JPS599294B2 - What's going on? - Google Patents

What's going on?

Info

Publication number
JPS599294B2
JPS599294B2 JP7261774A JP7261774A JPS599294B2 JP S599294 B2 JPS599294 B2 JP S599294B2 JP 7261774 A JP7261774 A JP 7261774A JP 7261774 A JP7261774 A JP 7261774A JP S599294 B2 JPS599294 B2 JP S599294B2
Authority
JP
Japan
Prior art keywords
machining
discharge
value
workpiece
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7261774A
Other languages
Japanese (ja)
Other versions
JPS513096A (en
Inventor
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP7261774A priority Critical patent/JPS599294B2/en
Publication of JPS513096A publication Critical patent/JPS513096A/en
Publication of JPS599294B2 publication Critical patent/JPS599294B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】 従来、ケロシン等の誘電性液を媒体として使用した放電
加工は公知であるが、これによる加工では加工間隙の制
御、加工屑の排除効果、アークのスイッチング速度等の
影響から10μRmax以下の仕上面粗さを得ることは
不可能ではないが、極めて困難である。
[Detailed description of the invention] Conventionally, electrical discharge machining using a dielectric liquid such as kerosene as a medium is well known, but machining using this method has many effects such as control of machining gap, removal effect of machining debris, and arc switching speed. Although it is not impossible to obtain a finished surface roughness of 10 μRmax or less, it is extremely difficult.

したがつて従来はこの放電加工後に機械的にラッピング
したり、化学的あるいは電気化学的に研摩仕上げする方
法をとつていたが、加工速度が遅いため能率が悪い欠点
があつた。本発明はこの点から特に仕上用放電加工とし
て0.5μRmax程度まで容易に仕上げることができ
る減圧された雰囲気中に電極と被加工体を対向して、該
対向間隙に放電を行つて加工するようにしたもので、前
記雰囲気圧pと放電間隙長dの積p−d値を変化させて
イオン加工作用と電子加工作用の比率を制御することに
より荒加工から超仕上までを任意に加工できるようにし
たことを特徴とするものである。大気圧以下の減圧気中
において、電極を対向した放電間隙に放電を繰返すと一
方の電極を極度に異常消耗させるが、この消耗はΘ極側
が消耗し、+極は無消耗であり、この消耗現象を利用し
て電極を十朧とし、被加工体をH極として放電加工する
ようにする。
Therefore, in the past, methods such as mechanical lapping or chemical or electrochemical polishing have been used after this electrical discharge machining, but these methods have the drawback of being inefficient due to slow machining speeds. From this point of view, the present invention is particularly designed for finishing electric discharge machining, in which the electrode and the workpiece are placed opposite each other in a reduced pressure atmosphere, which allows for easy finishing to about 0.5μRmax, and the machining is performed by applying electric discharge to the opposing gap. By changing the product p-d value of the atmospheric pressure p and the discharge gap length d and controlling the ratio of the ion machining action and the electronic machining action, it is possible to perform any processing from rough machining to super finishing. It is characterized by the following. In a reduced pressure atmosphere below atmospheric pressure, if discharge is repeated between electrodes facing each other in the discharge gap, one of the electrodes will be extremely worn out, but this wear will occur on the Θ pole side and the + pole will not wear out. Utilizing this phenomenon, the electrode is set to 100%, and the workpiece is set to the H pole for electrical discharge machining.

この減圧された気体媒体中における放電現象は絶縁破壊
電圧Vsが気圧pと間隙長dとの積で一義的に定まるパ
ツシエーンの法則Vs−f(p−d)に従がう。
This discharge phenomenon in a reduced pressure gaseous medium follows Passien's law Vs-f (p-d) in which the dielectric breakdown voltage Vs is uniquely determined by the product of the atmospheric pressure p and the gap length d.

この関係は電極材料、面積を一定にして対向面積以外を
厳重に絶縁することを行なうと第1図のような関係にあ
る。横軸のp−dはTorr*儂の単位で示され、p
”d二1〜2Torr−C7rL程度が最も放電開始電
圧が低い最低値を示し、この前後の×102〜×10T
orr。馴程度の最低値範囲は曲線が比較的平坦で放電
開始電圧は低く(IKV以下)であるが、この範囲を越
えるとp−d値が増大しても減少しても急激に放電開始
電圧が増大し放電し難くなる。これはp−d値が前記最
低範囲を越えて増大すると、即ち放電ギャップが広がる
こと、そして気圧が大気圧に近ずくことによる平均自由
行程が短かくなるため電子の電界による加速、衝突電離
が低減するため、またp−d値が低過ぎても、即ちd値
を一定と考えれば、気圧pが下り過ぎると、今度は平均
自由行程が長過ぎるためにも電子の電極間で行なう衝突
回数が減少するので衝突電離が再び不活発になるためだ
といわれている。また特色があるのは一定の圧力下では
間隙長dが小さい方が放電しに<ゝなるという液中、大
気中では見られない現象も発生する。そこで本発明は好
ましくはこのp−d値が×10−2〜×10Torr−
CTrL範囲になるよう気圧及び放電ギヤツプdを設定
制御することにより放電々圧を低くして易放電状態で放
電加工しようとするものである。
This relationship is as shown in FIG. 1 if the electrode materials and areas are kept constant and areas other than the opposing areas are strictly insulated. p-d on the horizontal axis is shown in units of Torr*my, p
"d21~2Torr-C7rL shows the lowest value with the lowest discharge starting voltage, and around this value ×102~×10T
orr. In the lowest value range of the acclimatization level, the curve is relatively flat and the discharge starting voltage is low (IKV or less), but beyond this range, the discharge starting voltage suddenly decreases regardless of whether the p-d value increases or decreases. increases and becomes difficult to discharge. This is because when the p-d value increases beyond the above-mentioned minimum range, the discharge gap widens and the mean free path becomes shorter as the pressure approaches atmospheric pressure, causing acceleration of electrons due to the electric field and impact ionization. Even if the p-d value is too low, that is, assuming the d value is constant, if the atmospheric pressure p drops too much, the mean free path is too long, so the number of collisions between the electrons will increase. It is said that this is because impact ionization becomes inactive again as the amount decreases. Another feature is that under a constant pressure, the smaller the gap length d, the less likely the discharge occurs, a phenomenon that is not seen in liquids or in the atmosphere. Therefore, in the present invention, preferably this p-d value is ×10-2 to ×10Torr-
By setting and controlling the atmospheric pressure and the discharge gap d so as to be in the CTrL range, the discharge pressure is lowered to perform electric discharge machining in an easy discharge state.

なおこのd値及びp値は、実際加工機ではdは数10C
rfL以下が使用され、またp値は100T0rr以上
の大気圧に近ずくと陽極の酸化及び雲極の陽極金属のコ
ーテイングがあり、またこの温度の気圧範囲になるとそ
の一はN2などで加工面の異常温度上昇が生じて白色の
窒化現象を生じたりするのでpは好ましくは100T0
rr以下が実用的である。そしてこのようにp−d=×
10−2〜×10T0rr−儂に放電条件を設定制御す
ることにより放電開始電圧を低下させるだけでなく、放
電の切れがよく、パルス放電の0N.0FFが瞬間的に
行なわれる。
Note that this d value and p value are as follows: In actual processing machines, d is several 10C.
rfL or less is used, and when the p value approaches the atmospheric pressure of 100T0rr or more, there is oxidation of the anode and coating of the anode metal on the cloud electrode, and in this temperature and pressure range, one of them is N2 etc. on the machined surface. p is preferably 100T0 to prevent abnormal temperature rise and white nitriding phenomenon.
rr or less is practical. And like this p−d=×
By setting and controlling the discharge conditions to 10-2~×10T0rr-I, I can not only lower the discharge starting voltage, but also improve the discharge cut-off and the 0N. 0FF occurs instantaneously.

例えば、これは真空ギヤツプ1.40]11一定にして
750〜10−5T0rrの気圧変化して放電形成時間
を実験したところによると、第2図の結果が得られる。
横軸は電圧印加してより放電が始まる放電形成時間、縦
軸は負荷電圧を示し、この関係によると、1T0rr(
1.4×10]TOrr−?)程度の圧力では放電形成
に2〜3μS以下の極く短時間でよいが、10−2T0
rr(1.4×10−3T0rr・Cm)になると10
0μSにも及ぶ長い時間が必要であることがわかる。
For example, when the vacuum gap was kept constant at 1.40]11 and the pressure was changed from 750 to 10@-5 T0rr, the discharge formation time was experimented, and the results shown in FIG. 2 were obtained.
The horizontal axis shows the discharge formation time when the voltage is applied and the discharge starts, and the vertical axis shows the load voltage. According to this relationship, 1T0rr (
1.4×10] TOrr-? ), it takes only a very short time of 2 to 3 μS for discharge to form, but at
rr (1.4×10-3T0rr・Cm) is 10
It can be seen that a long time of up to 0 μS is required.

したがつてこの点からも気圧pとギヤツプdの設定制御
は必要であり、p・dを放電開始電圧が最低になる条件
を設定することにようパルス放電の0N−0FFの切れ
のよい、したがつて放電繰返周波数の高い高速加工が行
なえるようになる。そして本発明はこのような実用的な
p−d値範囲(×101〜×10T0rr−CTn)に
訃いて、このp−d値の変化により荒加工から仕上加工
までを任意に行な}うとするものである。
Therefore, from this point of view as well, it is necessary to control the settings of the atmospheric pressure p and gap d, and it is important to set p and d to the conditions where the discharge starting voltage is the lowest. As a result, high-speed machining with a high discharge repetition frequency becomes possible. The present invention is based on such a practical p-d value range (x101 to x10T0rr-CTn), and performs any process from rough machining to finishing machining by changing this p-d value. It is something.

即ち、p・d値曲線の最低値1〜2T0rr−礪を界に
して、これより大きい(1〜10T0rr−Cm)と、
放電クレータ一を伴ない、クレータ一の集合により成る
放電面で加工が行なわれ、これはイオン効果が主体とな
つた加工であり、p−d値の増大によりクレータ一の大
きさも比例増大した荒加工が行なわれる。そして前記p
−d値が最低値1〜2T0rr−儂程度ではパルス放電
を形成して放電点は非常に多岐に亘つて分散し移動はす
るが、スパークは小さくクレータ一も小さくなり、更に
この範囲を越えて小さい値(10−2〜1T0rr−C
m)になると、放電は稀薄な極めて分散した放電(グロ
ー放電に近い)が見られるようになる。この放電による
と、(ニ)側被加工体の加工面は原子サイズの微小なク
レータ一での加工が行なわれ、この範囲では主として電
子の作用による電子加工効果が主体となり、0.1〜1
μRmax程度の超仕上加工が行なわれる。
That is, the minimum value of the p-d value curve is 1 to 2T0rr-Cm, and if it is larger than this (1 to 10T0rr-Cm),
Machining is performed on the discharge surface consisting of a collection of craters, accompanied by discharge craters, and this machining is mainly based on the ion effect, and as the p-d value increases, the size of the craters also increases proportionally. Processing is performed. And the p
-When the d value is at its lowest value of 1 to 2T0rr-I, a pulse discharge is formed and the discharge point is dispersed and moves over a wide range, but the spark is small and the crater is also small. Small value (10-2~1T0rr-C
m), a dilute and extremely dispersed discharge (close to a glow discharge) can be seen. According to this electric discharge, the machining surface of the (d) side workpiece is machined with minute craters of atomic size, and in this range, the electronic machining effect mainly due to the action of electrons is 0.1 to 1
Super finishing processing of approximately μRmax is performed.

したがつて本発明は気圧p及び間隙長dの一方もしくは
両方を制御することにより、その積p−d値を変化させ
てイオン加工作用と電子加工作用の比率を変更制御し希
望する任意の加工面粗さでの加工を行なおうとするもの
である。
Therefore, the present invention changes the ratio of the ion processing action and the electronic processing action by controlling one or both of the air pressure p and the gap length d to change the product p-d value and perform any desired processing. The purpose is to perform machining based on surface roughness.

以下図面の一実施例によう本発明を説明すると、第3図
において、1は内部を気密に保つた加工タンク、2はこ
のタンク内に挿入した被加工体、3は電極で、被加工体
2は加工テーブル4に、電極3は真空ベローズ等を介し
て外部よりタンク1内に挿入された支持スピンド〉レ5
に固定支持される。
The present invention will be described below with reference to an embodiment of the drawings. In Fig. 3, 1 is a processing tank whose interior is kept airtight, 2 is a workpiece inserted into this tank, 3 is an electrode, and the workpiece is 2 is attached to the processing table 4, and the electrode 3 is attached to a support spindle 5 inserted into the tank 1 from the outside via a vacuum bellows or the like.
Fixedly supported.

6は電極、被加工体に送りを与えるNC制御装置で、加
工テーブル4に1i.X,Y軸の送りモーター7,8が
設けられ、これがNC装置6によつて制御される。
6 is an NC control device that feeds the electrode and the workpiece, and 1i. X and Y axis feed motors 7 and 8 are provided and are controlled by an NC device 6.

10は電極3、被加工体2間にパルス放電を行なう加工
パルス電源で、これはパルスコンデンサの充放電により
構成されるもの、またトランジスタ等の半導体スイツチ
のオン・オフスイツチング制御によつて加工パルスを発
生させるようにしたもの等、適宜の回路装置が使用され
る。
Reference numeral 10 denotes a machining pulse power source that generates a pulse discharge between the electrode 3 and the workpiece 2, which is configured by charging and discharging a pulse capacitor, and is also configured by on/off switching control of a semiconductor switch such as a transistor. Any suitable circuit arrangement may be used, such as one adapted to generate pulses.

11は加工タンク1を減圧排気する真空ポンプである。11 is a vacuum pump that evacuates the processing tank 1 under reduced pressure.

加工タンク1内は真空ポンプ1によつて排気され、この
減圧気体媒体中に電極3が被加工体2と対向し、この間
隙に電源10から供給されるパルス電圧により放電を繰
返して加工することは従来の液中放電加工と同様である
The inside of the machining tank 1 is evacuated by a vacuum pump 1, and an electrode 3 is placed in this reduced pressure gas medium, facing the workpiece 2, and a pulse voltage supplied from a power source 10 is applied to this gap to repeatedly generate electric discharge for machining. is similar to conventional submerged electrical discharge machining.

加工タンク1内の気圧dが真空ポンプ11によつて制御
される一方、電極3はモ・一タ一9によりZ軸送り制御
が行なわれ、p−d値が×10−2〜×10T0rr−
?範囲の最低放電開始電圧になるよう制御されるが、し
かもこの範囲内において気圧p、間隙長dのいづれか一
方もしくは両方の調整によつてp−d値を大きく制御し
てやることによつてイオン衝撃加工によるクレータ一の
大きい高速加工が行なえ、p−d値を小さく制御すると
電子加工による微細なクレータ一を伴なう超仕上加工が
行なえるもので、特に実施例図の場合、真空ポンプ11
による気圧制御を一定としてモーター9による電極3の
微調整制御送りをすることによりp−d値を容易に微調
整制御することができ、加工目的に応じた任意の条件加
工を容易に行なうことができる。また被加工体2は加工
テーブル4のNC制御によつて電極3の対向部を移動す
るが、被加工体2の加工形状によつて対向間隙dが変化
するので、これと同時にスピンドル5の制御も行ない、
常に一定間隙で設定したp−d値が変化しないように制
御し、被加工体の加工面全体を一定の面粗さで加工する
ことができる。な訃、図示しないが気圧pの微調整制御
によつて加工条件の変化(p−d値変更)を行なう場合
は間隙にガスノズ゛ノレを開口せしめ、加工タンク1内
をポンプ11により高真空に排気した後、ノズルよりガ
スを制御供給して気圧制御を行なうようにすればよく、
これによりp−d値の変更制御が行なえるものである。
While the atmospheric pressure d in the processing tank 1 is controlled by the vacuum pump 11, the Z-axis feed control of the electrode 3 is performed by the motor 9, and the p-d value is from x10-2 to x10T0rr-
? Ion bombardment processing is performed by controlling the p-d value to a large extent by adjusting either or both of the air pressure p and the gap length d within this range. By controlling the p-d value to a small value, it is possible to perform high-speed machining with large craters, and by controlling the p-d value to a small value, it is possible to perform super-finishing machining with fine craters caused by electronic machining.
The p-d value can be easily finely adjusted by controlling and feeding the electrode 3 using the motor 9 while keeping the atmospheric pressure constant, and machining can be easily performed under any conditions depending on the purpose of machining. can. Further, the workpiece 2 is moved through the opposing part of the electrode 3 under NC control of the processing table 4, but since the opposing gap d changes depending on the machining shape of the workpiece 2, the spindle 5 is controlled at the same time. also do
It is possible to control the p-d value set at constant intervals so that it does not change, and to machine the entire machined surface of the workpiece with a constant surface roughness. Although not shown, when changing the machining conditions (changing the p-d value) by finely adjusting the atmospheric pressure p, a gas nozzle is opened in the gap, and the inside of the machining tank 1 is brought to a high vacuum by the pump 11. After exhausting the air, the air pressure can be controlled by supplying gas through the nozzle.
This allows the p-d value to be controlled to change.

また放電雰囲気に任意の気体を介在させて加工すること
ができる。以上のように本発明は放電ギヤツプdの変更
制御によつてp−d値を変化させることによりイオン加
工作用と電子加工作用の比率を制御するようにしたから
荒加工から仕上加工までを容易にでき、0,5〜1μR
max程度の超仕上も容易にできる。
Further, processing can be performed with any gas present in the discharge atmosphere. As described above, the present invention controls the ratio of the ion machining action and the electronic machining action by changing the p-d value by controlling the change in the discharge gap d, making it easy to perform everything from rough machining to finishing machining. Yes, 0.5~1μR
Super-finishing to the maximum level can be easily achieved.

またp−d値を10−2〜10T0rr−?程度の範囲
内で加工することにより放電々圧を350〜1000程
度の低電圧で加工でき、電源にパルスを用いることによ
つて放電位置制御が容易であね、放電点の移動分散が容
易にでき、また放電エネルギーの変更制御が、また大電
力放電ができるなどの特有な効果がある。パルス巾は0
.1〜10μS程度から最大10mS程度まで利用でき
る。この本発明の放電加工は、放電エネルギーの増大に
よつて高速荒加工もできるが、特に仕上加工、超仕上加
工をp−d値の変更によつて容易に加工でき、絶縁物塗
布によるそれ以外の部分の加工による形状加工、総型形
状電極使用による型加工とか液中放電加工面の仕上、機
械加工によつて発生した。バリ取り加工、機械加工面の
仕上加工、面の超微細梨地加工、錆取り、油落し加工、
塗装の下地処理、蒸着、プラズマコーテイングの下地処
理、表面荒加工、または金属粉末の表面積拡大加工、粉
体、球体表面の活性化処理加工、絶縁部の加工等、また
サンドブラスト、リクイツドホーニング等に代える超ブ
ラスト加工といつた広範な応用が考えられる。またp−
d値制御によつて、p−d二101〜1T0rrCTn
程度に制御して加工すると被加工体の面が原子サイズの
繁細なクレータ一面での加工が行なわれ、加工前につい
ていた汚れがスパークされて除去加工され、化学メツキ
、電気メツキの下地処理加工、途装、蒸着母材の表面エ
ツチング処理、その他金属表面の下地処理、クリーニン
グ加工として利用され、またp−d−1〜10T0rr
−?程度で行なわれた加工面の超仕上加工(0.1μR
max程度)として利用される。
Also, the p-d value is 10-2 to 10T0rr-? By machining within the range of 350 to 1000, it is possible to process the discharge voltage at a low voltage of about 350 to 1000, and by using a pulse for the power supply, it is easy to control the discharge position, and the movement and dispersion of the discharge point is easy. It also has unique effects such as the ability to change and control discharge energy and discharge large amounts of power. Pulse width is 0
.. It can be used from about 1 to 10 μS to a maximum of about 10 mS. The electric discharge machining of the present invention can perform high-speed rough machining by increasing the discharge energy, but it can also easily process finishing and super-finishing by changing the p-d value. This occurred due to shape machining by machining the part, mold machining using a full mold shape electrode, finishing of the liquid discharge machining surface, and machining. Deburring, finishing of machined surfaces, ultra-fine satin finishing of surfaces, rust removal, oil removal,
Surface treatment for painting, vapor deposition, plasma coating, surface roughening, surface area expansion of metal powder, activation treatment of powder and spherical surfaces, processing of insulation parts, etc., as well as sandblasting, liquid honing, etc. A wide range of applications can be considered, such as ultra-blasting instead. Also p-
By controlling the d value, p-d2101 to 1T0rrCTn
If the processing is controlled to a certain degree, the surface of the workpiece will be processed into a single atomic-sized crater, and the dirt that was on the surface before processing will be sparked and removed, which will be used as a base preparation for chemical plating and electroplating. It is used for surface etching, surface etching of vapor deposition base materials, base treatment and cleaning of other metal surfaces, and p-d-1 to 10T0rr.
−? Super-finishing of the machined surface (0.1 μR
(approximately max).

また放電雰囲気を窒素ガスとすれば、窒化処理加工がで
き、供給ガスの種類によつて浸炭、窒化、浸硫化等の拡
散処理加工ができ、またこれは前工程の放電加工面の硬
化処理仕上等としても利用できる。そして本発明のこの
ような加工は加工部が排気された減圧気体中で加工が行
なわれるものであるから、従来のケロシン等の液中加工
のようにガス発生火災等の現象はなく全く安全な無公害
加工機が提供できる。
In addition, if the discharge atmosphere is nitrogen gas, nitriding processing can be performed, and depending on the type of gas supplied, diffusion processing such as carburizing, nitriding, and sulfurizing can be performed. It can also be used as In addition, since the processing of the present invention is carried out in a reduced pressure gas that is exhausted from the processing section, there is no phenomenon such as gas generation and fire, unlike in conventional submerged processing of kerosene, etc., and the process is completely safe. We can provide pollution-free processing machines.

な訃、被加工体は長時間に亘る加工に訃いては加熱があ
るが、これを取り付ける加工テーブルに冷却パイプによ
る冷却装置を内蔵して}くことによつて、また放電を休
止時間を有せしめたパルス放電とすることによつてパル
ス休止中に、またこの休止巾の制御によつて充分な冷却
をすることができ、加熱変質等なしに加工ができる。
Unfortunately, the workpiece heats up during long-term machining, but by incorporating a cooling device with cooling pipes into the processing table to which it is attached, it is possible to reduce the amount of time the electrical discharge is interrupted. By using a slow pulsed discharge, sufficient cooling can be achieved during the pulse pause and by controlling the pause width, and processing can be performed without heat deterioration or the like.

また被加工体の加工部分以外の絶縁には注意を払い、例
えば油で粘つたワセリングリス等を塗布するようにすれ
ば目的部分だけの加工ができ、また電極と被加工体の放
電間隙を狭めて、例えば0.05〜10n程度の微小間
隙で加工する場合は被加工体面上に極く薄く絶縁物を塗
布して訃き、これに気体ギヤツプを隔て\電極を対向す
るようにすれば安定してパルス放電が発生し短絡とかア
ークを伴なうことなく加工ができる。
In addition, pay attention to insulating the parts of the workpiece other than the machined part, for example, by applying oil-viscous Vaseline grease, etc., you can machine only the target part, and narrow the discharge gap between the electrode and the workpiece. For example, when machining with a minute gap of about 0.05 to 10 nm, it is possible to stabilize the workpiece by coating an extremely thin layer of insulating material on the surface of the workpiece and placing the electrodes facing each other with a gas gap between them. Pulse discharge occurs, allowing machining without short circuits or arcs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は説明するための特性図、第3図は本
発明の一実施例構成図である。
1 and 2 are characteristic diagrams for explanation, and FIG. 3 is a configuration diagram of an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 大気圧以下に減圧された雰囲気においても電極と被
加工体を対向した間隙にパルス電圧を加え放電を行なつ
て加工するに当り、前記電極と被加工体の対向間隙長さ
を変化させてイオン加工作用と電子加工作用の比率を変
更制御するようにしたことを特徴とする気中放電加工方
法。
1. Even in an atmosphere reduced to atmospheric pressure or lower, when machining is performed by applying a pulse voltage to the gap between the electrode and the workpiece facing each other to generate electric discharge, the length of the facing gap between the electrode and the workpiece is changed. An aerial electrical discharge machining method characterized in that the ratio of ion machining action and electronic machining action is changed and controlled.
JP7261774A 1974-06-24 1974-06-24 What's going on? Expired JPS599294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7261774A JPS599294B2 (en) 1974-06-24 1974-06-24 What's going on?

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7261774A JPS599294B2 (en) 1974-06-24 1974-06-24 What's going on?

Publications (2)

Publication Number Publication Date
JPS513096A JPS513096A (en) 1976-01-12
JPS599294B2 true JPS599294B2 (en) 1984-03-01

Family

ID=13494511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7261774A Expired JPS599294B2 (en) 1974-06-24 1974-06-24 What's going on?

Country Status (1)

Country Link
JP (1) JPS599294B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5047767U (en) * 1973-08-24 1975-05-12
GB1467808A (en) * 1973-11-23 1977-03-23 Ranco Inc Gas burner control system
JPS52130760A (en) * 1976-04-26 1977-11-02 Mansei Kogyo Kk Automatic dischar geproof device for gas lighter
JPS52136078A (en) * 1976-05-07 1977-11-14 Murata Manufacturing Co Circuit for generating high voltage to ignit gas
JP4530591B2 (en) * 2001-09-07 2010-08-25 株式会社ソディック Air EDM method
RU2721238C1 (en) * 2019-10-22 2020-05-18 Публичное Акционерное Общество "Одк-Сатурн" Method of applying insulation coating on electrodes-tools or appliances for electrochemical treatment

Also Published As

Publication number Publication date
JPS513096A (en) 1976-01-12

Similar Documents

Publication Publication Date Title
JP4815049B2 (en) Polishing method of CVD diamond film by oxygen plasma
CN109797363B (en) Arc light electron source assisted ion nitriding process
US5503725A (en) Method and device for treatment of products in gas-discharge plasma
EP0899772B1 (en) Cathodic arc vapor deposition apparatus
US20030054647A1 (en) Plasma processing method
RU2625698C1 (en) Method of application of protective coatings and device for its implementation
JP2000506225A (en) Method and apparatus for coating workpieces
Shugurov et al. QUINTA equipment for ion-plasma modification of materials and products surface and vacuum arc plasma-assisted deposition of coatings
JP5172465B2 (en) Discharge surface treatment electrode manufacturing method and discharge surface treatment electrode
JPS599294B2 (en) What's going on?
US4461954A (en) Ion-processing method and apparatus
KR20060066632A (en) Method and apparatus for cathodic arc deposition of materials on a substrate
KR102284893B1 (en) Surface modification method of metal and surface modified metal manufactured therefrom
US20010029896A1 (en) Rotating device for plasma immersion supported treatment of substrates
KR20130037447A (en) Surface treatment method of polypropylene using plasma
RU2026413C1 (en) Method of heating of electric conducting products in working chamber
JP2005076061A (en) Method and device for reforming surface of metal member
Akhmadeev et al. Plasma sources based on a low-pressure arc discharge
JPH06108238A (en) Sputtering device
RU2063472C1 (en) Method and apparatus for plasma treatment of pieces
RU2037559C1 (en) Method and apparatus to deposit coatings on pieces by ionic dispersion method
RU2711067C1 (en) Method of ion nitriding in crossed electric and magnetic fields
Sakhapov Parameters of magnetron sputtering gas discharge plasma with a small anode
JPH08134673A (en) Cleaning and deburring method and device therefor
KR200149909Y1 (en) Sputtering apparatus