JPS5985B2 - Transmission line connection - Google Patents

Transmission line connection

Info

Publication number
JPS5985B2
JPS5985B2 JP52014119A JP1411977A JPS5985B2 JP S5985 B2 JPS5985 B2 JP S5985B2 JP 52014119 A JP52014119 A JP 52014119A JP 1411977 A JP1411977 A JP 1411977A JP S5985 B2 JPS5985 B2 JP S5985B2
Authority
JP
Japan
Prior art keywords
transmission line
dielectric
dielectric material
connection portion
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52014119A
Other languages
Japanese (ja)
Other versions
JPS5399955A (en
Inventor
洋介 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JUNKOSHA KK
Original Assignee
JUNKOSHA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JUNKOSHA KK filed Critical JUNKOSHA KK
Priority to JP52014119A priority Critical patent/JPS5985B2/en
Publication of JPS5399955A publication Critical patent/JPS5399955A/en
Publication of JPS5985B2 publication Critical patent/JPS5985B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、誘電体線路、表面波線路(イメージ線路、イ
ンシユラ線路を含む)、誘電体充填および/または内装
金属導波管、およびそれらの組合せ構造を有する伝送線
路の接続部に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a transmission line having a dielectric line, a surface wave line (including an image line and an insular line), a dielectric filled and/or internal metal waveguide, and a combination thereof. It concerns the connection part.

ミリ波、サブミリ波、光領域の波は、伝送線路によつて
、誘電体内モード、表面波モード、および導波管モード
のいずれか一つまたはこれらの任意の組合せとして伝送
される。
Millimeter waves, submillimeter waves, and waves in the optical domain are transmitted by transmission lines as any one of an in-dielectric mode, a surface wave mode, and a waveguide mode, or any combination thereof.

そしてこれらの伝送線路の一部(または全部)には、上
記波の伝送媒体として誘電体材料が使用されている。即
ち、伝送線路中の波動エネルギーが伝播する誘電体とし
ては、従来、ポリエチレン、ポリプロピレン、ポリテト
ラフロロエチレンなどの気孔のないもの(技術用語とし
ては、一般に充実体という)が使用され、そしてクラッ
ド部分の誘電率の低い材料としては、発泡剤によつて発
泡させた独立気泡を有するポリエチレン、ポリプロピレ
ンなどが使用されている。
A dielectric material is used in some (or all) of these transmission lines as a transmission medium for the waves. That is, conventionally, as a dielectric material through which wave energy propagates in a transmission line, a material without pores (generally referred to as a solid material in technical terms) such as polyethylene, polypropylene, or polytetrafluoroethylene has been used, and the cladding portion As the material having a low dielectric constant, polyethylene, polypropylene, etc., which have closed cells foamed with a foaming agent, are used.

しかし、発泡剤によつて発泡させた上記のプラスチック
は、その中に発泡剤が含まれているために誘電体損失が
大きい、誘電率の制御が困難、誘電体の境界部の発泡率
が変化しやすい、発泡空孔の径を波長の数分の1以下に
するのが困難、材料の成形がむづかしい、などの欠点が
あり、発泡材料をクラッド部分に使用しても損失が大き
く、従つてこれを波動エネルギーの伝播部分として使用
することは殆ど不可能であつた。
However, the above-mentioned plastics that are foamed with a foaming agent have a large dielectric loss due to the foaming agent contained therein, it is difficult to control the dielectric constant, and the foaming rate changes at the boundary of the dielectric. It is difficult to make the diameter of the foamed pores less than a fraction of the wavelength, and it is difficult to mold the material. It was almost impossible to use this as a wave energy propagation part.

本発明者は、上記の様な従来材料の欠点のない伝送線路
の接続部用誘電体材料を得るべく種々検討した結果、多
数の微小結節が微細繊維によつて互に三次元的に結合さ
れた気孔率の高い多孔性微細構造を有する結晶性高分子
よりなる誘電体は誘電率およびtanδが小さく、しか
も誘電率の制御が容易かつ均一であり、また伝送線路へ
の成形後端末等を目的の形状および誘電率に自由に調整
でき、可撓性も大きいなど、伝送線路の接続部用誘電体
として極めて適していることを見出し、この知見に基づ
いて本発明を完成した。
As a result of various studies in order to obtain a dielectric material for connection parts of transmission lines that does not have the drawbacks of conventional materials as described above, the present inventor discovered that a large number of micronodules are three-dimensionally connected to each other by microfibers. A dielectric material made of a crystalline polymer with a porous microstructure with high porosity has a small dielectric constant and tan δ, and the dielectric constant can be easily and uniformly controlled. It was discovered that the shape and dielectric constant of the dielectric material can be freely adjusted, and it has great flexibility, making it extremely suitable as a dielectric material for connection parts of transmission lines.Based on this knowledge, the present invention was completed.

即ち、本発明は、多数の微小結節が微細繊維によつて互
に三次元的に結合された気孔率の高い多孔性微細構造を
有する結晶性高分子よりなる誘電体で形成したことを特
徴とする伝送線路の接続部である。
That is, the present invention is characterized in that it is formed of a dielectric material made of a crystalline polymer having a porous microstructure with high porosity in which a large number of micronodules are three-dimensionally connected to each other by microfibers. This is the connection part of the transmission line.

本発明において波動エネルギー伝送部分の少なくとも一
部として使用される誘電体は、結晶性高分子材料からな
るものであつて、その内部構造は、多数の微小結節が多
数の微細繊維によつて互に三次元的に連結され、これら
の微小結節と微細繊維の間に多数の入り組んだ空隙が形
成され、全体として連続気孔性の多孔性微細構造を有す
るものである。
The dielectric used as at least a part of the wave energy transmission part in the present invention is made of a crystalline polymer material, and its internal structure is composed of a large number of micronodules interconnected by a large number of fine fibers. These micronodules and microfibers are connected three-dimensionally, and a large number of intricate voids are formed between them, resulting in a porous microstructure with continuous pores as a whole.

このような多孔性微細構造を有する誘電体は例えば特公
昭51−18991および特開昭50−22881に記
載された方法に従つてPTFE成形体を未焼結状態にお
いて少なくとも一軸方向に1以上、100倍程度まで延
伸することによつて得られる。
A dielectric material having such a porous microstructure can be obtained by preparing a PTFE molded body in an unsintered state in accordance with the method described in Japanese Patent Publication No. 51-18991 and Japanese Unexamined Patent Publication No. 50-22881. It can be obtained by stretching to about twice as much.

この延伸倍率の変化によつてPTFF成形物の比重、気
孔率、誘電率などは極めて広範囲に変化できる。従つて
この変化によつて波動エネルギーの伝播状態を所望の通
りに調節した伝送線路用誘電体が容易に得られる。次に
、この延伸物をPTFEの融点(327℃)以上の温度
、好ましくは340〜380℃特に360〜375℃の
温度において約1〜15分焼結熱固定するか、あるいは
融点以下250℃以上程度の温度で固定を行つてもよい
。この延伸物の焼結および/または熱固定の程度を適宜
に変化させることによつても多孔質PTFEの誘電率を
調節することができ、このことは、延伸率を変化させる
工程と共に本発明による伝送線路の接続部の特性、性能
を調節するために用いられる重要な工程である。こうし
て得られたPTFEからなる多孔質PTFE材料は、通
常、気孔率が60〜90%と高く、平均孔径0.01〜
50μ、通気量100〜5000CC/分(長さ2.5
4cmのチユーブの1psi圧下における概数)、水漏
れ圧力0.1〜1.5k9/Criiであり、また延伸
倍率と密度、比誘電率(εr)、Tanδの関係は以下
の通りである。
By changing the stretching ratio, the specific gravity, porosity, dielectric constant, etc. of the PTFF molded product can be changed over a very wide range. Therefore, by this change, it is possible to easily obtain a dielectric material for a transmission line in which the propagation state of wave energy is adjusted as desired. Next, this stretched product is sintered and heat-set for about 1 to 15 minutes at a temperature above the melting point of PTFE (327°C), preferably 340 to 380°C, especially 360 to 375°C, or at least 250°C below the melting point. Fixing may be carried out at a temperature of about 100 mL. It is also possible to adjust the dielectric constant of the porous PTFE by appropriately changing the degree of sintering and/or heat setting of this drawn product, and this, together with the step of changing the drawing ratio, can be achieved according to the present invention. This is an important process used to adjust the characteristics and performance of transmission line connections. The porous PTFE material made of PTFE thus obtained usually has a high porosity of 60 to 90% and an average pore diameter of 0.01 to 90%.
50μ, airflow rate 100-5000CC/min (length 2.5
The water leakage pressure is 0.1 to 1.5 k9/Crii (approximate number under 1 psi pressure of a 4 cm tube), and the relationship between the stretching ratio, density, relative dielectric constant (εr), and Tan δ is as follows.

次に、図面を参照しながら本発明による伝送線路の接続
部について説明する。第1図は誘電体3からなる伝送線
路1と金属導波管2との接合部4の縦断面図を示す。
Next, a connection portion of a transmission line according to the present invention will be described with reference to the drawings. FIG. 1 shows a longitudinal cross-sectional view of a joint 4 between a transmission line 1 made of a dielectric 3 and a metal waveguide 2. As shown in FIG.

この伝送線路1は波動エネルギー伝送部分であ Jる中
心誘電体3の少なくとも一部分に、多数の微小結節が微
細繊維によつて互に結合された気孔率の高い多孔性微細
構造を有する結晶性高分子よりなる誘電体が用いられて
おり、接続部4もこれと同一の誘電体で形成されている
This transmission line 1 has a high-crystalline structure having a porous microstructure with high porosity in which a large number of micronodules are interconnected by fine fibers in at least a part of a central dielectric material 3 which is a wave energy transmission part. A dielectric material made of molecules is used, and the connecting portion 4 is also formed of the same dielectric material.

なお、5は中心 つ誘電体3と同様の誘電体からなるク
ラツド部、6は外被である。この実施例において伝送線
路1の接続部4は、円錐状に金属導波管2内に突入して
設けられており、金属導波管2から誘電体からなる伝送
線路1への電磁波の進入、あるいは逆に誘電体からなる
伝送線路1から金属導波管2への電磁波の送出を行なう
In addition, 5 is a clad part made of a dielectric material similar to the center dielectric material 3, and 6 is an outer cover. In this embodiment, the connection part 4 of the transmission line 1 is provided in a conical shape protruding into the metal waveguide 2, and electromagnetic waves enter the transmission line 1 made of a dielectric material from the metal waveguide 2. Or conversely, electromagnetic waves are transmitted from the transmission line 1 made of a dielectric material to the metal waveguide 2.

この接続部4の円錐形状は、中心誘電体3の端部を露出
させて余分な部分を削除して形成してもよいし、あるい
は外圧を加えることによつて形成しても良い。この実施
例によれば、接続部4が気孔率の高い多孔性微細構造を
有する結晶性高分子からなる誘電体で形成されているの
で、上述した外圧成形が容易であり、しかもこの外圧成
形によつて誘電率が高められ、信号の集束によつて電磁
波の捕捉ないしは放出に好都合となる。
The conical shape of the connecting portion 4 may be formed by exposing the end of the center dielectric 3 and removing the excess portion, or may be formed by applying external pressure. According to this embodiment, since the connecting portion 4 is formed of a dielectric material made of a crystalline polymer having a porous microstructure with high porosity, the above-mentioned external pressure forming is easy; The dielectric constant is thus increased and signal focusing favors the capture or emission of electromagnetic waves.

すなわち、この実施例によれば、整合接続が良好にかつ
比較的簡単にできる効果が得られる。なお、第1図の実
施例においては、接続部4が伝送線路1からの突出部と
して示されているが、これとは逆に伝送線路1に向う円
錐状凹部を有する部分とすることもできる。
That is, according to this embodiment, it is possible to achieve the effect that matching connection can be made well and relatively easily. In the embodiment shown in FIG. 1, the connecting portion 4 is shown as a protruding portion from the transmission line 1, but on the contrary, it may be a portion having a conical recess facing toward the transmission line 1. .

この場合接続部4を形成する誘電体として、その誘電率
が中心軸から放射状に外方に向うに従つて連続的に減少
しているものが用いられ、また誘電体が互いに異なる誘
電率を有する同軸をなす複数の誘電体層で形成され、そ
れら複数の誘電体層の誘電率が中心軸から放射状に外方
に向うに従つて減少するように選ばれ、従つて誘電率が
中心軸から放射状に外方に向うに従つて階段的に減少す
るようになされている場合もある。
In this case, the dielectric material forming the connecting portion 4 is one in which the dielectric constant continuously decreases radially outward from the central axis, and the dielectric materials have different dielectric constants. It is formed of a plurality of coaxial dielectric layers, and the dielectric constants of the plurality of dielectric layers are selected to decrease radially outward from the central axis. In some cases, it decreases stepwise as it goes outward.

第2図は、第1図と同様な伝送線路1の接続部7を示す
ものであるが、誘電体の端部8は、長手方向に対し直角
に切断されている。
FIG. 2 shows a connection 7 of a transmission line 1 similar to FIG. 1, but the end 8 of the dielectric is cut at right angles to the longitudinal direction.

そして接続部7の誘電体の密度(誘電率)は端部8から
右方に向つて矢印A,b,cで示すように徐々に増加す
るように加工されている。このように誘電体の密度を調
節するには、前記のような延伸加工を多段階に行なうか
、温度勾配をつけるように加熱した成形体を延伸するか
、あるいは赤外線・遠赤外線の集光を変化させるなどの
手段によつて行なう。更に、第4図および第2図の例を
組合せた構造の接続部も可能である。上記の様な本発明
による伝送線路の接続部においては、以下の様な各種の
作用効果が達成される。
The density (permittivity) of the dielectric material in the connecting portion 7 is processed so as to gradually increase from the end portion 8 toward the right as shown by arrows A, b, and c. In order to adjust the density of the dielectric material in this way, it is possible to perform the stretching process in multiple stages as described above, to stretch a molded body heated to create a temperature gradient, or to concentrate infrared and far-infrared rays. This can be done by means such as changing the Furthermore, a connection having a structure that combines the examples of FIGS. 4 and 2 is also possible. In the connection portion of the transmission line according to the present invention as described above, the following various effects are achieved.

(1)伝送損失が少ない(本発明に使用する誘電体のT
anδは小さく、密度0.2y/〜の延伸PTFEでは
、充実PTFEの1/10以下。また誘電体中に、他の
発泡プラスチツク(例、ポリエチレン、ポリプロピレン
)のように発泡剤が含まれていないことも損失の少ない
理由である。)(2)誘電体の誘電率が広範囲で自由に
制御でき、かつ均一である。
(1) Low transmission loss (T
an δ is small, and in expanded PTFE with a density of 0.2y/~, it is less than 1/10 of that in solid PTFE. Another reason for the low loss is that the dielectric does not contain a foaming agent unlike other foamed plastics (eg, polyethylene, polypropylene). ) (2) The dielectric constant of the dielectric material can be freely controlled over a wide range and is uniform.

(3)伝搬速度が速い。(3) Fast propagation speed.

(4)高いエネルギー密度の電磁波を伝送できる。(4) Can transmit electromagnetic waves with high energy density.

(5)誘電体の形状・構造を自由に調節できる。(6)
伝送線路との間の整合が簡単である。これらの効果は次
の実施例によつて確認された。実施例伝送線路の中心誘
電体用に形成したものの端部を再加熱して更に延伸し、
この操作を3回行なつて第2図に示すように比重がc−
0.3、b−0.2、a−0.1となるようにして中心
誘電体およびその接続部7を作つた。
(5) The shape and structure of the dielectric can be freely adjusted. (6)
Matching with the transmission line is easy. These effects were confirmed by the following example. Example The end of the material formed for the center dielectric of the transmission line was reheated and further stretched.
After performing this operation three times, the specific gravity becomes c- as shown in Figure 2.
0.3, b-0.2, and a-0.1, the center dielectric and its connecting portion 7 were made.

この誘電体の接続部27mm以外に伝送線路と同様に、
延伸多孔質PTFEのラツピング(外径15mm)およ
び塩化ビニル被覆(肉厚1mm)を施した。そして接続
部27mmは、金属導波管との接合部として残した。上
記のようにして端部を接続部に加工した伝送線路(長さ
1m)を他の金属導波管に接続し、他端にて伝送特性を
測定した結果上記接続部の効果が確認された。
In addition to the 27mm connecting portion of this dielectric, similar to the transmission line,
Wrapping of expanded porous PTFE (outer diameter 15 mm) and vinyl chloride coating (wall thickness 1 mm) were applied. The connecting portion 27 mm was left as a joint portion with the metal waveguide. The transmission line (length 1m) whose end was processed into a connection part as described above was connected to another metal waveguide, and the transmission characteristics were measured at the other end, and the effect of the above connection part was confirmed. .

上記具体例に示した本発明による伝送線路の接続部に使
用される誘電体は、微細な気孔を有し気孔率が高くそし
てその気孔が連続気孔であり、しかも適当な圧力を加え
ると塑性変形するので充実体の四弗化エチレンなどの一
般の誘電体よりも温度変化による体積変化が小さく、か
つその体積が外形を規制するのに使用した材料の特性(
膨張、収縮)に従属して変化するので誘電率の温度特性
の殆ど零のものもでき良好な温度特性を要求される伝送
線路の接続部が提供できる。
The dielectric material used for the connection part of the transmission line according to the present invention shown in the above specific example has fine pores, high porosity, and continuous pores, and furthermore, when an appropriate pressure is applied, it deforms plastically. Therefore, the volume change due to temperature change is smaller than that of general dielectric materials such as solid tetrafluoroethylene, and the volume is a characteristic of the material used to regulate the external shape (
Since the dielectric constant changes depending on expansion and contraction), the temperature characteristic of the dielectric constant can be almost zero, and a connection part of a transmission line that requires good temperature characteristics can be provided.

なお、この発明は上記実施例に限定されるものではなく
、伝送線路と接続部とをそれぞれ別体として製作するな
ど、この発明の思想の範囲内で種種変更することができ
る。
Note that the present invention is not limited to the above-mentioned embodiments, and various modifications can be made within the scope of the idea of the present invention, such as manufacturing the transmission line and the connecting portion as separate bodies.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、それぞれ本発明の実施例を示す
伝送線路の接続部の縦断面図である。
1 and 2 are longitudinal cross-sectional views of a connection portion of a transmission line, respectively, showing an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1 多数の微小結節が微細繊維によつて互に結合された
気孔率の高い多孔性微細構造を有する結晶性高分子より
なる誘電体で形成したことを特徴とする伝送線路の接続
部。 2 特許請求の範囲第1項に記載された伝送線路の接続
部において、前記誘電体はその誘電率が中心軸から放射
状に外方に向うに従つて連続的に減少していることを特
徴とする前記伝送線路の接続部。 3 特許請求の範囲第1項に記載された伝送線路の接続
部において、前記誘電体は互いに異なる誘電率を有する
同軸をなす複数の誘電体層で構成され、該複数の誘電体
層はそれらの誘電率が中心軸から放射状に外方に向うに
従つて減少するように配置されていることを特徴とする
前記伝送線路の接続部。 4 特許請求の範囲第1項に記載された伝送線路の接続
部において、前記誘電体はその誘電率が中心軸の軸線に
沿う方向に連続的に変化せしめられていることを特徴と
する前記伝送線路の接続部。 5 特許請求の範囲第1項から第4項までの何れかに記
載された伝送線路の接続部において、前記誘電体は延伸
連続気孔性四弗化エチレン樹脂成形
[Claims] 1. A transmission line formed of a dielectric material made of a crystalline polymer having a porous microstructure with high porosity in which a large number of micronodules are interconnected by microfibers. connection part. 2. In the transmission line connection section according to claim 1, the dielectric has a dielectric constant that continuously decreases radially outward from the central axis. connection portion of the transmission line. 3. In the transmission line connection section according to claim 1, the dielectric is composed of a plurality of coaxial dielectric layers having different dielectric constants, and the plurality of dielectric layers are The connection portion of the transmission line, wherein the connection portion of the transmission line is arranged such that the dielectric constant decreases radially outward from the central axis. 4. In the connection portion of the transmission line according to claim 1, the dielectric material has a dielectric constant that is continuously changed in a direction along the axis of the central axis. Line connections. 5. In the connection portion of the transmission line according to any one of claims 1 to 4, the dielectric material is formed of stretched continuous porosity tetrafluoroethylene resin molding.
JP52014119A 1977-02-14 1977-02-14 Transmission line connection Expired JPS5985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52014119A JPS5985B2 (en) 1977-02-14 1977-02-14 Transmission line connection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52014119A JPS5985B2 (en) 1977-02-14 1977-02-14 Transmission line connection

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP57119261A Division JPS5875301A (en) 1982-07-09 1982-07-09 Transmission line

Publications (2)

Publication Number Publication Date
JPS5399955A JPS5399955A (en) 1978-08-31
JPS5985B2 true JPS5985B2 (en) 1984-01-05

Family

ID=11852223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52014119A Expired JPS5985B2 (en) 1977-02-14 1977-02-14 Transmission line connection

Country Status (1)

Country Link
JP (1) JPS5985B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062526A1 (en) * 2016-09-30 2018-04-05 ダイキン工業株式会社 Dielectric waveguide line, connection structure and method for producing dielectric waveguide line
JPWO2018216636A1 (en) * 2017-05-24 2020-03-26 ダイキン工業株式会社 Dielectric waveguide with connector
WO2022107499A1 (en) * 2020-11-17 2022-05-27 Agc株式会社 Transmission path

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850708U (en) * 1981-09-22 1983-04-06 日東電工株式会社 planar antenna
JPS58191503A (en) * 1982-05-01 1983-11-08 Junkosha Co Ltd Transmission line
EP3249742B1 (en) * 2015-03-31 2021-04-28 Daikin Industries, Ltd. Dielectric waveguide line

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5399954A (en) * 1977-02-14 1978-08-31 Junkosha Co Ltd Conductor line

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5399954A (en) * 1977-02-14 1978-08-31 Junkosha Co Ltd Conductor line

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062526A1 (en) * 2016-09-30 2018-04-05 ダイキン工業株式会社 Dielectric waveguide line, connection structure and method for producing dielectric waveguide line
JP2018061249A (en) * 2016-09-30 2018-04-12 ダイキン工業株式会社 Dielectric waveguide, connection structure, and manufacturing method of dielectric waveguide
US10944146B2 (en) 2016-09-30 2021-03-09 Daikin Industries, Ltd. Dielectric waveguide having a dielectric waveguide body and a dielectric waveguide end with specified densities and method of producing
JPWO2018216636A1 (en) * 2017-05-24 2020-03-26 ダイキン工業株式会社 Dielectric waveguide with connector
WO2022107499A1 (en) * 2020-11-17 2022-05-27 Agc株式会社 Transmission path

Also Published As

Publication number Publication date
JPS5399955A (en) 1978-08-31

Similar Documents

Publication Publication Date Title
US4463329A (en) Dielectric waveguide
US4525693A (en) Transmission line of unsintered PTFE having sintered high density portions
JPS61163704A (en) Dielectric line
US4482513A (en) Method of molding foam/aluminum flake microwave lenses
US4208745A (en) Vascular prostheses composed of polytetrafluoroethylene and process for their production
US4082893A (en) Porous polytetrafluoroethylene tubings and process of producing them
US4288337A (en) Lightweight materials having a high dielectric constant and their method of manufacture
JPS5985B2 (en) Transmission line connection
JP7021749B2 (en) Dielectric waveguide with connector
US4730088A (en) Transmission line
JPH0533650B2 (en)
JP2003534686A (en) Method of manufacturing a waveguide channel
JPS6338884B2 (en)
JPS601891B2 (en) Method of manufacturing foamed plastic
CA2198883A1 (en) An asymmetrical porous ptfe form and method of making
CA1081403A (en) Vascular prostheses composed of polytetrafluoroethylene
US5073314A (en) Method and apparatus for producing a star coupler from polymer optical waveguides
US5154866A (en) Molding process for preparing porous polytetrafluoroethylene articles
KR101318942B1 (en) Cables comprising porous fluoroplastics and preparation method of the same
JP2003502881A (en) Focusing apparatus including a Luneberg lens having a homogeneous volume of dielectric material, and a method of forming such a lens
JPS639131Y2 (en)
WO1996034400A1 (en) Low skew transmission line
EP0271990A2 (en) An insulated wire comprising a polytetrafluoroethylene coating
CN116247442B (en) Electromagnetic wave lens and production method thereof
US5252626A (en) Method for treating the surface of a thin porous film material