JPS5998207A - Method and device for processing metal or the like - Google Patents

Method and device for processing metal or the like

Info

Publication number
JPS5998207A
JPS5998207A JP20756782A JP20756782A JPS5998207A JP S5998207 A JPS5998207 A JP S5998207A JP 20756782 A JP20756782 A JP 20756782A JP 20756782 A JP20756782 A JP 20756782A JP S5998207 A JPS5998207 A JP S5998207A
Authority
JP
Japan
Prior art keywords
processing
pulse
pulses
pulse train
storage medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20756782A
Other languages
Japanese (ja)
Inventor
Yoshio Koike
小池 義夫
Kanichi Minazu
水津 寛一
Yoshiaki Saito
斉藤 嘉章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koike Sanso Kogyo Co Ltd
Koike Sanso Kogyo KK
Original Assignee
Koike Sanso Kogyo Co Ltd
Koike Sanso Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koike Sanso Kogyo Co Ltd, Koike Sanso Kogyo KK filed Critical Koike Sanso Kogyo Co Ltd
Priority to JP20756782A priority Critical patent/JPS5998207A/en
Priority to DE19833318283 priority patent/DE3318283A1/en
Publication of JPS5998207A publication Critical patent/JPS5998207A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/41Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by interpolation, e.g. the computation of intermediate points between programmed end points to define the path to be followed and the rate of travel along that path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/41Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by interpolation, e.g. the computation of intermediate points between programmed end points to define the path to be followed and the rate of travel along that path
    • G05B19/4103Digital interpolation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

PURPOSE:To process easily a metal or the like by dividing the whole of a processing line to minute parts, each of which corresponds to the extent of movement for one pulse, with respect to coordinate axes and encoding them into a pulse train and storing and reproducing it to drive an oprating part. CONSTITUTION:A shape input device 12 gives the processing line to a pulse conversion processing device 13 to divide the processing line to minute segments, each of which corresponds to the extent of movement for one pulse, with respect to each coordinate axis, and they are encoded into a dot string and are stored in a storage device 14. The pulse train which is encoded and stored in the device 14 is sent to a reproducing device 15, and the device 15 transfers the quantity of stored contents, which is required for the operation of one cycle, out of stored contents of the pulse train stored in the device 14 through an auxiliary storage device and reproduces it. An operating part 16 is driven by reproduced pulses to process the metal or the like.

Description

【発明の詳細な説明】 本発明は直線又は曲線で構成された形状をガス切断或は
溶接し得る金属加工装置を数値制御によって自動的に可
動し得る金属の加工法及びその装置に係り、特に直線又
は曲線で構成される加工線全体を一つの微小な点を順に
連結した点列としてとらえ、従って該加工+lll!を
所定の各座標軸に対して1パルスの駆動距離に相当する
微小線分に分割してこれをコード化してパルス列として
記憶媒体に蓄え、これを再生してパルスにより8:属加
工装置の駆動をコントロールすることを特徴とした金属
の加工法及びその装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metal processing method and apparatus in which a metal processing device capable of gas cutting or welding a shape composed of a straight line or a curved line can be automatically moved by numerical control. The entire machining line composed of straight lines or curves is regarded as a point sequence in which one minute point is connected in sequence, and therefore the machining +llll! is divided into minute line segments corresponding to the driving distance of one pulse for each predetermined coordinate axis, coded, stored in a storage medium as a pulse train, and reproduced to drive the 8: metal processing equipment using the pulses. The present invention relates to a metal processing method characterized by control and an apparatus therefor.

従来より普及している金桟加工法に於る数値制御は、例
えば第1図に示す加工#!1の情報を直線と円弧で定義
し、加工線1上の円弧と円弧、@線と円弧の交点a g
 1) # d # f s g及び円弧の中心点c、
e、hを夫々数値制御情報とl−て、これ箋の点amb
・・・・・・hを座標系に合わせて座標値を作り、さん
孔テープ等を媒体として数値制御装置に入力していた。
For example, the numerical control in the metal beam processing method that has been widely used is the processing #! shown in Fig. 1. 1 information is defined by a straight line and a circular arc, and the intersection of the circular arc and the circular arc on the processing line 1, @line and circular arc a g
1) # d # f s g and the center point c of the arc,
Let e and h be numerical control information, respectively, and write the point amb on this note.
Coordinate values were created by matching h to the coordinate system, and inputted into a numerical control device using punch tape or the like as a medium.

従来のこの方法は電算機が未発達で記憶素子の容量の少
い時代に加工線の情報を短い情報で伝えなければならな
い為に考えられたものであり、電算機が着るしく発達し
た今日の環境条件とは全(異る時代の産物であった。
This conventional method was devised at a time when computers were underdeveloped and memory elements had little capacity, so information about processed lines had to be conveyed in a short amount of time. The environmental conditions were entirely different (products of a different era).

従って従来の方法に於ては単純な直線又は直線と円弧の
みで構成される線を円弧と@線の節点及び円弧の中心点
の座標で示すのは容易であるが、曲線を10分の1鴎、
或は100分の1n以下の近似で円弧と直線とに分割す
るのは人力では不可能であり、従って高価な電算機によ
る円弧と直線の分割(プログラミング)が必要となり、
このプログラミングに美大な手間と費用を要する欠点が
あった。
Therefore, in the conventional method, it is easy to express a simple straight line or a line consisting only of a straight line and a circular arc by the coordinates of the arc, the node of the @ line, and the center point of the circular arc, but seagull,
Alternatively, it is impossible to manually divide the arc into a straight line with an approximation of 1/100 or less, so it is necessary to divide the arc and straight line using an expensive computer (programming).
This programming had the drawback of requiring a great deal of effort and expense.

更に前述の従来の方法は加工線を円弧と直線とにプログ
ラミングした後、これ等を再びパルス列に置換しなけれ
ばならない無駄があり、かつ数値制御部のパルス補間速
度に対して動作部が余りに遅い為に高価な数値制御部の
稼動率が極めて低い欠点がある。
Furthermore, in the conventional method described above, after programming the machining lines into circular arcs and straight lines, these lines must be replaced with pulse trains again, which is wasteful, and the operating unit is too slow compared to the pulse interpolation speed of the numerical control unit. Therefore, the operation rate of the expensive numerical control unit is extremely low.

本発明は従来の之等の欠点に鑑み開発された全く新規な
技術であって、特に加工線全体を一連の微小な点を順に
連結したものとしてとらえ、これ等の微小な点をコード
化してパルス列として直接記憶し、これを再生してパル
スにより金属加工装置の駆動ケコントロールすることを
特徴とした金属の加工法及びその装置罠関するものであ
る。
The present invention is a completely new technology developed in view of the drawbacks of the conventional technology.In particular, the entire processed line is treated as a series of minute points connected in sequence, and these minute points are encoded. The present invention relates to a metal processing method and its apparatus trap, which is characterized in that it is directly stored as a pulse train, reproduced, and used to control the drive of a metal processing device.

図により本発明の一実施例を具体的に説明すると、第2
図に於て、2は任意の加工線を示し、6はこの加工線2
を微小な点の列即ち点列で構成したことを示している。
To specifically explain one embodiment of the present invention with reference to the drawings, the second embodiment
In the figure, 2 indicates an arbitrary processing line, and 6 indicates this processing line 2.
This shows that it is composed of a series of minute points, that is, a series of points.

この点列6の並び方を厳密に定義すると、これは第6図
に示すようなx、y、z・・・・・・座標系忙分解する
ことが出来る。第3図はX。
If the arrangement of this point sequence 6 is strictly defined, it can be decomposed into an x, y, z... coordinate system as shown in FIG. Figure 3 is X.

yの平面上の線の定義を示し、4は与えられた加工線、
5はこの加工線4に近似し、且つ座標軸方口に並んだ微
小線分を示している。
Indicates the definition of the line on the y plane, 4 is the given processing line,
Reference numeral 5 indicates a minute line segment that approximates the processed line 4 and is aligned in the direction of the coordinate axis.

第41及び第5図は夫々x−y座標面に於る平面W工線
の点列、或はx −y −z座標系における豆体加工線
の点列即ち微小線分の定義の方法例を示し、極座標系を
含むものもこれに準じて定義することが出来る。第4図
の平面上の加工線はX、y直交座標系を例にとったパル
スと移動距離の関係を示す図で、lを1パルス相当の長
さとすればX。
41 and 5 are examples of how to define a point sequence of a plane W working line on the x-y coordinate plane, or a dot sequence of a bean body working line in the x-y-z coordinate system, that is, a minute line segment, respectively. , and those including polar coordinate systems can also be defined according to this. The machining lines on the plane in FIG. 4 are diagrams showing the relationship between pulses and moving distance using the X, Y orthogonal coordinate system as an example, where l is the length equivalent to one pulse.

y軸方向の移動はx、y軸に沿う正負の方向、X。Movement in the y-axis direction is x, and positive and negative directions along the y-axis are x.

y軸と45°で交叉する正負の方向よりなる■、■・・
・・・・■の8通りとなり、これ等の8通りの組合せに
より任意の方向に移動させることが出来る。
Consisting of positive and negative directions intersecting the y-axis at 45 degrees, ■, ■...
There are eight ways (■), and it is possible to move in any direction by combining these eight ways.

この8種の判別を2進コードの表示例を示すと、例えば
6ビツトでコード化すれば一例として次の第1表の如(
なり、4ビツトでコード化すれば−例として次の第2表
の1口(なる。
An example of displaying these eight types of discrimination in binary code is, for example, if it is encoded with 6 bits, as shown in Table 1 below.
For example, if it is encoded with 4 bits, the following table 2 shows 1 unit.

第1表 第2表 如何ようにコード化するかは回路又は演算のプログラム
の問題であるが、制御1軸当91ビツト、2軸の場合で
6〜4ビツト、6軸の場合で5〜6ビツトで充分である
。従って制御軸数が増加すればそれに対応してビットの
割当数を増加すれば良7S0 若しパルスの速度が一定であれば■、■、■、■の場合
の合成速度は■、■、■、■の場合の5倍となるので、
■〜■の何れの方向にも定速で動かしたい場合には■、
■、■、■のパルスの発振時間間隔をhK調整すれば良
い。従って全ての形状は図1に示すように■〜■のベク
トルの逐次組合せによって定義することが可能である。
Table 1 Table 2 How to code is a matter of the circuit or calculation program, but it is 91 bits per control axis, 6 to 4 bits for 2 axes, and 5 to 6 bits for 6 axes. Bits are sufficient. Therefore, if the number of control axes increases, the number of allocated bits should be increased accordingly7S0 If the pulse speed is constant, the combined speed in the case of ■, ■, ■, ■ is ■, ■, ■ , is five times as large as in the case of ■, so
If you want to move at a constant speed in any of the directions from ■ to ■,
The oscillation time intervals of the pulses (2), (2), and (2) may be adjusted by hK. Therefore, all shapes can be defined by successive combinations of vectors 1 to 2, as shown in FIG.

第5図は立体座標の微小融分の記号化の例で、第4図に
於ける説明と同じ手続で例えば次の第6表のように足義
することが出来る。
FIG. 5 is an example of symbolizing the minute melt in the three-dimensional coordinates, which can be expressed as shown in Table 6 below using the same procedure as explained in FIG. 4.

第6表 次の第4表は前記第6表とは別のコードの作り方を例示
するものである。
Table 6 The following Table 4 exemplifies how to create a code different from that shown in Table 6 above.

第4表 更に制御軸数の増加に対しては第1表乃至第4表に準じ
て簡単に作成することが出来る。
Table 4 Furthermore, for an increase in the number of control axes, it can be easily created according to Tables 1 to 4.

こ〜に於て、本発明を説明する前に従来の数値制御につ
いて説明すると、従来の方法は既に第1図に基づいて説
明した如(、加工線1の情報を直線と円弧とで足議し、
これ等を第6図のブロック図に示す如き方法で制御して
いた。
Before explaining the present invention, conventional numerical control will be explained.The conventional method is as already explained based on FIG. death,
These were controlled by the method shown in the block diagram of FIG.

即ち、第6図に於て、6は図形入力装置であって、形状
寸法又は数式で形状を入力することが出来、7は数値制
御1プログラム装置であって、前記入力装置6よりの入
力を第1図に示した近似的な円弧と直線とに変換して数
値制御プログラムを行うことが出来、この結果はプログ
ラムを次の記憶媒体8又はさん孔テープ9に記録するこ
とが出来る。
That is, in FIG. 6, numeral 6 is a graphic input device, which can input shapes using shape dimensions or mathematical formulas, and numeral 7 is a numerical control 1 program device, which accepts input from the input device 6. A numerical control program can be performed by converting into the approximate circular arcs and straight lines shown in FIG. 1, and the program can be recorded on the next storage medium 8 or perforated tape 9.

10は数値制御装置であって、前述の記憶媒体8或はさ
ん孔テープ90入力情報を入力し、これ等から送られて
来る円弧、@線の情報を第1図に示す如(座標軸系に対
して点列(電気的にはパルス列)に補間する作業(円弧
補間、直線補間と呼ぶ)をし、次の金属加工装置等の動
作部11を稼動させて所定の加工線の加工を再現し得る
如(構成されている。
Reference numeral 10 denotes a numerical control device which inputs the input information from the storage medium 8 or perforation tape 90, and converts the arc and @ line information sent from these into the coordinate axis system as shown in FIG. Then, interpolation work is performed (referred to as circular interpolation or linear interpolation) into a point sequence (electrically a pulse train), and the operation unit 11 of the next metal processing device is operated to reproduce the machining of a predetermined machining line. As you get (composed).

これに対して、第7図は本発明に係る方法の機能を示す
ブロック図である。即ち、第7図に於て、12は形状入
力装置、16は入力装置12からの入力を直接第2図の
線の点列(電気的にはパルス列)に変換するパルス列変
換処理装置、14は上述のパルス列を記憶する記憶装置
で例えば磁気デスク、バブルメモリ、フロビイデスク、
磁気テープ等の記憶媒体より構成されている。15は前
記の記憶をパルスに再生する再生装置、16は加工#を
再現し得る動作部である。
In contrast, FIG. 7 is a block diagram illustrating the functionality of the method according to the invention. That is, in FIG. 7, 12 is a shape input device, 16 is a pulse train conversion processing device that directly converts the input from the input device 12 into a dot sequence (electrically, a pulse train) of the line in FIG. 2, and 14 is a pulse train conversion processing device. A storage device that stores the above-mentioned pulse train, such as a magnetic desk, bubble memory, Flobby desk, etc.
It consists of a storage medium such as magnetic tape. Reference numeral 15 represents a reproducing device that reproduces the above-mentioned memory into pulses, and 16 represents an operating unit that can reproduce processing #.

従って、第6図に示す従来の方法と第7図に示す本願の
方法とを相互に比較すると、本願の方法は従来の方法に
比較して次の点で著るしく優れていることが明瞭である
Therefore, when comparing the conventional method shown in FIG. 6 and the method of the present application shown in FIG. 7, it is clear that the method of the present application is significantly superior to the conventional method in the following points. It is.

即ちfil従来の方法は加工線を円弧と直線とに変換し
て数値側(illプログラムを行いかつこれを取出す際
に再びパルス列に変換して動作部暑作動しなければなら
ない無駄があるのに対し、本発明の方法に於ては加工線
を直接点列として数値制御プログラムを行うので従来の
如き情報の手段として円弧と直線を中間に介在させる無
駄を無(し、構成を極めて簡単にすることが出来る。(
2)従来の方法に於る数値制御装置は記憶媒体或はさん
孔テープより入力される円弧と直線との情報を座標軸系
に対してパルス列に補間しなければないので、高級なプ
ロセッサを使用しなければならず、従ってコスト高にな
る欠点があるのに対し、本発明の方法に於ては数値制御
プログラム部に於て加工線を直接点列としてプログラム
して記憶媒体に記憶しであるので、単にこの記憶を再生
しパルスを発生させれば良く、従って安価な再生装置が
使用出来、装置のコストを極めて低減せしめることが出
来る。
In other words, in the conventional fil method, the processing line has to be converted into circular arcs and straight lines, and when executing the ill program and extracting it, it has to be converted back into a pulse train and the operating parts are heated, which is wasteful. In the method of the present invention, a numerical control program is executed using the machining line directly as a point sequence, thereby eliminating the waste of intervening circular arcs and straight lines as information means as in the past, and making the configuration extremely simple. (
2) In the conventional method, the numerical control device must interpolate information on arcs and straight lines input from a storage medium or perforated tape into a pulse train with respect to the coordinate axis system, so a high-grade processor is not used. However, in the method of the present invention, the processing line is directly programmed as a point sequence in the numerical control program section and stored in the storage medium. , it is sufficient to simply reproduce this memory and generate pulses. Therefore, an inexpensive reproduction device can be used, and the cost of the device can be extremely reduced.

(3)従来の方法に於ては高価な数値制御部を使用する
割に動作部の動作が余りに遅い為にプロセッサの稼動率
が極めて低い欠点を有しているのに対し、本発明の方法
に於ては加工線をパルス列に分解するプロセッサは能カ
一杯に稼動せしめることが出来、稼動率が極めて高い特
徴を有している。(4)本・発明の方法に於ては従来の
方法の如きさん孔テープを一切必要とせず、後述のη口
く、加工形状ヲノクルス列に変換する処理装置と直結し
たダイレクト数値制御と群制御を行うことが出来る特徴
を有している。
(3) In contrast to the conventional method, which uses an expensive numerical control unit, the operation of the operating unit is too slow, resulting in an extremely low processor utilization rate, whereas the method of the present invention In this case, the processor that decomposes the processing line into pulse trains can be operated at full capacity, and has a feature of extremely high operating efficiency. (4) The method of the present invention does not require any perforated tape as in the conventional method, and uses direct numerical control and group control that are directly connected to a processing device that converts the processed shape into a row of processed shapes, as described later. It has the feature of being able to do the following.

本発明のコンピュータと直結したダイレクト数値制御と
群制御を行う場合について具体的に説明すると、第8図
に於て、17は形状入力装置、18はパルス列変換処理
装置、19は主記憶装置で多数の加工形状を分類して記
憶することが出来る。
To specifically explain the case of performing direct numerical control and group control directly connected to the computer of the present invention, in FIG. The machined shapes can be classified and stored.

20はパルス再生装置21に付設した補助記憶装置であ
って前記主記憶装置t19に蓄えられたノくルス列記憶
の中から1サイクルの動作に必要な量の記憶を呼びだし
て記憶する部分であり、史に22は動作部である。
Reference numeral 20 denotes an auxiliary storage device attached to the pulse reproducing device 21, which is a part that retrieves and stores the amount of memory necessary for one cycle of operation from the Norse string memory stored in the main memory device t19. , 22 is an operating section.

従って本発明に係る方法に於ては高速処理を行う能力の
ある演算処理部を使用し、これを前記入力装置17、パ
ルス列変換装置18、主記憶部[19と直結して構成し
た場合には、多数台の動作部に対する制御信号を作り溜
めすることが出来、これを必要に応じて呼び出してパル
ス再生により多数台の動作部を同時に数値制御を行うこ
とが出来る。
Therefore, in the method according to the present invention, an arithmetic processing section capable of high-speed processing is used, and when this is configured to be directly connected to the input device 17, the pulse train conversion device 18, and the main memory section [19], , it is possible to store control signals for a large number of operating units, call them as needed, and perform numerical control of a large number of operating units at the same time by reproducing pulses.

又別の利点として従来の数値制御のようにさん孔テープ
を必要としないので、加工線を円弧と11線で表現する
特定のテープフオマット(数値制御情報の文法)も不要
になり数値制御を一層大衆化することが出来る。更に前
述の如(、本発明の方法に於る数値制御はパルス再生装
置で充分間に合うので、従来の如き高価な数値制御装置
が一切不要となり、装置全体のコストヲ数分の−にする
ことが出来る特徴も有している。
Another advantage is that unlike conventional numerical control, perforated tape is not required, so there is no need for a specific tape format (grammar of numerical control information) that expresses processing lines with arcs and 11 lines. It can be further popularized. Furthermore, as mentioned above (as the numerical control in the method of the present invention can be sufficiently carried out by a pulse regenerator, there is no need for a conventional expensive numerical control device, and the cost of the entire device can be reduced by several times). It also has characteristics.

本発明の具体的実施例を説明すると次の通りである。Specific embodiments of the present invention will be described as follows.

第9図に於て、この装置灯はX a 3’ lZの6軸
の制aをする場合の例であって、Aは図形処理入力装置
、Bは機械の制4i41部、Cは金属加工の機械部を夫
々示し、該図形処理入力装置Aは機械部Cとは別置され
ている。制御部Bの中にはパルス再生装置と、操作、自
動制御、パルス駆動ユニット等よりなり、制飢1部Bと
機械部Cとは両者を共に組込むことも出来ろし1、或は
近傍に別置1−ても良い。
In Fig. 9, this device light is an example for controlling 6 axes of X a 3' lZ, where A is a graphic processing input device, B is a machine control section 4i41, and C is a metal processing section. The graphic processing input device A is installed separately from the mechanical section C. Control part B consists of a pulse regenerator, operation, automatic control, pulse drive unit, etc., and it is also possible to incorporate both of the control part B and mechanical part C together, or in the vicinity. Separate location 1- may also be used.

前記図形処理入力装置Aは対象図形及び切断情報を処理
して入力し得る装置であって、公知の小型電子計算機の
構成がそのまへ使用出来、七の構成は入力操作盤26、
入出力部25、処理装置26、処理プログラム部27、
主記憶部28、及び出力部61により構成され、更に入
力図形の確認のための図形プリンター29、表示部60
は必要に応じて付加される。図形処理入力装置Aは図形
や図面情報24を入力操作盤26、入出力部25により
加工条件、加工形状等の情報を入力することが出来、処
理装置26を通った情報を処理プログラム部27で前述
の如き微小線分をベクトルを定義する符号に演算し、こ
れを主記憶部28より記憶する一方で図形プリンター2
9或はブラウン管等よりなる表示部60に表示して修正
確認をすることが出来る。前記主記憶部28としてはL
SI、バブルメモリ、磁気テープ、磁気デスク、フロピ
ーディスク等の記憶媒体を用いることが出来る。
The graphic processing input device A is a device that can process and input target graphics and cutting information, and the configuration of a known small computer can be used as is.
input/output section 25, processing device 26, processing program section 27,
Consists of a main storage section 28 and an output section 61, and further includes a graphic printer 29 and a display section 60 for checking input graphics.
is added as necessary. The graphic processing input device A is capable of inputting information such as machining conditions and machining shapes through an input operation panel 26 and an input/output unit 25 for inputting graphic and drawing information 24, and inputs information that has passed through the processing device 26 to a processing program unit 27. The minute line segment as described above is computed into a code that defines a vector, and this is stored in the main memory 28 while the graphic printer 2
9 or a display unit 60 made of a cathode ray tube or the like to confirm the correction. The main storage section 28 is L.
Storage media such as SI, bubble memory, magnetic tape, magnetic disk, floppy disk, etc. can be used.

一般に平面上の図形f (X # y )、g (re
θ)で@線座標系又は極座標系で示され、これ等は数学
的に自由に変換し得るので、前記袋mAはこの様に与え
られた形状を機械部Cの座標系に合わせた幾何学計算と
同時にパルス列を作成し、コード化して蓄えてお(装置
である。
Generally, the figures f (X # y), g (re
θ) is expressed in @ linear coordinate system or polar coordinate system, and these can be converted freely mathematically, so the bag mA has a geometry that matches the shape given in this way to the coordinate system of mechanical part C. Simultaneously with calculations, a pulse train is created, coded, and stored (this is a device).

制御部Bの構成は入力装置Aの出力部61に連結し、入
出力部62、処理装置66、LS、I等の各種の記憶媒
体よりなる補助記憶部64、処理プログラム部65及び
操作盤66とよりなり、主記憶装置28に記憶された加
工形状のパルス列情報を選択的に補助記憶装置t64に
転送する指示を行うと共に加ニジーケンス情報を加工の
シーケンスコントロールを行うコントローラ67に入力
する。
The control section B is connected to the output section 61 of the input device A, and includes an input/output section 62, a processing device 66, an auxiliary storage section 64 including various storage media such as LS and I, a processing program section 65, and an operation panel 66. Therefore, an instruction is given to selectively transfer the machining shape pulse train information stored in the main storage device 28 to the auxiliary storage device t64, and the machining sequence information is input to the controller 67 that controls the machining sequence.

38 x、 38 y、38zは夫々X軸駆動ユニット
、y軸駆動ユニット、2軸駆動ユニツトである。
38x, 38y, and 38z are an X-axis drive unit, a y-axis drive unit, and a two-axis drive unit, respectively.

一方機械部Cは機体69と、x、y、z軸駆動用サーボ
モータ40x、40y、40zより構成されている。従
って機械部Cの動作は補助記憶部64の記憶の再生によ
ってコントロールされる。補助記憶部64は装kAO主
記憶部28の内容の中から1サイクルの動作に必要な信
号を全てそのま〜記憶することが出来、位置決め信号は
装置Aで処理されたパルス列を第1表乃至第4表に例示
したコードで記憶されている。処理プログラム部65は
前記補助記憶部64の内容を処理装置66を介して図形
処理入力装置Aからの入力と及び各軸系に対する制御パ
ルス列に再生せしめるプログラムを内蔵し、加ニジーケ
ンス信号はシーケンスコントローラ67に、又パルス列
は夫々各軸の駆動ユニット38x、38y、38zに転
送される。前記駆動サーボを更に詳しく述べると、サー
ボモータにパルスモータを用いたものではパルス増幅す
れば艮(、又DCモータな用いるものでは再生されたパ
ルスをバッファレジスタに入力し、これをD/A変換し
1、増幅してモータな回転せしめ、モータの回転をパル
ス発生器によりパルスを発生せしめてバッファレジスタ
にフィードバックして制御するなど一般に用いられるデ
ジタル制御法が適用される。
On the other hand, the mechanical section C includes a body 69 and servo motors 40x, 40y, and 40z for driving the x, y, and z axes. Therefore, the operation of the mechanical section C is controlled by reproducing the memory in the auxiliary storage section 64. The auxiliary storage section 64 can store all the signals necessary for one cycle of operation from the contents of the AO main storage section 28 as is, and the positioning signal can store the pulse train processed by the device A as shown in Table 1. The codes are stored as examples in Table 4. The processing program unit 65 has a built-in program for reproducing the contents of the auxiliary storage unit 64 into the input from the graphic processing input device A and the control pulse train for each axis system via the processing device 66. In addition, the pulse train is transferred to drive units 38x, 38y, and 38z for each axis, respectively. To explain the drive servo in more detail, if a pulse motor is used as the servo motor, the pulses can be amplified (or if a DC motor is used, the reproduced pulses are input to a buffer register and converted into a D/A converter. First, commonly used digital control methods are applied, such as amplifying the motor to rotate it, and controlling the rotation of the motor by generating pulses from a pulse generator and feeding them back to a buffer register.

図に於て制御部Bと機械部Cとは1対1に対応するが、
図形処理入力装置Aは該機械部C及び制御部Bと1対1
に対応せしめる必要はな(,1台の図形処理入力装置A
と複数組の制?at1部Bと機械部Cとを結合して使用
することが出来る。前記装置Aの図形のパルス列補間の
速度に比し、制御部Bのパルスの再生速度は次の機械部
Cの動作速度に合わせれば良いので、極めて遅(て良い
In the figure, the control section B and the mechanical section C have a one-to-one correspondence, but
The graphic processing input device A is one-on-one with the mechanical section C and the control section B.
(, one graphic processing input device A
And multiple group system? At1 part B and mechanical part C can be combined and used. Compared to the pulse train interpolation speed of the figure in the device A, the pulse reproduction speed of the control section B can be extremely slow because it only needs to match the operating speed of the next mechanical section C.

従って前記装置Aは機械部Cの動作速度とは無関係に図
形の入力処理を行うことが出来、処理した記憶をバッフ
ァとして蓄えることが出来るので、必要な情報は複数の
機械に対して瞬時に転送することが出来る。従って恰も
1台の装置Aでオンラインで直接多数の機械部Cを制御
すると同等の効果をあげることが出来る特徴を有してい
る。
Therefore, the device A can perform graphic input processing regardless of the operating speed of the mechanical part C, and can store the processed memory as a buffer, so necessary information can be instantly transferred to multiple machines. You can. Therefore, if a single device A directly controls a large number of mechanical units C online, it has the feature that the same effect can be achieved.

史に本発明に対する別の適用例としては第10図に示す
ように任意の図形を倣い装置で追従して図形処理装置に
入力することも可能である。これを図により説明すると
、第10図に於て、41は実材部品又はテンプレート等
の図形、42はこの実材部品、テンプレート等の図形4
1を倣うことが出来る図形倣い装置、46はその装置4
2に取付けられた図形倣い具を示し、図形はx、y・・
・・・・の座標系で示されるが、本実施例に於ては簡単
なX。
As another example of application of the present invention, as shown in FIG. 10, it is also possible to follow an arbitrary figure with a copying device and input it into a figure processing device. To explain this with a diagram, in FIG. 10, 41 is a figure such as a real part or a template, and 42 is a figure 4 of this real part or template.
A figure copying device that can copy 1, 46 is the device 4
The figure copying tool attached to 2 is shown, and the figure is x, y...
. . . However, in this embodiment, it is a simple X.

yの平面直交座楠系に対するものを示している。The figure is for a plane orthogonal Kusunoki system of y.

44.45は夫々図形倣い装置42土のX、y座標系に
対応するレール又は軸装置である。従って倣い具46を
図形41に沿って動かすと、例示のものではX滑動i1
1[1]44がX軸方向に滑動すると共に軸受欠食むy
軸方向の滑動台車46がy軸シール45に沿い滑動する
。47,48は夫々X滑動II]44の滑動とy滑動台
車46の滑動をラック、ビニオンなどにより滑動に伴い
正負の方向を持ったパルスを発信するパルス発生器を示
し、発生したパルスは入出実部49を通じてし1形処理
プロセツサ50に入力し、図形処理プログラム51によ
りパルスの入力を図形に再生し、表示部52及びプリン
タ56に再現すると共に、先に第9図によって詳述した
様に加工の手順と入力された図形のパルス列コードを主
記憶装置54に一時蓄える。
44 and 45 are rails or shaft devices corresponding to the X and Y coordinate systems of the figure copying device 42, respectively. Therefore, when the copying tool 46 is moved along the figure 41, in the illustrated example, it moves X sliding i1.
1 [1] 44 slides in the X-axis direction and the bearing wears out y
An axial sliding carriage 46 slides along the y-axis seal 45. Reference numerals 47 and 48 indicate pulse generators that emit pulses with positive and negative directions as the slides of the X slide II] 44 and the Y slide cart 46 are slid using racks, pinions, etc. The input pulses are input to the 1-shape processing processor 50 through the section 49, and the input pulses are reproduced into graphics by the graphics processing program 51 and reproduced on the display section 52 and printer 56, as well as being processed as detailed above with reference to FIG. The procedure and the pulse train code of the input figure are temporarily stored in the main memory 54.

更に加工に肯っては複数の加工装置55に主記憶装置の
内容を選択的に転送し同時に複数の加工具を稼動させる
ことが出来る。加工装置55の構成は第9図の制御部B
と機械部Cとに示す範囲である。
Furthermore, during machining, the contents of the main memory device can be selectively transferred to a plurality of machining devices 55, and a plurality of machining tools can be operated at the same time. The configuration of the processing device 55 is the control section B in FIG.
and mechanical part C.

第10図の実施例は第9図に示す数値による入力方法に
対してテーチング方式により図形を入力する方法で、5
1で示す処理プログラムを変えるだけで良(、第9図と
第10図に示す装置を一体的に合併しても、テーチング
装置のみを除いては個々のハードウェアよりなるエレメ
ント圧倒等相違はないので、両者を容易に合併すること
が出来る。
The embodiment shown in FIG. 10 is a method for inputting figures using a teaching method, in contrast to the numerical input method shown in FIG.
All you need to do is change the processing program shown in Figure 1. (Even if the devices shown in Figures 9 and 10 are integrated, there is no difference, such as overwhelming the elements made up of individual hardware, except for the teaching device.) Therefore, the two can be easily combined.

また例示のものは図形41からパルス発生器48に亘っ
てテーチング専用のものとして説明しているが、倣い具
46を加工具に変え、別に第9図に示した駆動部を併合
し、これによってテーチング兼用の作業機械とすること
も勿論容易である。
In addition, although the illustrated example is explained as being dedicated to teaching from the figure 41 to the pulse generator 48, the copying tool 46 is changed to a processing tool, and the driving section shown in FIG. Of course, it is also easy to use the machine as a working machine for teaching purposes.

この第10図の実施例はテーチング方式によるロボット
にも有効な方法である。
The embodiment shown in FIG. 10 is also effective for robots using the teaching method.

更に第9図の実施例に於て、主記憶部28と補助記憶部
64を共通の記憶媒体とし、これを図形処理入力部Aに
おいて入力した後、堰外して機械の制御部Bの補助記憶
部64に該当する部分に差し替えて使用することも可能
である。この場合も1台の図形入力装置Aと複数の制a
1部Bの組合せとすることも可能である。
Furthermore, in the embodiment shown in FIG. 9, the main storage section 28 and the auxiliary storage section 64 are used as a common storage medium, and after inputting this into the graphic processing input section A, it is removed from the dam and used as an auxiliary storage medium in the control section B of the machine. It is also possible to use the part 64 by replacing it with a part corresponding to the part 64. In this case as well, one graphic input device A and multiple controls a
A combination of part 1 and B is also possible.

また図形入力装置Aに対し、従来の円弧と直線で定義し
た数値制御さん孔テープ等で図形処理プロセッサ26に
入力し、形状な復元してこれをパルス補間し更に制御部
Bによってパルスに再生すれば従来の数値制御から本発
明への移行期に対して対応し得るだけでな(、積極的に
ダイレクト群制御数値割損1法となすことも可能である
等の多大な特徴を有している。
In addition, a conventional numerically controlled perforated tape defined by circular arcs and straight lines is input to the graphic processing processor 26 for the graphic input device A, the shape is restored, this is interpolated into pulses, and the controller B reproduces it into pulses. It has many features such as not only being able to cope with the transition period from conventional numerical control to the present invention (and also being able to actively use the direct group control numerical loss method). There is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は加工線の情報の定義を示す図、第2図乃至第5
図は本発明の方法を示す説明図、第61因は従来の方法
のブロック図、第7図乃至第9図は本発明の方法及び装
置を示すブロック図、第10図は他側の説明図である。 1.2は加工線、 6は線の点列、 6.12゜17は
入力装置直、 8は記憶媒体、 10は数値制御装置、
  15は再生装置、  18は処理装置、22は動作
部、 28は主記憶部、 64は補助記憶部、 69は
機体、 41は図形、 42は倣い装置、 43は倣い
具、 46は台車、47.48はパルス発生器、  5
4は主記憶装置、55は加工装置である。 特許出願人 小池酸素工業株式会社 第1図 1 第2図 第3図 ム 第10図 弧
Figure 1 is a diagram showing the definition of processing line information, Figures 2 to 5
The figure is an explanatory diagram showing the method of the present invention, the 61st factor is a block diagram of the conventional method, Figures 7 to 9 are block diagrams showing the method and apparatus of the present invention, and Figure 10 is an explanatory diagram of the other side. It is. 1.2 is the processing line, 6 is the dot sequence of the line, 6.12゜17 is the input device direct, 8 is the storage medium, 10 is the numerical control device,
15 is a playback device, 18 is a processing device, 22 is an operating section, 28 is a main storage section, 64 is an auxiliary storage section, 69 is a machine body, 41 is a figure, 42 is a copying device, 43 is a copying tool, 46 is a trolley, 47 .48 is a pulse generator, 5
4 is a main storage device, and 55 is a processing device. Patent applicant: Koike Sanso Kogyo Co., Ltd. Figure 1 Figure 1 Figure 2 Figure 3 Figure 10 Arc

Claims (1)

【特許請求の範囲】 (1)数値制御により連続的に制御を行って加工線に沼
って切断或は溶接又は切削等の金属加工を実施する加工
法に於て、該加工線を所定の各座標軸に対して1パルス
の駆動距離に相当する微小線分に分割すると共にこれを
コード化して点列(パルス列)として主記憶媒体に蓄え
、更にこの主記憶媒体に蓄えられたコード化したパルス
列を補助記憶に転送して再生し、再生されたパルスによ
って加工具等の駆8!71火コントロールして9属等の
加工を行うことを特徴とした金属等の加工法。 (21数値制御により連続的に制御を行って加工線に宿
って切断或は溶接又は切削等の金属等の加工を実施する
加工法に於て、該加工線を所定の各座標軸に対して1パ
ルスの駆動距離に相当する微小線分に分割すると共にこ
れをコード化してパルス列として主記憶媒体に蓄え、か
つ複数のパルス再生装置に夫々付設した補助記憶媒体に
前記コード化したパルス列を選択的に転送して主記憶媒
体の情報をオンラインで補助記憶媒体に高速転送して複
数の加工装置を同時に或はタイミングをずらして稼動せ
しめることを可能とした金属等の加工法。 (3)数値制御によって連続的に金属等の加工を行うこ
とを可能とした装置に於て、加工線を所定の各座標軸に
対して1パルスの駆動距離に相当する微小線分に分割す
ると共にこれをコード化してパルス列として主記憶装置
に蓄えることが出来るパルス列分割装置と、該主記憶装
置に蓄えられたパルス列を選択的に補助記憶媒体に転送
して再生しうるよう圧した1個又は複数のパルス再生装
置とを夫々内蔵せしめたことを特徴とした金属等の加工
装置。 (4)加工済の部品、楔形、テンプレート等の図形を倣
い具で倣い、かつこの倣いによって生ずる倣い具の座標
軸方向の運動をパルス発信器によって正負のパルスを発
信させて図形処理を行い、これをコード化した点列(パ
ルス列)に11換して主記憶媒体に蓄え、更に主記憶媒
体に蓄えられてコード化したパルス列を補助記憶媒体に
転送してパルスに再生し加工具の駆動をコントロールし
て加工を行うことを特徴としたテーチング方式による金
属等の加工方法。 (5)加工済の部品、楔形、テンプレート等の図形を倣
うことが可能な倣い具を有する倣い装置と、x、y等の
座標軸方向に移動する移動台車と、該台車の移動に伴っ
て正負の方向を持ったパルスを発信するパルス発生器と
、これをコード化したパルス列として蓄えることが出来
る主記憶装置と、該主記憶装置に蓄えられたコード化し
たパルス列を補助記憶装置に転送してパルスに再生して
加工を行うことが出来る加工装置との組合せよりなるテ
ーチング方式を可能とした金属等の加工方法。 (61数値制御により連続的に*属等の加工を行うこと
火用能とした方法に於て、加工線を所定の座標軸に対し
て1パルスの駆動距離ニ相当する微小線分に分割すると
共にこれをコード化して紀憶シ1、この記i意された記
憶媒体を前記パルス列分解装置ρ・ら切りhlてパルス
列をパルスに再生する装置に結合し、この装置によって
パルスを再生し、て加工具等の駆動をコントロールして
8″属等の加工7行うことを特徴と(5た今風等の加工
方法。 (7)数1直制四jにより連続的に金弯等のπ】工を行
うことをi1能とした装置に於て、加工線を所定の座標
軸に対して1パルスの駆動距離に相当する微小線分に分
解するパルス列分解装置と、これ等のパルスをコード化
して記憶する主記憶装置と、主記憶装置に記憶された記
憶媒体を切り離してパルスに再生することが出来るパル
ス再生装置と、このパルス再生装置によって再生された
パルスで駆動をコントロールすることが出来る加工装置
との組合せよりなる金属等の加工装置。
[Scope of Claims] (1) In a processing method in which metal processing such as cutting, welding, or machining is performed by continuously controlling the processing line by numerical control, the processing line is controlled to a predetermined position. Divide each coordinate axis into minute line segments corresponding to the driving distance of one pulse, code these and store them as a dot sequence (pulse train) in a main storage medium, and further store the coded pulse train in this main storage medium. A method for processing metals, etc., characterized in that the pulses are transferred to auxiliary memory and reproduced, and the regenerated pulses are used to control the drive of processing tools, etc. to perform processing of 9 types, etc. (21 In a processing method in which processing of metal, etc., such as cutting, welding, or machining is performed by continuously controlling the processing line by numerical control, the processing line is The pulse train is divided into minute line segments corresponding to the driving distance of the pulse, encoded and stored as a pulse train in a main storage medium, and selectively stores the coded pulse train in an auxiliary storage medium attached to each of a plurality of pulse reproduction devices. A method of processing metals, etc. that enables multiple processing devices to operate simultaneously or with staggered timing by transferring information from the main storage medium to an auxiliary storage medium online at high speed. (3) Through numerical control. In a device that is capable of continuously machining metal, etc., the machining line is divided into minute line segments corresponding to the driving distance of one pulse for each predetermined coordinate axis, and this is coded to generate a pulse train. a pulse train splitting device capable of storing pulse trains in a main memory, and one or more pulse regenerators capable of selectively transferring pulse trains stored in the main memory to an auxiliary storage medium for reproduction. A processing device for metals, etc. characterized by having a built-in device for each. (4) Copying a pattern such as a machined part, wedge shape, template, etc. with a copying tool, and transmitting pulses of the movement of the copying tool in the direction of the coordinate axis caused by this copying. The device transmits positive and negative pulses and performs graphic processing, converts them into a coded point sequence (pulse train) and stores them in the main storage medium, and further stores the coded pulse trains stored in the main storage medium and stores them in auxiliary storage. A teaching method for processing metals, etc. characterized by transmitting it to a medium and regenerating it into pulses to control the drive of the processing tool. (5) Copying the shapes of processed parts, wedges, templates, etc. a copying device having a copying tool that can perform the following operations; a movable cart that moves in the direction of coordinate axes such as x and y; and a pulse generator that emits pulses in positive and negative directions as the cart moves; A combination of a main memory device that can store coded pulse trains and a processing device that can transfer the coded pulse trains stored in the main memory device to an auxiliary storage device and regenerate them into pulses for processing. (61) A method for processing metals, etc., which enables a teaching method that is based on numerical control. A device that divides the pulse into minute line segments corresponding to the driving distance of the pulse, encodes it and stores it, and cuts the memorized storage medium through the pulse train decomposition device ρ and hl to reproduce the pulse train into pulses. This device reproduces pulses and controls the drive of processing tools, etc. to perform processing of 8" etc. (5 modern processing method). (7) In a device that is capable of continuously performing π] machining such as Kinkyi etc. using the number 1 direct control 4j, the machining line corresponds to the driving distance of one pulse with respect to the predetermined coordinate axes. A pulse train decomposition device that decomposes into minute line segments, a main storage device that encodes and stores these pulses, and a pulse regenerator that can separate the storage medium stored in the main storage device and regenerate it into pulses. A metal processing device that is combined with a processing device whose drive can be controlled by pulses reproduced by this pulse regenerator.
JP20756782A 1982-11-29 1982-11-29 Method and device for processing metal or the like Pending JPS5998207A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP20756782A JPS5998207A (en) 1982-11-29 1982-11-29 Method and device for processing metal or the like
DE19833318283 DE3318283A1 (en) 1982-11-29 1983-05-19 Metal-processing method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20756782A JPS5998207A (en) 1982-11-29 1982-11-29 Method and device for processing metal or the like

Publications (1)

Publication Number Publication Date
JPS5998207A true JPS5998207A (en) 1984-06-06

Family

ID=16541881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20756782A Pending JPS5998207A (en) 1982-11-29 1982-11-29 Method and device for processing metal or the like

Country Status (2)

Country Link
JP (1) JPS5998207A (en)
DE (1) DE3318283A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016083705A (en) * 2014-10-23 2016-05-19 株式会社メカトロデザイン Robot teaching device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51138288A (en) * 1975-05-27 1976-11-29 Toyoda Mach Works Ltd Velocity coprection mode
JPS5329482A (en) * 1976-08-27 1978-03-18 Toyoda Mach Works Ltd Pulse distribution system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2454872A1 (en) * 1979-04-27 1980-11-21 Lemoine & Cie ASSEMBLY FOR MEMORIZING AND CONTROLLING THE MOVEMENT OF THE ORGANS OF A MACHINE TOOL
DE3001954A1 (en) * 1980-01-21 1981-08-06 Vereinigte Glaswerke Gmbh, 5100 Aachen METHOD AND DEVICE FOR CORRECTING A CUTTING PROGRAM FOR A CUTTING MACHINE FOR GLASS DISCS

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51138288A (en) * 1975-05-27 1976-11-29 Toyoda Mach Works Ltd Velocity coprection mode
JPS5329482A (en) * 1976-08-27 1978-03-18 Toyoda Mach Works Ltd Pulse distribution system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016083705A (en) * 2014-10-23 2016-05-19 株式会社メカトロデザイン Robot teaching device

Also Published As

Publication number Publication date
DE3318283A1 (en) 1984-05-30

Similar Documents

Publication Publication Date Title
US3857025A (en) Numerically controlled engraving machine system
JPS5822412A (en) Industrial robot control system
CN1067776C (en) Safety operation system for manipulator
EP0308727B1 (en) Elimination work simulator apparatus
JPS59152043A (en) Three-dimensional tool path determination method
JPS5998207A (en) Method and device for processing metal or the like
US7392110B2 (en) Method and device for milling freeform surfaces
JPS6326707A (en) Method and device for prevention of generation of path error caused by fast nc working droop
CN116529035A (en) Numerical controller and numerical control system
JPS6130388A (en) Robot-conveyor line-system
JP3050991B2 (en) Tool offset shape data input type numerical control method and device
JPS63153603A (en) Nc data generating system for working of part left uncut in nc data originating device
JPH05216524A (en) Robot
JPH05274021A (en) Machining system
JPS58219606A (en) Automatic shape working system
JPS59205601A (en) Method and device for safe operation control of industrial robot performing cooperating working
JPH03245209A (en) Teaching method and control method for continuous route of robot
JPH0577141A (en) Numerical control information preparing device
JPH0562367B2 (en)
JPH0153152B2 (en)
JP2730040B2 (en) How to create NC data
JPS614647A (en) Making method of tape for nc arc cutting and device thereof
JPH0850504A (en) Numerical controller for performing speed control of polar coordinate interpolation
JPH0454604A (en) Three-dimensional tool diameter correcting system
JPH05346814A (en) Three-dimensional machining method