 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP20727783A priority Critical patent/JPS60100007A/en
Priority to US06/608,744 priority patent/US4650330A/en
Priority to GB08412312A priority patent/GB2146116B/en
Publication of JPS60100007A publication Critical patent/JPS60100007A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/04Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by beating two waves of a same source but of different frequency and measuring the phase shift of the lower frequency obtained
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/303Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces using photoelectric detection means

Abstract

PURPOSE:To enable measurement of high accuracy, by generating two light beams different in frequency by using an acoustooptical element, and by detecting the mutual phases of interfered beat signals while detecting the direction of the reflection of reflected lights from the surface of an object to be measured. CONSTITUTION:Two light beams different in frequency, which are emitted from an acoustooptical element (A.O)103, are grouped in one unit. The light beams in this group are split in two directions by a polarized beam splitter 102, and light beams 104' and 105' on one side turn to be reference lights which are not applied to the surface 107 of an object, while light beams on the other side are applied onto the surface 107 of the object. Lights reflected therefrom are turned to be reflected lights 120 and 121 by the splitter 102. Photoelectric converters 122 and 123 are provided for making the reference lights 104' and 105' interfere with the object-reflected lights 120 and 121. The reference lights 104' and 105' contain on informations on the surface of the object to be measured, while the object- reflected lights 120 and 121 contain informations on the surface, the angle of inclination, etc. of the object at the point to which light beams are applied. This constitution enables accurate measurement in a wide scope of measurement.

Description

【発明の詳細な説明】 本発明はレーザを用いた光ヘテロダイン干渉法による表
面測定装置に関するものである。従来行なわれている光
干渉による表面状態の測定では単一周波数成分を持つ2
つの光波の干渉による。いわゆるホモダイン光干渉で、
測定量は01ミクロンメートルのオーダーである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surface measuring device using optical heterodyne interferometry using a laser. In the conventional measurement of surface conditions using optical interference, two
Due to the interference of two light waves. This is the so-called homodyne optical interference.
The measured quantity is on the order of 0.1 micrometer.

近年機械加工等の精度が向上し−0,01ミクロンメー
トルオーダーの表面粗さ測定の要求も増し、新たな高精
度測定器の開発が待たれている。光ヘテロダイン干渉は
ホモダイン干渉に比べて2桁以上も高精度に表面状態を
計ることができる方法である。光ヘテロダイン干渉は2
つの異なる周波数成分を持つ光を干渉させて、その強度
を光電変換して、差の周波数のビート信号を得る方法で
ある。
In recent years, as the accuracy of machining has improved, the demand for surface roughness measurement on the order of -0.01 micrometers has increased, and the development of new high-precision measuring instruments is awaited. Optical heterodyne interference is a method that can measure surface conditions more precisely than homodyne interference by two orders of magnitude. Optical heterodyne interference is 2
This is a method of interfering light with two different frequency components and photoelectrically converting the intensity to obtain a beat signal of the difference frequency.

例えば周波数f、、f2の光波をE、、 E2とすれば E+ (tl=A、、 (tlcos(2πf、t+ダ
I(t))E、、 (tl=A2(tlcos(2πf
2 を+6(t))ここで−A、、、A2は振幅、ダ1
.グ、は位相を示す。
For example, if the light wave with frequency f,, f2 is E,, E2, then E+ (tl=A,, (tlcos(2πf, t+daI(t))E,, (tl=A2(tlcos(2πf)
2 +6(t)) where -A, , A2 is the amplitude, Da1
.. , indicates the phase.

この2つの光波を干渉させると−その強度I (tlは I (tl= l E、 (tl+ E2(tl l 
2 となる、これを光検出器で電流量(1)に変換する
とi(t>cxA、 ’ +A2 ’ +2A4 A、
、 cos (2πΔft+Δグ)但し Δf二f、 
−f2− Δダーグ1−グ。
When these two light waves interfere - their intensity I (tl is I (tl= l E, (tl+ E2(tl l
2, and when this is converted into the amount of current (1) using a photodetector, i(t>cxA, ' +A2 ' +2A4 A,
, cos (2πΔft+Δg)where Δf2f,
-f2- ΔDag1-g.

なる電気信号が得られる。An electrical signal is obtained.

ここでΔfは105〜106Hzのオーダーで十分に電
気的検出が可能で、このビート信号の周波数、位相の変
化を検出することにより、もとの光波が持っている光の
周波数領域での情報を高精度に取り出すことができる。
Here, Δf is on the order of 105 to 106 Hz, which can be sufficiently electrically detected, and by detecting changes in the frequency and phase of this beat signal, information in the optical frequency domain that the original light wave has can be obtained. It can be extracted with high precision.

本発明による光ヘテロダイン干渉法による表面測定装置
では音響光学素子(以下にA・0と略す)を用いて前記
周波数の異なる2本の光線を発生させ、干渉されたビー
ト信号相互の位相検出を行なうと共に一被測定物の物体
面からの反射光の反射方向を共に検出して一従来の光ヘ
テロダイン干渉法に比べて広範囲な測定範囲の計測を高
精度に実現させるもので、@に非球面形状の計測に適し
た表面測定装置を提供するものである。
In the surface measuring device using optical heterodyne interferometry according to the present invention, two light beams having different frequencies are generated using an acousto-optic element (hereinafter abbreviated as A.0), and mutual phase detection of the interfered beat signals is performed. It also detects the reflection direction of the reflected light from the object surface of the object to be measured, and achieves measurement over a wider measurement range with higher precision than the conventional optical heterodyne interferometry. The present invention provides a surface measuring device suitable for measuring.

第1図に本発明の実施例である表面測定装置のブロック
線図を示す。
FIG. 1 shows a block diagram of a surface measuring device that is an embodiment of the present invention.

He−Neレーザ管あるいは半導体レーザ等によるレー
ザ発振部100がら放射された周波数f oをもつ1本
の光ビーム101は音響光学素子(Aφ0)103に入
射される。A・0106はfmなる周波数の正弦波発振
器111を入力とするA−0ドライバー112によって
超音波進行波をその内部に発生させ、光と超音波の相互
作用により光ヘテロダイン干渉の基礎となる周波数の異
なる2本の光ビーム104及び105の2ビームを発生
させる。なお光線108は非回折光で計測には用いない
光である。
A single light beam 101 having a frequency fo emitted from a laser oscillation unit 100 such as a He-Ne laser tube or a semiconductor laser is incident on an acousto-optic element (Aφ0) 103. A-0106 generates an ultrasonic traveling wave internally by the A-0 driver 112 which inputs a sine wave oscillator 111 with a frequency fm, and the interaction between light and ultrasonic waves generates a frequency that is the basis of optical heterodyne interference. Two different light beams 104 and 105 are generated. Note that the light beam 108 is non-diffracted light and is not used for measurement.

ここでA・0ドライバー112は一般に電圧制御発振器
(VCD)、平衡変調器、高周波パワーアンプ等から構
成され一超音波駆動信号の周波数fa酸成分対して、f
 a −f m及びf a −4−f mなる周波数成
分を持つ信号を発生させ、A−0103内部を透過する
光の周波数シフトを行なうもので、光ビーム104はf
o+fa−fm−光ビーム105はfo+fa+fmな
る周波数を持ち、その差の周波数は2fmである。
Here, the A.0 driver 112 is generally composed of a voltage controlled oscillator (VCD), a balanced modulator, a high frequency power amplifier, etc.
It generates signals with frequency components a - f m and f a -4 - f m, and shifts the frequency of the light that passes through the inside of A-0103, and the light beam 104 is
The o+fa-fm-light beam 105 has a frequency of fo+fa+fm, and the difference in frequency is 2fm.

ここで光ビーム104及び105の間の距離は周波数f
mに比例する。光ビーム104及び105の2つの光線
をひとつの単位としてプローブ光線となし、該プローブ
光線を2つの方向に分割する。
Here the distance between the light beams 104 and 105 is the frequency f
Proportional to m. The two light beams 104 and 105 are made into one unit as a probe light beam, and the probe light beam is divided into two directions.

102は偏光ビームスプリッタ−及び1/4波長板から
構成される光アイソレータで、A・0103と測定する
物体面1070間に設置する。
102 is an optical isolator composed of a polarizing beam splitter and a quarter wavelength plate, and is installed between A.0103 and the object plane 1070 to be measured.

2つの光ビーム104及び105は光アイソレータ10
2で2つの方向に分割する。一方は物体面107に照射
しない参照光101105となし、他方は集光用レンズ
106を通して物体面107に照射する。物体面107
からの反射光を再び集光用レンズ106を通して光アイ
ソレータ102により再び進路を曲げ物体反射光120
゜121とする。122及び126は参照光104.1
05及び物体反射光120−121の干渉を行なわせる
光電変換部で1例えばPINフォトダイオード及び電流
−電圧変換器等で構成され。
The two light beams 104 and 105 are connected to the optical isolator 10
2 to split in two directions. One is used as a reference light 101105 that does not irradiate the object plane 107, and the other irradiates the object plane 107 through the condensing lens 106. Object plane 107
The reflected light from the object passes through the condensing lens 106 again, and the path is bent again by the optical isolator 102.The object reflected light 120
゜121. 122 and 126 are reference beams 104.1
05 and object reflected light 120-121, the photoelectric conversion unit 1 is composed of, for example, a PIN photodiode, a current-voltage converter, and the like.

PINフォトダイオードから得られたビート電流信号を
電流−電圧変換する。
The beat current signal obtained from the PIN photodiode is subjected to current-voltage conversion.

ここで参照光101105は被測定物体面の表面情報を
ふくまず一物体反射光120及び121は光ビームが照
射されたポイントの表面情報即ち表面の粗さあるいは表
面の傾き角度等の表面情報を含む。物体反射光120及
び121の光電変換部123は第1の光電変換部123
1及び第2の光電変換部1231 1233とから成る
Here, the reference beam 101105 includes surface information of the surface of the object to be measured, and the single-object reflected beams 120 and 121 include surface information of the point irradiated with the light beam, that is, surface information such as surface roughness or surface inclination angle. . The photoelectric conversion unit 123 for the object reflected lights 120 and 121 is the first photoelectric conversion unit 123
1 and a second photoelectric conversion section 1231 and a second photoelectric conversion section 1233.

第1の光電変換部1231は主として物体反射光のビー
ト信号の位相を検出するもので、第2の光電変換部12
32.1263は主として物体反射光の反射方向による
光量を検出するもので、物体面107の形状、粗さ等の
差により、照射されたプローブ光の反射方向に差が生ず
るのを検出する。例えば物体面107の形状が1071
の如き場合には、第2の光電変換部1262に物体反射
光が入射し、物体面107の形状が1072の如き場合
には第2の光電変換部1266に物体反射光が入射し、
いずれの部分に物体反射光があるかによって形状を区別
することができる。物体面107が入射方向に対して垂
直な面であれば、いずれの槙2の光電変換部1231 
1233にも物体反射光は入射されず、光電変換部12
61のみに入射され面形状は平坦であることが判定され
る。一般に物体反射光は幅の広いビーム径を有し。
The first photoelectric conversion unit 1231 mainly detects the phase of the beat signal of the object reflected light, and the second photoelectric conversion unit 12
32.1263 mainly detects the amount of light reflected from an object depending on the direction of reflection, and detects differences in the direction of reflection of the irradiated probe light due to differences in shape, roughness, etc. of the object surface 107. For example, the shape of the object plane 107 is 1071
In such a case, the object reflected light enters the second photoelectric conversion unit 1262, and in the case where the shape of the object surface 107 is 1072, the object reflected light enters the second photoelectric conversion unit 1266,
The shape can be distinguished depending on which part of the object reflected light is present. If the object plane 107 is perpendicular to the direction of incidence, the photoelectric conversion unit 1231 of any Maki 2
The object reflected light is not incident on 1233 either, and the photoelectric conversion unit 12
61 and the surface shape is determined to be flat. Generally, light reflected from an object has a wide beam diameter.

第1の光電変換部1261を中心として、3つの光電変
換部のうちのいずれかの2つに反射光が入射するように
設置するのが望ましい。
It is desirable to install the first photoelectric conversion unit 1261 so that reflected light is incident on any two of the three photoelectric conversion units.

線であるが一物体反射光120及び121は物体面10
70表面形状、表面粗さ等の凹凸による2つのビームの
間の光路長の差により一両者の位相が異なり一干渉され
たビート信号の位相の変化として現われてくる。
Although it is a line, the one-object reflected light beams 120 and 121 are at the object plane 10.
70 Due to the difference in optical path length between the two beams due to irregularities such as surface shape and surface roughness, the phase of the two beams differs, and this appears as a change in the phase of the interfered beat signal.

光電変換部122及び126の出力信号となる電圧信号
の直流成分をカットすれば、得られる交流電圧信号12
4及び125は各々 A、’cos(2yr 拳2fmt+θ1) 及びA2
’cos(2π* 2fmt+θ2) で表わされる。
By cutting the DC component of the voltage signal that becomes the output signal of the photoelectric conversion units 122 and 126, the AC voltage signal 12 obtained is obtained.
4 and 125 are respectively A, 'cos (2yr fist 2fmt + θ1) and A2
'cos(2π*2fmt+θ2).

θ1は参照信号の初期位相で一定量であり、θ2は物体
面107の表面凹凸量によって変化する量で、こ−の差
θ2−θ、の変化を検出すればよい。
θ1 is the initial phase of the reference signal and is a constant amount, and θ2 is an amount that changes depending on the amount of surface unevenness of the object surface 107, and it is sufficient to detect a change in the difference θ2−θ.

114は位相比較器で参照光光電変換部122と物体反
射光光電変換部123からの信号相互の位相差を検出す
る。126は位相比較器114と物体反射光光電変換部
12311233がらのデータに基すき物体面1070
表面状態を演算するデータ処理部である。
A phase comparator 114 detects the phase difference between the signals from the reference light photoelectric conversion section 122 and the object reflected light photoelectric conversion section 123. 126 is an object surface 1070 based on data from the phase comparator 114 and the object reflected light photoelectric conversion unit 12311233.
This is a data processing unit that calculates surface conditions.

本実施例では参照光の出力信号と物体反射光光電変換部
123の第1の光電変換部1261の出力信号との位相
差を検出する例を示しているが。
In this embodiment, an example is shown in which the phase difference between the output signal of the reference light and the output signal of the first photoelectric converter 1261 of the object reflected light photoelectric converter 123 is detected.

物体反射光の反射角度が大きく、物体反射光光電変換部
126の第1の光電変換部1231に反射光が余り入射
されない様な場合には一第20光電変換部1232ある
いは1236からの出力信号との位相差を検出してもよ
い。さらには物体面107の形状がある一方方向のみの
凹又は凸の状態を有する場合には第2の光電変換部は1
262及び1233の2つを同時に用いる必要はなく、
反射の状態に応じてどちらかの1つのみを用いてもよい
When the reflection angle of the object-reflected light is large and the reflected light does not enter the first photoelectric converter 1231 of the object-reflected light photoelectric converter 126, the output signal from the 20th photoelectric converter 1232 or 1236 is The phase difference may be detected. Furthermore, if the shape of the object surface 107 is concave or convex in only one direction, the second photoelectric conversion unit
There is no need to use both 262 and 1233 at the same time.
Only one of them may be used depending on the state of reflection.

次に位相比較器114の出力と物体反射光の第2の光電
変換部の出力からデータ演算を行なうデータ処理部12
6の動作の説明をする。
Next, a data processing section 12 performs data calculation from the output of the phase comparator 114 and the output of the second photoelectric conversion section of the object reflected light.
Let me explain the operation of step 6.

2つの光ビーム104及び105が物体面107に照射
されたとき2本の光ビームの間にZなる表面凹凸量があ
り1位相比較器114の出力データがθ=θ2−θ、で
あったとすればZ−λ・θ/4πで表わされる。但しλ
はレーザ光線の波長である。例えばλ=0.6328ミ
クロンメートルとしたとき、θ。=1°当りのZは8.
8オングストロームである。
Suppose that when the two light beams 104 and 105 are irradiated onto the object plane 107, there is a surface unevenness amount Z between the two light beams, and the output data of the first phase comparator 114 is θ=θ2−θ. It is expressed as Z-λ·θ/4π. However, λ
is the wavelength of the laser beam. For example, when λ=0.6328 micrometers, θ. = Z per 1° is 8.
It is 8 angstroms.

位相比較器114は一π4θ〈πあるいは0〈θイ2π
のいずれかのモードで位相角を測ることができるが−例
えばOイθ〈2πモードで動作しているとき−θ=3π
はθ=πとしてしか計測せずm一般的にθ二2nπ」−
θ。(nは整数)においてnは不定でθ。のみの計測と
なる。
The phase comparator 114 outputs -π4θ<π or 0<θi2π
The phase angle can be measured in either mode - For example, when operating in Oi θ<2π mode - θ = 3π
is measured only as θ = π, and generally θ22nπ'-
θ. (n is an integer) where n is indefinite and θ. It is only measured.

2ビームのプローブ光101105が物体面の範囲が位
相角O〈θ≦2π又は−π≦θイπでの測定範囲である
The two-beam probe light 101105 has a measurement range in which the object plane has a phase angle O<θ≦2π or −π≦θiπ.

位相比較器114が一π〈θ〈πのモードで動λ では−π≦θ≦0で表示、0≦Z≦−なる凸状態と判定
してしまい、正確な表面状態の復調ができない不都合が
ある。即ち位相比較器114だけではIZI〉二なる表
面状態の計測は不可能である。
When the phase comparator 114 is in the mode of 1 π < θ < π and dynamic λ is displayed as -π ≦ θ ≦ 0, it is judged as a convex state where 0 ≦ Z ≦ -, which is an inconvenience that makes it impossible to accurately demodulate the surface state. be. That is, it is impossible to measure the surface state of IZI>2 using only the phase comparator 114.

4 第2図(alは物体面107及び光電変換部123とに
対する入射光線と反射光線の関係を示す模式図、第2図
fblは第2図(alの物体面107を拡大して示す側
面図、第2図(C)は位相角を示す模式図である。
4 Fig. 2 (al is a schematic diagram showing the relationship between incident light rays and reflected rays with respect to the object plane 107 and the photoelectric conversion unit 123, and Fig. 2 fbl is a side view showing an enlarged view of the object plane 107 in Fig. 2 (al) , FIG. 2(C) is a schematic diagram showing the phase angle.

第2図(alにおいて20は入射光線である。前述して
きた様に実際は2本の光ビームであるが一図では省略し
て1本の光ビームとして記述する。なお反射光線につい
ても同様である。入射光線20が物体面107の平面部
1076に照射された場合は、正反射してその反射光2
5は入射光線20と逆向きに進み、光アイソレータ10
2で直角に進路を変えて第1′の物体反射光光電変換部
1261に主として入射する。このときの位相の状態を
第2図(C)の位相角0の状態とする。入射光線20が
物体面107の面状態1072にも照射されれば、反射
光は21の進路を通り、光アイソレータ102で再び進
路を変え22の方向に進み物体反射光の第2の光電変換
部1266にも入射(c)のPとする。
In Figure 2 (al), 20 is the incident light ray.As mentioned above, there are actually two light beams, but in the figure it is omitted and described as one light beam.The same applies to the reflected light rays. When the incident light ray 20 is irradiated onto the flat part 1076 of the object surface 107, it is specularly reflected and the reflected light 2
5 travels in the opposite direction to the incident light beam 20 and passes through the optical isolator 10
2, the light changes its course at right angles and mainly enters the 1'th object-reflected light photoelectric conversion unit 1261. The phase state at this time is the state of phase angle 0 shown in FIG. 2(C). If the incident light ray 20 is also irradiated with the surface state 1072 of the object surface 107, the reflected light passes through the path 21, changes its course again at the optical isolator 102, and proceeds in the direction 22 to the second photoelectric conversion section of the object reflected light. 1266 is also assumed to be P of incidence (c).

このとき位相比較器114が−π≦θ≦πのモードで動
作していれば一位相角はOAPの軌跡で0BCPの軌跡
でθ=−(2π−θ。)で計測されねばならない。この
上記に示した位相角の変換を第2の光電変換部1233
への入射光量の電圧データにより行なわせる。
At this time, if the phase comparator 114 is operating in a mode of -π≦θ≦π, one phase angle must be measured at the locus of OAP and 0BCP as θ=−(2π−θ.). The phase angle conversion shown above is performed by the second photoelectric conversion unit 1233.
This is done based on voltage data of the amount of incident light.

前述した如く、物体反射光はある程度ビーム径の広い光
線であるため、光電変換部1231と1232に同時に
入射され、第1の光電変換部1261で位相の計測を、
第2の光電変換部1233で反射方向の検出を行なって
測定された位相角θ。の変換を行なうか1行なわないか
を判断処理することができる。さらに例えば入射光線2
0が物体面107の面状態1071に照射され、反射光
23が光アイソレータ102によって進路を変え24の
方向に進み物体反射光の第20光電変換部1232にも
入射されて− (このとき第1の光電変換部1231に
も入射される)第2図(C1λ の位相角Pの状態になれば+ Z(−でθ=00に対応
する面状態であると判断される。
As mentioned above, since the object reflected light is a beam with a somewhat wide beam diameter, it is simultaneously incident on the photoelectric conversion units 1231 and 1232, and the phase is measured by the first photoelectric conversion unit 1261.
The phase angle θ is measured by detecting the direction of reflection in the second photoelectric conversion unit 1233. It is possible to determine whether or not to perform one line of conversion. Furthermore, for example, the incident ray 2
0 is irradiated onto the surface state 1071 of the object surface 107, the reflected light 23 changes its course by the optical isolator 102, proceeds in the direction of 24, and is also incident on the 20th photoelectric conversion unit 1232 of the object reflected light. (also incident on the photoelectric conversion unit 1231) in FIG. 2 (when the phase angle P is C1λ), it is determined that the surface state is +Z (- and corresponds to θ=00).

λ 以上の例で示した如〈従来のZ〈−なる測定範囲であっ
たものが一本発明による物体反射光の反射方向を検出す
ることにより位相角の絶対値がλ 2πまでの範囲で(即ちIZI≦−)表面状態を正確に
復調できる。
λ As shown in the above example, the conventional measurement range was Z〈-, but by detecting the direction of reflection of the object-reflected light according to the present invention, the absolute value of the phase angle can be changed to within the range of λ 2π ( That is, the surface state (IZI≦-) can be accurately demodulated.

さらには物体反射光の大きさの変化をも同時にる。即ち
位相角が2πを何回転したかを光量変化から検出可能で
ある。
Furthermore, the magnitude of the light reflected from the object also changes at the same time. That is, it is possible to detect how many rotations the phase angle has rotated around 2π from the change in the amount of light.

Zが大きくなるに従って物体反射光の反射の方向が大き
くなり一例えば第20光電変換部1262への入射光量
が増大すると第1の光電変換部1231への入射光量が
減小するから、両者のゲインを検出し、ゲインがある値
goとなれば位相角は2πを1回転したと判断でき1例
えばθ−2π十〇。でZ〉二であると判断処理できる。
As Z increases, the direction of reflection of the object-reflected light increases, and for example, when the amount of light incident on the 20th photoelectric conversion section 1262 increases, the amount of light incident on the first photoelectric conversion section 1231 decreases, so the gain of both increases. is detected, and if the gain reaches a certain value go, it can be determined that the phase angle has made one rotation around 2π.For example, θ−2π10. Therefore, it can be determined that Z〉2.

物体面107に入射する2ビーム光を順次重ね合せて物
体面上を線走査あるいは面走査を行ない。
Two beams of light incident on the object surface 107 are sequentially superimposed to perform line scanning or surface scanning on the object surface.

測定された位相集合の積分を行なうことにより。By performing an integral of the measured phase set.

一般の形状計測が可能である。General shape measurement is possible.

第3図は第1図に用いられる光ヘテロダイン干渉の光学
系の詳細を示す模式図であり、160及び134はシリ
ンドリカルレンズで各々の焦点距離は11 とする。1
31及び162は平凸レンズで各々の焦点距離は12と
する。133は偏光ビームスプリッター−165は1/
4波長板、106はレーザ集光レンズで焦点距離はl。
FIG. 3 is a schematic diagram showing the details of the optical heterodyne interference optical system used in FIG. 1, and 160 and 134 are cylindrical lenses each having a focal length of 11°. 1
31 and 162 are plano-convex lenses each having a focal length of 12. 133 is a polarizing beam splitter - 165 is a 1/
A four-wave plate, 106 is a laser condenser lens with a focal length of l.

とする。shall be.

一般にA・0106は光と超音波の相互作用により、光
波の変調を行なうもので、A・0106に入射する光の
ビーム幅は広いのが好ましいため。
Generally, A-0106 modulates light waves through the interaction of light and ultrasonic waves, and it is preferable that the beam width of the light incident on A-0106 is wide.

シリンドリカルレンズ130と平凸レンズ161の組み
合せで幅の広いだ円ビームを発生させる。
The combination of the cylindrical lens 130 and the plano-convex lens 161 generates a wide elliptical beam.

さらに直線偏光レーザを用いることにより、偏光ビーム
スプリッタ−133と1/4波長板165の組み合せか
ら参照光と物体光の分離を行なう。
Further, by using a linearly polarized laser, the reference light and the object light are separated from the combination of the polarizing beam splitter 133 and the quarter-wave plate 165.

光電変換部122及び123からのビート信号124と
125は一般に振幅が異なり一位相比較器114にはで
きるだけ振幅が近い状態の電気信号を入力するのが好ま
しいため一照射する物体面1070反射率に応じて−例
えばレーザ管を回転させ直線偏光の軸を調整すればよい
。あるいは偏光板を回転させて直線偏光軸を回転しても
よい。
The beat signals 124 and 125 from the photoelectric converters 122 and 123 generally have different amplitudes, and it is preferable to input electrical signals with amplitudes as close as possible to the phase comparator 114. For example, the axis of linearly polarized light may be adjusted by rotating the laser tube. Alternatively, the linear polarization axis may be rotated by rotating the polarizing plate.

さらにビート信号124.125のS/N比を良くする
ため、偏光ビームスプリッタ−133は干渉光がだ円ビ
ームとなる場所に設置するのが好ましい。
Furthermore, in order to improve the S/N ratio of the beat signals 124 and 125, it is preferable to install the polarizing beam splitter 133 at a location where the interference light becomes an elliptical beam.

第3図の実施例ではA・0106によって分離された2
つの光ビームは図示していないが、実際には非常に接近
した2ビームに分離している。また非回折光は図から省
略している。
In the embodiment of FIG. 3, the two separated by A.0106
Although the two light beams are not shown, they are actually separated into two very close beams. Furthermore, undiffracted light is omitted from the figure.

この2ビ一ム分離を与える周波数をfmとしたとき一物
体面上での分離距離dは で与えられる。
When the frequency that provides this two-beam separation is fm, the separation distance d on one object plane is given by:

但し■はA・0103を伝わる超音波の速度である。し
かも■はA・0106の媒質で決まるもので−例えばV
=3.8km/5ec= A’、 =15g−12=5
00+w−lo =7mmとすれば。
However, ■ is the speed of the ultrasonic wave transmitted through A.0103. Moreover, ■ is determined by the medium of A.0106 - for example, V
=3.8km/5ec=A', =15g-12=5
If 00+w-lo =7mm.

f m = 1. OOk Hzで、d−7ミクロンメ
ートルである。
f m = 1. At OOkHz, it is d-7 micrometers.

また物体照射面でのビームスポット径は集光レンズ10
6に入射されるビームの径(このときは円形ガウスビー
ムに変換されている)とレンズの焦点距離l。に関係す
るが、小さいビーム径及び2ビームの間かくdをより小
さくするには、シリンドリカルレンズ134と焦光レン
ズ106の間にビームエクスパンダ−を入れればよい。
Also, the beam spot diameter on the object irradiation surface is determined by the condenser lens 10.
6. The diameter of the beam incident on 6 (converted to a circular Gaussian beam in this case) and the focal length l of the lens. However, in order to make the beam diameter smaller and the distance d between the two beams smaller, a beam expander may be inserted between the cylindrical lens 134 and the focusing lens 106.

以上述べた如く本発明による光ヘテロダイン干渉法によ
る表面測定装置は従来の光ヘテロダイン干渉法と比べて
、広い測定範囲で正確な計測が可能である。
As described above, the surface measuring device using the optical heterodyne interferometry according to the present invention is capable of accurate measurement over a wider measurement range than the conventional optical heterodyne interferometry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例による光ヘテロダイン干渉法に
よる表面測定装置のブロック線図、第2図(alは物体
面及び光電変換部に対する入射光線と反射光線の関係を
示す模式図、第2図(b)は第2図(a)の物体面を拡
大して示す側面図、第2図(c)は位相角を示す模式図
、第3図は第1図に用いられる光ヘテロダイン干渉法の
光学系の詳細を示す模式100・・・・・・レーザ発振
部。 103・・・・・・音響光学素子。 104−105・・・・・・参照光、107・・・・・
・物体面、114・・・・・・位相比較器、 120−121・・・・・・物体反射光、122・・・
・・・参照光光電変換部。 126・・・・・・物体反射光光電変換部。 126・・・・・・データ処理部。 1261・・・・・・物体反射光の第10光電変換部、
1262.1263・・・・・・物体反射光の第2の光
電変換部。 第 2 図 (C) 特開昭GO−100007(6)
FIG. 1 is a block diagram of a surface measurement device using optical heterodyne interferometry according to an embodiment of the present invention, and FIG. Figure (b) is a side view showing an enlarged view of the object plane in Figure 2 (a), Figure 2 (c) is a schematic diagram showing the phase angle, and Figure 3 is the optical heterodyne interferometry used in Figure 1. Schematic diagram showing details of the optical system 100... Laser oscillation unit. 103... Acousto-optic element. 104-105... Reference light, 107...
・Object plane, 114... Phase comparator, 120-121... Object reflected light, 122...
...Reference light photoelectric conversion section. 126...Object reflected light photoelectric conversion unit. 126...Data processing unit. 1261... 10th photoelectric conversion unit of object reflected light,
1262.1263... Second photoelectric conversion unit for object reflected light. Figure 2 (C) JP-A-Sho GO-100007 (6)

Claims (1)

【特許請求の範囲】[Claims] レーザ発振部から放射される光を音響光学素子により周
波数の異なる2つの光線に分割し、該2つの周波数成分
を有する2つの光線を被測定面である物体面に照射する
光ヘテロダイン干渉法による表面測定装置において、前
記音響光学素子から放射される周波数の異なる2つの光
線をひとつの単位のグローブ光線となし、該プローブ光
線を2つの方向に分割し一一方のプローブ光線は前記物
体面に照射しない参照光となし、他方のプローブ光線は
前記物体面に照射し、該物体面に照射された光の反射光
を物体反射光となし、前記参照光を光電変換してビート
信号を作成する参照光光電変換部と2前記物体反射光な
光電変換してビート信号を作成する第1と第2の複数の
物体反射光光電変換部と、前記参照光光電変換部と前記
物体反射光光電変換部からの信号相互の位相差を検出す
る位相比較器と、該位相比較器と前記物体反射光光電変
換部からのデータに基すき前記物体表面の表面状態を演
算するデータ処理部とから構成される光ヘテロダイン干
渉法による表面測定装置。
A surface produced by optical heterodyne interferometry, in which the light emitted from a laser oscillation unit is split into two light beams with different frequencies by an acousto-optic element, and the two light beams having the two frequency components are irradiated onto the object surface, which is the surface to be measured. In the measuring device, two light beams with different frequencies emitted from the acousto-optic element are treated as one unit of globe light beam, the probe beam is divided into two directions, and one probe beam is irradiated onto the object surface. The other probe beam irradiates the object surface, the reflected light of the light irradiated to the object surface is used as the object reflected light, and the reference light is photoelectrically converted to create a beat signal. a light-photoelectric converter; a plurality of first and second object-reflected light photoelectric converters for photoelectrically converting the object-reflected light to create a beat signal; the reference-light photoelectric converter; and the object-reflected light photoelectric converter. and a data processing section that calculates the surface state of the object surface based on data from the phase comparator and the object reflected light photoelectric conversion section. Surface measurement device using optical heterodyne interferometry.
JP20727783A 1983-05-13 1983-11-04 Measuring device of surface by optical heterodyne interference method Pending JPS60100007A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP20727783A JPS60100007A (en) 1983-11-04 1983-11-04 Measuring device of surface by optical heterodyne interference method
US06/608,744 US4650330A (en) 1983-05-13 1984-05-10 Surface condition measurement apparatus
GB08412312A GB2146116B (en) 1983-05-13 1984-05-14 Surface condition measurement apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20727783A JPS60100007A (en) 1983-11-04 1983-11-04 Measuring device of surface by optical heterodyne interference method

Publications (1)

Publication Number Publication Date
JPS60100007A true JPS60100007A (en) 1985-06-03

Family

ID=16537125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20727783A Pending JPS60100007A (en) 1983-05-13 1983-11-04 Measuring device of surface by optical heterodyne interference method

Country Status (1)

Country Link
JP (1) JPS60100007A (en)

Similar Documents

Publication Publication Date Title
US4650330A (en) Surface condition measurement apparatus
JPH07311182A (en) Evaluation of sample by measurement of thermo-optical displacement
JP3029757B2 (en) Sample evaluation method by photothermal displacement measurement
JPH0339605A (en) Optical surface shape measuring instrument
JPH10293019A (en) Height shape measurement method and device using optical heterodyne interference
JPH0344243B2 (en)
US6295131B1 (en) Interference detecting system for use in interferometer
JPS60100007A (en) Measuring device of surface by optical heterodyne interference method
JP4536873B2 (en) Three-dimensional shape measuring method and apparatus
JP2923779B1 (en) Optical interference device for ultrasonic detection
JPH0339563B2 (en)
JPS60224044A (en) Surface inspecting device by light heterodyne interference method
JP2735348B2 (en) Sample evaluation method with a single light source using thermal expansion vibration
JPH0749922B2 (en) Optical measuring device
JPS60100006A (en) Measuring device for surface by optical heterodyne interference method
JP3310022B2 (en) Surface profile measuring device
JPS59208409A (en) Surface-roughness measuring device utilizing optical heterodyne interference method
JPH0921752A (en) Method for measuring photothermal displacement
JPH05223536A (en) Measuring apparatus of surface shape
JP2672758B2 (en) Sample thermoelasticity evaluation device
JPS59216008A (en) Surface shape measuring device by optical heterodyne interference method
JPH05288721A (en) Evaluating method of sample by photothermal displacement measurement
JPH03282205A (en) Thickness measuring apparatus
JPH10293010A (en) Dimension measurement method and device using 2-beam optical scanning
JPS6199805A (en) Step measuring instrument