JPS5992723A - Load control system for demand power monitor - Google Patents

Load control system for demand power monitor

Info

Publication number
JPS5992723A
JPS5992723A JP57200590A JP20059082A JPS5992723A JP S5992723 A JPS5992723 A JP S5992723A JP 57200590 A JP57200590 A JP 57200590A JP 20059082 A JP20059082 A JP 20059082A JP S5992723 A JPS5992723 A JP S5992723A
Authority
JP
Japan
Prior art keywords
load
power
power factor
factor improvement
load control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57200590A
Other languages
Japanese (ja)
Inventor
森岡 康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Fuji Facom Corp
Original Assignee
Fuji Electric Co Ltd
Fuji Facom Corp
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Facom Corp, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP57200590A priority Critical patent/JPS5992723A/en
Publication of JPS5992723A publication Critical patent/JPS5992723A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は需要電力監視装置に関し、9−′Jにマイクロ
コンピュータシステムを利用した需蒙電力監σ1)装(
直の負荷制御方式に関1−る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power demand monitoring device, and relates to a power demand monitoring device (σ1) using a microcomputer system in 9-'J.
Regarding the direct load control method.

需要電力監視装置の負荷制御方式としてデマンドコント
ローラが知られている。第1Nにデマンドコントローラ
の代表的な構成を示す。これはマイクロプロセサを内蔵
していて外部より t6:カ倖を表わすパルス入力を一
点で受信可能となっている。
A demand controller is known as a load control method for a power demand monitoring device. 1N shows a typical configuration of the demand controller. This has a built-in microprocessor and can receive a pulse input representing t6: force from the outside at one point.

検出した電力風に基づいて予測電力を演算し、この予測
電力が目標電力を上まわっていて、その差である調整電
力のイ直が次に連断しようとする負荷の消費電力値を超
えている場合に遮断〆を行う。
The predicted power is calculated based on the detected power wind, and if this predicted power exceeds the target power, and the difference between the two, the adjusted power, exceeds the power consumption value of the next load to be connected. If there is, perform a shutoff.

遮断方式として「−固定方式」を使用する場合は、a 
#frの便先IPli位に従って遮断し、機部させる。
When using “-fixed method” as the cutoff method, a
#Fr is shut off according to the destination IPli position, and the machine is moved.

即ぢ遮断モードでは優先順らlの]1ル下ムlの負荷が
上rヅの負1jの順で逗1吹し、復帰モードでは十bγ
の負荷から下6′Lの負荷の願で04帰させる。またr
 i)#環方式」を採11するノん1合は、全ての負荷
が等しい割合で、gll:Iiさtl、るよう、未遮断
の負荷を順次、循環式に遮断し、十H(2の状にすが解
除されるごとに、−紺0[1に遮断された負荷から順番
に稜帰さぜる。
Immediately, in the cut-off mode, the load in the order of priority l is lower than l in the order of upper rzu and negative 1j, and in return mode, the load is
04 is returned with a load of 6'L below. Also r
i) In the case of No. 1, all loads are equally distributed, and the unshut off loads are shut off sequentially in a circular manner so that all loads are at the same rate. Each time the load is released, the load is returned to the ridge in order starting from the load that was cut off at -dark blue 0[1.

しかし、上記の従来装置では、負荷遮断の多作として、
目イ票′l五力と調整電力という2つのパラメータのみ
を使用しているため、各負7h′j側の環境を無視して
しまうことになる。例えば、空調機負荷の場合にt、J
l、¥内温vが高いにもかかわらずクーラーを停止した
り、逆に室内温度が低いにもかかわらず運転を継続1〜
たり1〜る欠点がある。また、遮断1i[[2位が予め
設定されている (固定)製造工場の負荷のような場合
、遮断の優先順位の低い負荷のみ頻繁に遮11ツ1と復
帰をくり返し、負荷率が悪くなるという欠点がある。
However, with the above conventional equipment, as a result of frequent load shedding,
Since only two parameters, the power and the adjusted power, are used, the environment on the negative 7h'j side is ignored. For example, in the case of air conditioner load, t, J
l,¥ Stopping the cooler even though the internal temperature v is high, or conversely continuing operation even though the indoor temperature is low1~
There are some drawbacks. In addition, in the case of a load in a manufacturing factory where the second priority is set in advance (fixed), only the load with a low priority for interruption will frequently be interrupted and restored, resulting in a poor load factor. There is a drawback.

需蟹電力を監視すると同時に負荷率、力率を改善し、?
IC力の損失を軽減し、電圧変動率も低下させ電力利金
の低減を計る必要がある。
How to monitor demand power and improve load factor and power factor at the same time?
It is necessary to reduce the loss of IC power, lower the voltage fluctuation rate, and lower the electricity interest rate.

したがって本発明は、需要電力を監視する除に、目標電
力と調整電力のみならず、負荷の状態や環境等をも考慮
して負荷の制御を行うことにより、」二連の欠点を除去
した需要電力監視装置1.rf−の負荷:Ii制御方式
をJI供づ−ることを特徴とする。
Therefore, in addition to monitoring the power demand, the present invention eliminates the two drawbacks by controlling the load by taking into consideration not only the target power and adjusted power, but also the state of the load, the environment, etc. Power monitoring device 1. RF load: It is characterized by providing JI control method.

以下、図面を参照して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第2図に実施例を示す。第2図において、1はマイクロ
コンピュータザブシステムである。このシステム1には
予測電力演算部4が接続されている、予測電力演算部4
は各回路ごとに設けられた発信装置付精密電力量計から
のパルス出力に基いて、各回路の予測電力を演算し、そ
の結果をマイクロコンピュータザブ/ステムの予測電力
解析部分るに送る。解析部分るでd、データ設定部分1
からのデマンドデータ設定値に基づいて予測電力の解析
を行う。デマンドデータ設定値としては、例えd:、目
C(電力値(全ての負荷に対する所望の電力値、通常、
テ゛マント契約電力a閉連する値に設定される)、各回
路ことに設定される遮断電力値、時限初1t11の不ダ
V動作(家入省)1力値に対する不安定動作)を防止す
るために、設定される初期電力値、各負荷の遮断の優先
順位に関する情報等がある。
An example is shown in FIG. In FIG. 2, 1 is a microcomputer subsystem. A predicted power calculation unit 4 is connected to this system 1.
calculates the predicted power of each circuit based on the pulse output from a precision wattmeter with transmitter provided for each circuit, and sends the result to the predicted power analysis section of the microcomputer Sub/Stem. Analysis part d, data setting part 1
Analysis of predicted power is performed based on the demand data set value from. As a demand data setting value, for example, d:, C (power value (desired power value for all loads, usually,
In order to prevent unstable operation with respect to the power value of 1t11 at the beginning of the time limit, the cut-off power value is set for each circuit. The information includes the initial power value to be set, the priority order of shutoff of each load, etc.

ザブ7ステム1は予6111電力解11部分ろり、外に
、外iτ1−人力演算部分6を備える。この外部入力演
算部6には′11L力覇以外に、各負荷の状況ないしU
′1(境を表わす9勿理パラメータを入力することがで
きる。
The sub7 stem 1 has a pre-6111 power calculation part 11 and an external iτ1-human power calculation part 6. In addition to '11L power output, this external input calculation unit 6 also contains various information such as the status of each load or U
'1 (9 natural parameters representing boundaries can be input.

第2図に示づ一例では、各負荷の電力置引7、多負荷の
遮断回数を割数する計数器8、空調機負荷を含む場合に
各空調機の設定された室内温度を検出゛j−る室内温度
訓9、及び各負荷の力率を検出する力率削10が外部入
力演算部6に接続されている。
In an example shown in FIG. 2, a power counter 7 for each load, a counter 8 for dividing the number of interruptions for multiple loads, and a set indoor temperature for each air conditioner when the air conditioner load is included are detected. - An indoor temperature sensor 9 and a power factor reducer 10 for detecting the power factor of each load are connected to the external input calculation section 6.

外部入力演算部6ではデータ設定部2からの各種設定値
に基づいて外部からの各種入力データを演算する。演算
部6に入力されるデータ設定1KIXの設定値としては
、温度(空調機負荷がある場合)、遮断回路、負荷率、
力率の警報レベル等についての−り、”T成膜定値等が
ある。
The external input calculation section 6 calculates various input data from the outside based on various setting values from the data setting section 2. The setting values of data setting 1KIX input to the calculation unit 6 include temperature (if there is an air conditioner load), cutoff circuit, load factor,
Regarding power factor alarm levels, etc., there are "T film formation constant values, etc."

マイクロコンピュータサブシステム1は、予測電力解析
部ろと外部入力演算部乙の処理出力に基づいて各種負荷
回路の遮断、復帰及び力率の改善のための進相コンデン
サの投入、遮断を制呻゛丈る負荷制御部11を備える、
負荷制御部11はその制御出力を各負荷及び関連する進
相コンデンサの遮f町接点部16に送る。
The microcomputer subsystem 1 controls the switching on and off of phase advance capacitors for shutting off and restoring various load circuits and improving the power factor based on the processing outputs of the predictive power analysis section and the external input calculation section B. Equipped with a long load control section 11,
The load control section 11 sends its control output to the interception contact section 16 of each load and associated phase advance capacitor.

マイクロコンピュ−タサブシステム1内の処理二、F−
夕は、夕H?lSのロギングタイ7″ライタ12に」〕
ち出′ずことにより、各種の計測値2.データを収録す
ることができる。
Processing 2 in microcomputer subsystem 1, F-
Evening is evening H? lS logging tie 7" to writer 12"]
Various measured values 2. Data can be recorded.

以上の構成の実施装置は下記のような負荷制御方式をf
ψ用する。
The implementation device with the above configuration uses the following load control method.
Use ψ.

(1)負荷遮断が循環の場合(例、空調機)予測電力が
目標電力を超過した場合(ブロック602第6図)、ま
ず力率改善で補償可能か否かを判断しくブロック315
)、間合う場合には、力率改善が必要な負荷に対し、力
率改善指令を出力づ−る (グロック316)、間合わ
ない場合には、最も遮断すべき環境にある負荷(例、最
も温度の低い冷房機の回路)に遮断指令を与える。又、
復帰は温度の高い冷房機の回路から復帰させる(第ろ図
にはそのグログラムは示さず)。
(1) If the load shedding is cyclical (for example, an air conditioner), and the predicted power exceeds the target power (block 602, FIG. 6), it is first determined whether it can be compensated for by power factor improvement (block 315).
), if the time is met, outputs a power factor improvement command to the load that requires power factor improvement (Glock 316); if the time is not met, outputs the power factor improvement command to the load that needs to be shut down most (e.g. Gives a shutdown command to the circuit of the air conditioner with the lowest temperature. or,
For recovery, the circuit of the air conditioner with high temperature is used for recovery (the grogram is not shown in the figure).

(2)負荷遮断が同定の場合(例、製造工場)予測電力
の動向について、各回路ごとに監視し、各回路に割当て
られた遮[(す[電力を超過した場合、寸ずその負荷が
遮断の優先最下f\lの負荷か否かを判定しくブロック
ろo6)、否の場合は力率改善で補償DJ能か否か判定
しくブロックろ06)、可能ならばその1’L荷に対し
力率改善指令を発する(ブロック308)  、又、遮
断電力超過負荷の優先順位が最下fヅでない場合は、最
下位の負荷について、力率改善で補償可能か否か判定し
くブロック309) 、可能ならば力率改善指令を出し
くグロックろ14)、不可であれば、その負荷の遮断回
数が設定回数よシ大きいか否かを判定しくブロック31
U)、大きくなければその負荷に対し西断指令を出しく
ブロックろ1ろ)、大きければ、優先順(’、′Lのひ
とつ上の負荷(ブロックろ11)について、その負荷の
力率改善で補償可能か否か判定しくブロック312)、
可能なら力率改善指令を出しくブロックろ14)、不叱
なら、その遮断回数を調べ、以下順次、ステップをくり
返ツーことにより、力率改善で補償し得る限りは、力率
改善を実行し、それが不可の場合にd4、遮断回斂が許
存設定回数以下の負荷遮断を実行する。
(2) When load shedding is identified (e.g., in a manufacturing factory), the predicted power trend is monitored for each circuit, and if the load shedding exceeds the power assigned to each circuit, the load is immediately Block o6) to judge whether the load is at the lowest priority f\l for shutoff, and if not, check whether the power factor correction can be compensated for by DJ function or not.If possible, block that 1'L load A power factor improvement command is issued to the load (block 308), and if the priority of the load in excess of cut-off power is not the lowest f゜, it is determined whether or not the lowest load can be compensated for by power factor improvement (block 309). ), if possible, issue a power factor improvement command (block 14); if not, determine whether the number of times the load is interrupted is greater than the set number (block 31).
U), if it is not large, issue a west cut command for that load (Block 1); if it is large, then in order of priority (', 'For the load one above L (Block 11), improve the power factor of that load (block 312) to determine whether compensation is possible.
If possible, issue a power factor improvement command (block 14), and if not, check the number of interruptions, and repeat the following steps in order to perform power factor improvement as long as it can be compensated for by power factor improvement. However, if this is not possible, in d4, load shedding is performed in which the number of shedding cycles is equal to or less than the allowable set number of times.

以上、説明したように、本発明によれば、固定遮げ「負
荷群、循環遮■ノr負荷群のいずれに対しても、lたそ
の複合系統に対しても、負荷の環境あるいは負荷の重要
度に応じた負荷制御が可能であり、又、力率改善で予測
電力を目櫻電力以下に補償し得る限り、力率改善を実行
するという制御が行なわれる。したがって、′負荷率、
4ka4−  力率の改−る 善が回れるとともに、電力損失を軽減シフ、有効な電力
利用が可能となる。
As explained above, according to the present invention, the load environment or the load As long as it is possible to control the load according to the degree of importance, and as long as power factor improvement can compensate the predicted power to below the target power, control will be performed to perform power factor improvement.Therefore, 'load factor,'
4ka4- It is possible to improve the power factor, reduce power loss, and make effective use of power.

なお実施例に例示するプラント開側パラメータ以外の言
1測パラメータを使用できることはもちろんである。
Note that it is of course possible to use random parameters other than the plant opening side parameters exemplified in the embodiment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来方式の構成図、第2図は本発明の実施例を
示す構成図、第ろ図は第2図のマイクロコンピュータザ
グソステム1が実行する負荷制御プログラム主要部のフ
ローチャー1・である。 !I踵′「出に1;′1人  富士電機製造株式会社同
    富士ファコム制御株式会社 C外4るノ 長1÷115“7j 第2図
FIG. 1 is a block diagram of a conventional system, FIG. 2 is a block diagram showing an embodiment of the present invention, and FIG.・It is. ! 1 person Fuji Electric Manufacturing Co., Ltd. Fuji Facom Control Co., Ltd. C 4 length 1 ÷ 115 7j Figure 2

Claims (1)

【特許請求の範囲】[Claims] Ll′、!要電力監視装置の負荷j171.l (a)
1方式において、各負荷の予測電力を演算・解析すると
ともに、各負荷の環境パラメータを用いて、各員りjの
状況を把握し、予測電力が同様電力を超える“J、l:
fjjAの発生に対し、力率改善で補償可能な限り、力
率改善指令を発して補償し、不可の場合には佃II:;
j :l/S況に基いて負荷遮断指令を発するようにし
たことをI電機とする需要電力監視装置の負荷制御方式
、)
Ll′,! Load of power requirement monitoring device j171. l(a)
In method 1, the predicted power of each load is calculated and analyzed, and the situation of each load j is grasped using the environmental parameters of each load, and the predicted power exceeds the same power "J, l:
To the extent that fjjA can be compensated for by power factor improvement, a power factor improvement command is issued to compensate for the occurrence of fjjA, and if it is not possible, Tsukuda II:;
j: A load control method for a demand power monitoring device in which a load shedding command is issued based on the l/S situation.)
JP57200590A 1982-11-16 1982-11-16 Load control system for demand power monitor Pending JPS5992723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57200590A JPS5992723A (en) 1982-11-16 1982-11-16 Load control system for demand power monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57200590A JPS5992723A (en) 1982-11-16 1982-11-16 Load control system for demand power monitor

Publications (1)

Publication Number Publication Date
JPS5992723A true JPS5992723A (en) 1984-05-29

Family

ID=16426872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57200590A Pending JPS5992723A (en) 1982-11-16 1982-11-16 Load control system for demand power monitor

Country Status (1)

Country Link
JP (1) JPS5992723A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7425400B2 (en) 2003-02-20 2008-09-16 Fujifilm Corporation Planographic printing plate precursor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7425400B2 (en) 2003-02-20 2008-09-16 Fujifilm Corporation Planographic printing plate precursor

Similar Documents

Publication Publication Date Title
US4889280A (en) Temperature and humidity auctioneering control
CN104603699A (en) Temperature administration system
Ji et al. DSP-based self-tuning IP speed controller with load torque compensation for rolling mill DC drive
JPS5992723A (en) Load control system for demand power monitor
Mahdavi Toward a simulation-assisted dynamic building control strategy
JPH04299720A (en) Electronic computer containing working environment securing function
JPH076659B2 (en) Air conditioner alarm device
JPS6237018A (en) Power demand controller
JPH05297992A (en) Input circuit for programmable controller
EP4086718B1 (en) Parallel transformer temperature measurement and fault detection system
JPS583534A (en) Automatic monitoring interval setting system
JPS61231836A (en) Power demand controller for building equipment
JPH04347439A (en) Operation controller of regional heating-cooling equipment
JPS63234837A (en) Power demand control system
JPS6070925A (en) Motor malfunction self-diagnosing device
JPH04172923A (en) Monitoring method for electric power system
JP2568240B2 (en) Demand monitoring control system
JP2521117B2 (en) Air conditioning control device
JPH04183226A (en) Demand control method for electric power
JPH0650007Y2 (en) Abnormality monitoring device
JPH04125030A (en) Power factor improving device
JPS62236329A (en) Generator output control
JP2000224764A (en) Power consumption controller
JPS62207143A (en) Method for regulating reactive power of transmission line
JPH0136015B2 (en)