JPS5972205A - Frequency varying method of lc oscillator for analog value detection - Google Patents

Frequency varying method of lc oscillator for analog value detection

Info

Publication number
JPS5972205A
JPS5972205A JP57181353A JP18135382A JPS5972205A JP S5972205 A JPS5972205 A JP S5972205A JP 57181353 A JP57181353 A JP 57181353A JP 18135382 A JP18135382 A JP 18135382A JP S5972205 A JPS5972205 A JP S5972205A
Authority
JP
Japan
Prior art keywords
oscillator
capacitor
frequency
oscillation frequency
adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57181353A
Other languages
Japanese (ja)
Inventor
Koichi Noguchi
浩一 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP57181353A priority Critical patent/JPS5972205A/en
Publication of JPS5972205A publication Critical patent/JPS5972205A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1231Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the amplifier comprising one or more bipolar transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1203Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the amplifier being a single transistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/124Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/1256Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a variable inductance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/1293Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator having means for achieving a desired tuning characteristic, e.g. linearising the frequency characteristic across the tuning voltage range

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To eliminate a decrease and variance in detection sensitivity and to improve the stability of an oscillation frequency and temperature characteristics by controlling the phase characteristics of the amplifying element of an oscillator through a variable capacitor and varying the oscillation frequency. CONSTITUTION:The series circuit of an inductor L1 and capacitors C1 and C2 constitutes an LC parallel resonance circuit. The LC parallel resonance circuit is connected to the collector of a transistor (TR) Q for amplification and a feedback path F for oscillation is provided from the connection point between the capacitors C1 and C2 to the emitter of the TRQ. Further, resistances R1-R3 are applied with the bias of the TRQ and a coupling capacitor C4 cuts the DC component in the output of an oscillator. A capacitor C3 for adjustment is provided between the collector and base of the TRQ. Then, the TRQ varies in phase shift amount with the value of a capacitor C3, so the oscillation frequency is adjusted.

Description

【発明の詳細な説明】 本発明は、アナログ量検知用LC発撮器に好適な周波数
可変方法KrJAする。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a frequency variable method KrJA suitable for an LC oscillator for analog quantity detection.

アナログ量を検知する方法として、50発振器の発振周
波数決定用のインダクタ又はギヤ/4’シタを検知素子
としてアナログ・量に対応して変化させ、その結果生ず
る発振周波数の変化を検出してアナログ量を検出する方
法が、従来から知られている。
As a method of detecting an analog quantity, the inductor or gear/4' shifter for determining the oscillation frequency of the 50 oscillator is used as a detection element and is changed in accordance with the analog quantity, and the resulting change in oscillation frequency is detected and the analog quantity is detected. Methods for detecting are conventionally known.

例えば、インダクタLを検知素子とするもの釦は、トナ
ーと磁性キャリアの2成分からなる複写機等の現像剤の
濃度検出、金属片の有無やそれとの距離の検出等があり
、またキャパシタCを検知素子とするものには、静電容
量を用いたギャップ骨の計測、近接スイッチ等がある。
For example, a button that uses an inductor L as a detection element can be used to detect the concentration of a developer in a copying machine that consists of two components, toner and a magnetic carrier, or to detect the presence or absence of a metal piece and the distance from it. Detection elements include gap bone measurement using capacitance, proximity switches, and the like.

このようなLC発振器の発振周波数決定用のインダクタ
LやキャパシタCを検知素子とするアナログ量検知方式
においては、被測定アナログ量を測定する前のLC発振
器の発振周波数が規定値、すなわち、測定器の零目盛を
指すように較正されていることが必要である。この発振
周波数の較正け調整用のインダクタやキャノeシタを付
加することにより行なわれる。
In such an analog quantity detection method in which the inductor L and capacitor C for determining the oscillation frequency of the LC oscillator are used as detection elements, the oscillation frequency of the LC oscillator before measuring the analog quantity to be measured is a specified value, that is, the measuring device must be calibrated to point to the zero scale. This is done by adding an inductor or capacitor for calibration and adjustment of this oscillation frequency.

第1図は、訴整用インダクタを用いた従ヰのI、C発振
器の周?71数可変方式を示し六ものである。
Figure 1 shows the circuit diagram of a secondary I and C oscillator using a compensation inductor. There are 6 types showing the 71 number variable system.

図において、LIはアナログ量検知用と周波数決定用イ
ンダクタ、R2けε用整用インダクタ、cl 。
In the figure, LI is an inductor for analog quantity detection and frequency determination, an inductor for adjusting R2 and ε, and cl.

C2は周波数決定用と帰遣計決定用キヤ、41シタ、Q
はトランジスタからなる増幅要素、R1,R,。
C2 is for frequency determination and return meter determination, 41 positions, Q
are amplification elements consisting of transistors, R1, R,.

R3はバイアス抵抗、Vccけ電源で、全体としてコル
げツノ形の発振器を形成している。発振出力は結合午ヤ
・ぐシタC4を介して、図示しない制御装置に供給され
る。共振周波数すなわち発振周波数はに周整インダクタ
L2を変えることにより調整される。
R3 is a bias resistor and a Vcc power supply, forming a horn-shaped oscillator as a whole. The oscillation output is supplied to a control device (not shown) via a coupling element C4. The resonant frequency or oscillation frequency is adjusted by changing the tuning inductor L2.

この従来の方式は検出対ネiのアナログ量により変化を
受けるのはLlだけで、調整用インダクタL2はアナロ
グ1,1.の検出は行なわないので、アナログ量の検出
感度が低下する。首たL I  * C1+C2々どの
バラツキを吸収して発振器が所定の周波数になるように
Llの値を調整すると、Lllのインダクタンス値は調
整後パラついたものになるため、検出感度がバラつくと
いう結平になる。さらに、インダクタL1とR2の構成
比がちがい、かつLl、R2の温度特性を同じにするの
が検出対象の特性との関連から、両者の温度特性を同じ
にすることが出来ない場合が多いため、発振回路の温度
補償が困鞘である。また、調整用インダクタL2の調整
には非磁性体のドライバーを使用しなければならないの
で実用上不便であり、インダクタは近傍の磁性体や金属
物体の影響を受けてそのインダクタンス値の変化や検出
感度の低下を生じるので実装上の制限がある等の幾多の
問題点がある。
In this conventional method, only Ll changes depending on the analog quantity of the detection pair i, and the adjustment inductor L2 changes depending on the analog quantity of the detection pair i. Since the detection of the analog quantity is not performed, the detection sensitivity of the analog quantity decreases. If the value of Ll is adjusted so that the oscillator reaches a predetermined frequency by absorbing the variations in L I * C1 + C2, the inductance value of Lll will fluctuate after adjustment, so the detection sensitivity will vary. Become Keihei. Furthermore, the composition ratio of inductors L1 and R2 is different, and it is often impossible to make the temperature characteristics of both Ll and R2 the same due to the relationship with the characteristics of the detection target. , temperature compensation of the oscillation circuit is a problem. In addition, it is practically inconvenient to use a non-magnetic driver to adjust the adjustment inductor L2, and the inductance is affected by nearby magnetic or metal objects, resulting in changes in the inductance value and detection sensitivity. There are many problems, such as implementation limitations due to a decrease in performance.

一方、同じ第1図の回路を用い、キャ/4’シタC2を
検出素子とし、Llを調整用インダクタとすることもで
きる。この場合は、調整用インダクタし2の存在による
検出感度の低下や、調整後の検出感度のバラツギの問題
は生じないが、その他の欠点は依然として残ることにな
る。
On the other hand, it is also possible to use the same circuit shown in FIG. 1, to use the capacitor C2 as a detection element, and to use Ll as an adjustment inductor. In this case, although the problem of a decrease in detection sensitivity due to the presence of the adjustment inductor 2 and the problem of variation in detection sensitivity after adjustment does not occur, other drawbacks still remain.

第2図は、調整用キャパシタを用いた従来のLCC発振
器周波数可変方式を示したものである。
FIG. 2 shows a conventional LCC oscillator frequency variable system using an adjustment capacitor.

図において、調整用インダクタし2の代りに調整用キャ
パシタC1をキャパシタC,と並列に設けるようにした
点を除いては第1図の回路と同じ構成である。先ず、イ
ンダクタL1を検出素子とする場合は、検出感度の低下
や・9ラツキの問題は生じないが、キャパシタC3とC
1*C2の温度特性に違いがあると、調整後温度特性に
・9ラツキが生じ、温度補償が困譬になる。また必要と
する周波数可変範囲が大きいと、C3の容量値を大きく
する必要上、大型の部品が必要となったり、小型で変化
範囲の広いセラミックトリマコンデンサを使用すると、
温度特性の良いものが得られない等の問題点がある。
In the figure, the configuration is the same as that of the circuit shown in FIG. 1 except that an adjustment capacitor C1 is provided in parallel with the capacitor C instead of the adjustment inductor 2. First, if the inductor L1 is used as a detection element, there will be no problem of a decrease in detection sensitivity or a 9.
If there is a difference in the temperature characteristics of 1*C2, there will be a -9 deviation in the temperature characteristics after adjustment, making temperature compensation difficult. Also, if the required frequency variable range is large, the capacitance value of C3 needs to be increased, which requires large components, and if a small ceramic trimmer capacitor with a wide variation range is used,
There are problems such as the inability to obtain products with good temperature characteristics.

更に、第2図の回路において、キャパシタC2を検出素
子として使用する場合は、第1図の回路での説明と同様
に検出感度の低下や・ぐラツキが生じ、かつインダクタ
L1を検出器としたときと同じ問題が生じることになる
Furthermore, if the capacitor C2 is used as a detection element in the circuit shown in Figure 2, the detection sensitivity will decrease or become unstable, similar to the explanation for the circuit shown in Figure 1, and if the inductor L1 is used as the detector. The same problem will arise.

本発明は上記従来技術の欠点を除いて、検知感度の低、
下やバラツキの生じない、周波数の可変範囲が大きく、
発振周波数の安定性及び温度特性力(良好で、かつ発振
器の実装上の制限や磁性体のドライバーによる調整の可
能なアナログ量検知用LC発振器の周波数可変方法を提
供することを目的とする。
The present invention eliminates the drawbacks of the above-mentioned prior art, and solves the problem of low detection sensitivity,
It has a wide frequency variable range that does not cause fluctuations or fluctuations.
The purpose of the present invention is to provide a method of varying the frequency of an LC oscillator for analog quantity detection, which has good oscillation frequency stability and temperature characteristics, and can be adjusted due to oscillator mounting limitations and a magnetic driver.

この目的を達成するために、本発明は発振器のLC並列
共振回路の周波数決定要素(Ll、自。
To achieve this objective, the present invention proposes a frequency determining element (Ll, self) of the LC parallel resonant circuit of the oscillator.

Cz  )を調整することなく、発振器の増幅要素の位
相特性を可変コンデンサによって制御して発振周波数を
変化させるようにしたことを特徴とする。
The present invention is characterized in that the oscillation frequency is changed by controlling the phase characteristics of the amplification element of the oscillator using a variable capacitor without adjusting the oscillator (Cz).

以下、本発明の実施例を第3図により説明する。An embodiment of the present invention will be described below with reference to FIG.

第3図は本発明の一実施例に係るアナログ量検知用LC
発振器の構成図を示したものである。図において、イン
ダクタL1とキャノやシタC@eCsの直列回路によJ
LC並列共振回路が構成される。
FIG. 3 shows an analog quantity detection LC according to an embodiment of the present invention.
This figure shows a configuration diagram of an oscillator. In the figure, J
An LC parallel resonant circuit is constructed.

Qはトランジスタからなる増幅要素で、そのコレクタに
LC並列共振回路が接続され、キャノヤシタC,とC2
の接続点からトランジスタQのエミッタに発振のだめの
帰還路Fが設けられている。RI。
Q is an amplification element consisting of a transistor, the collector of which is connected to an LC parallel resonant circuit, and the canopy transistors C and C2.
A feedback path F for stopping oscillation is provided from the connection point of the transistor Q to the emitter of the transistor Q. R.I.

R2TR3はバイアス抵抗で、トランジスタQのバイア
スを与え動作点を決定する。C4は結合キャパシタで発
振器の出力から直流成分を力、トシて発振周波数成分だ
けを図示しない制御装置に供給する。制御装置は、発振
周波数の変化から成るアナログ州°を電気信号に変換し
て出力する。C。
R2TR3 is a bias resistor that applies a bias to the transistor Q and determines the operating point. C4 is a coupling capacitor that converts the DC component from the output of the oscillator and supplies only the oscillation frequency component to a control device (not shown). The control device converts an analog signal consisting of a change in oscillation frequency into an electrical signal and outputs the electrical signal. C.

はトランジスタQのコレクタ・ペース間に接続された可
変コンデンサから成る調整用キヤ・センタ、vceは電
源電圧である。
is a regulating capacitor consisting of a variable capacitor connected between the collector and pace of transistor Q, and vce is the power supply voltage.

以上の構成で、発振器は周波数決定要素による帰償路の
位相ずれと、増幅要素の位相ずれの和が2πなる条件で
発振する。従って、増幅要素の位相ずれを変化させるこ
とにより、発振周波数を調整する。即ち、図の回路構成
において、調整用キャノ9シタC3を変えると、増幅要
素であるトランジスタQの位相ずれ量が変化する。した
がって、調整用キャパシタC3を変えることによ5、L
C並列共振回路(Ll  + CIr cm )の共振
周波数を一定のままにしておいても、発振器の発振周波
数を調整することができる。
With the above configuration, the oscillator oscillates under the condition that the sum of the phase shift of the feedback path due to the frequency determining element and the phase shift of the amplification element is 2π. Therefore, the oscillation frequency is adjusted by changing the phase shift of the amplification element. That is, in the circuit configuration shown in the figure, when the adjustment capacitor C3 is changed, the amount of phase shift of the transistor Q, which is an amplification element, changes. Therefore, by changing the adjustment capacitor C3, 5,L
The oscillation frequency of the oscillator can be adjusted even if the resonant frequency of the C parallel resonant circuit (Ll + CIr cm) remains constant.

第4図は、第3図の回路において、自= 0.015/
JF 、  C雪=3300pF 、  T、 = 6
00 /lHとし、C3を0〜60 pFに変化させた
ときの、調整用キャノ9シタC3の容量値と発振周波数
の関係を示したものである。調整用キャパシタC3を0
から60 pF変化させることにより、発振周波数は、
125.3kHzから115.9 kHzと約8%変化
させることができる。
Figure 4 shows that in the circuit of Figure 3, self = 0.015/
JF, C snow = 3300pF, T, = 6
00/lH, and the relationship between the capacitance value of the adjustment capacitor C3 and the oscillation frequency when C3 is changed from 0 to 60 pF. Adjustment capacitor C3 to 0
By changing 60 pF from
It can be changed from 125.3 kHz to 115.9 kHz, about 8%.

第2図のような周波数可変方法の場合、LC共振回路の
共振周波数f。は次式で与えられる。
In the case of the frequency variable method as shown in FIG. 2, the resonant frequency f of the LC resonant circuit. is given by the following equation.

/、 = −;孔「G タタシ、Ctはキヤ/4’シタcl、c、の合成である
/, = -; Hole "G tatashi, Ct is the composition of Kya/4'shita cl, c.

(4を変えることによりfoを8%変化させる九h6 
K ハ% Ctは約16チ変化させることが必要である
。概略値を求めるためにClキC!とみると、C3=6
0pFであるから約500 pF変化させることが必要
になるのでC5=500pFとなる。
(9h6 to change fo by 8% by changing 4)
K % Ct needs to be varied by about 16 inches. To find the approximate value, use Cl ki C! If you look at it, C3=6
Since it is 0 pF, it is necessary to change it by about 500 pF, so C5=500 pF.

本実施例によれば、C3=60pF であるから、第2
図の従来の方法に対して約1/1oの小容量ですむこと
になる。
According to this embodiment, since C3=60pF, the second
The capacity required is approximately 1/10 compared to the conventional method shown in the figure.

また、LC共振回路の周波数決定要素(Ll。Also, the frequency determining element (Ll) of the LC resonant circuit.

CIrC*)の変更がないので、検出対象のアナログ晴
によシ検出要素り、又はC2が変化を受けたとき、LC
共振回路に対する影響度合は、調整用キャノ4シタC3
によらず同じになるので、E周整用キャ・・やシタC3
を変えても検出感度の低下やバラツキが生じない。
Since there is no change in CIrC*), when the analog detection element to be detected or C2 undergoes a change, the LC
The degree of influence on the resonance circuit is determined by the adjustment capacitor C3.
Since it will be the same regardless of the E circumference adjustment cap... or Sita C3
Even if the detection sensitivity is changed, there is no decrease in detection sensitivity or variation.

また、調整用キャパシタが小容量そ済むため、小型でか
う温度特性の良好なものが入手しやすくなり、発振器の
温度特性を良好なものとすることができる。
Further, since the adjustment capacitor requires a small capacity, it becomes easier to obtain a small and large capacitor with good temperature characteristics, and the temperature characteristics of the oscillator can be improved.

更に、周辺の磁性体の影響を受けないので、発振器の実
装上の制限も少なく、磁性体のドライバーによるW1′
4整が可能となる。
Furthermore, since it is not affected by the surrounding magnetic material, there are fewer restrictions on mounting the oscillator, and W1' due to the magnetic driver
4 adjustments are possible.

尚、上記実施例における増幅要素は各型のトランジスタ
の他、電子管と置換してもよい。また、上記実施例では
発振器としてコルピッツ型の発振器を例にとって説明し
たが、発振器の型はコルピッツ型に限定されるものでな
く、ハートレー型をはじめ他の型のLC並列共撮′回路
を周波数決定要素とするLC発振器に適用できるもので
あることは勿論である。
Note that the amplifying element in the above embodiments may be replaced with an electron tube in addition to each type of transistor. Further, in the above embodiment, a Colpitts type oscillator was used as an example of the oscillator, but the oscillator type is not limited to the Colpitts type, and other types of LC parallel co-photography circuits such as the Hartley type can be used to determine the frequency. Of course, it can be applied to the LC oscillator as an element.

以上のように本発明によれば、検出感度の低下や調整に
伴ってバラツキが生じることがなく、小型で周波数の可
変範囲が大)きく、発嵌周波数の安定性及び温度特性が
良好で、発掘器の実装上の制限が少なく、調整力が容易
である等の多くのすぐれた効果が得られる。
As described above, according to the present invention, there is no decrease in detection sensitivity or variation due to adjustment, it is small, the frequency can be varied over a wide range, and the stability of the engagement frequency and temperature characteristics are good. Many excellent effects can be obtained, such as fewer restrictions on the implementation of the excavator and easier adjustment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は調整用インダクタを用いた従来のLC発振器の
周波数可変方法の説明図、第2図は調整用キャパシタを
用いた従来のLC発振器の周波数可変方法の説明図、第
3図は本発明の一実施例を示すr、 c発振器の周波数
可変方法の説明図、第4図は第3図の方法による調整用
キャパシタと発振周波数の変化特性図である。 Rs  TR,IRs・・・バイヤス抵抗、LL・・・
発振周波数用及び帰還量決定用のキャパシタ、C3。 CIr・・・調整用キャノfシタ、C4・・・結合キヤ
・ぐシタ、Q・・・増幅要素としてのトランジスタ、V
cc・・・電源。 第7図 第3図 第4図 °1 容量ρF□
Figure 1 is an explanatory diagram of a conventional method of varying the frequency of an LC oscillator using an adjustment inductor, Figure 2 is an explanatory diagram of a conventional method of varying the frequency of an LC oscillator using an adjustment capacitor, and Figure 3 is an illustration of the present invention. FIG. 4 is an explanatory diagram of a method of varying the frequency of the r and c oscillators showing one embodiment of the present invention, and FIG. 4 is a diagram showing the change characteristics of the adjustment capacitor and the oscillation frequency according to the method of FIG. Rs TR, IRs...Bias resistance, LL...
Capacitor C3 for oscillation frequency and feedback amount determination. CIr...adjustment capacitor, C4...coupling capacitor, Q...transistor as amplification element, V
cc...Power supply. Figure 7 Figure 3 Figure 4 °1 Capacity ρF□

Claims (2)

【特許請求の範囲】[Claims] (1)LC並列共振回路を周波数決定要素とするアナロ
グ量検知用LC発振器において、LC発振器を構成する
増幅要素の位相特性を制御して発振周波数を変化させる
ことを特徴とするアナログ量検知用LC発振器の周波数
可変方法。
(1) An LC oscillator for analog quantity detection that uses an LC parallel resonant circuit as a frequency determining element, which is characterized in that the oscillation frequency is changed by controlling the phase characteristics of the amplification elements that constitute the LC oscillator. How to vary the frequency of an oscillator.
(2)  アナログ量検知用のLC発振器としてコルビ
ッツ型発振器を用い、この発振器の増幅要素をトラン・
ゾスタで構成し、このトラン・ゾスタのコレクタとペー
ス又はこれに相当する電極間に可変コンデンサから成る
調整用キャパシタを接続し、この調整用キャパシタの容
量を変化させることにより、前記増幅要素の位相特性を
制御し、発振周波数を変えることを特徴とするアナログ
用検知用【JCC発器器周波数可変方法。
(2) A Corvitz oscillator is used as the LC oscillator for analog quantity detection, and the amplification element of this oscillator is
An adjustment capacitor made of a variable capacitor is connected between the collector of the trans-Zostor and an electrode corresponding to the pace or electrode, and by changing the capacitance of the adjustment capacitor, the phase characteristics of the amplification element can be adjusted. [JCC oscillator frequency variable method for analog detection, which is characterized by controlling the oscillation frequency and changing the oscillation frequency.
JP57181353A 1982-10-18 1982-10-18 Frequency varying method of lc oscillator for analog value detection Pending JPS5972205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57181353A JPS5972205A (en) 1982-10-18 1982-10-18 Frequency varying method of lc oscillator for analog value detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57181353A JPS5972205A (en) 1982-10-18 1982-10-18 Frequency varying method of lc oscillator for analog value detection

Publications (1)

Publication Number Publication Date
JPS5972205A true JPS5972205A (en) 1984-04-24

Family

ID=16099223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57181353A Pending JPS5972205A (en) 1982-10-18 1982-10-18 Frequency varying method of lc oscillator for analog value detection

Country Status (1)

Country Link
JP (1) JPS5972205A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR1003431B (en) * 1999-05-19 2000-09-07 / New type of oscillator
EP1542353A1 (en) 2003-12-09 2005-06-15 Synergy Microwave Corproation Uniform and user-definable thermal drift voltage control oscillator
US7088189B2 (en) 2003-09-09 2006-08-08 Synergy Microwave Corporation Integrated low noise microwave wideband push-push VCO
US7180381B2 (en) 2004-04-21 2007-02-20 Synergy Microwave Corporation Wideband voltage controlled oscillator employing evanescent mode coupled-resonators
US7196591B2 (en) 2003-08-06 2007-03-27 Synergy Microwave Corporation Tunable frequency, low phase noise and low thermal drift oscillator
US7262670B2 (en) 2003-12-09 2007-08-28 Synergy Microwave Corporation Low thermal drift, tunable frequency voltage controlled oscillator
US7292113B2 (en) 2003-09-09 2007-11-06 Synergy Microwave Corporation Multi-octave band tunable coupled-resonator oscillator
US7365612B2 (en) 2004-08-16 2008-04-29 Synergy Microwave Corporation Low noise, hybrid tuned wideband voltage controlled oscillator
US7586381B2 (en) 2005-11-02 2009-09-08 Synergy Microwave Corporation User-definable, low cost, low phase hit and spectrally pure tunable oscillator
US7605670B2 (en) 2005-11-15 2009-10-20 Synergy Microwave Corporation User-definable low cost, low noise, and phase hit insensitive multi-octave-band tunable oscillator
US7636021B2 (en) 2005-05-20 2009-12-22 Synergy Microwave Corporation Low noise and low phase hits tunable oscillator
EP2157690A1 (en) * 2008-08-23 2010-02-24 Si-Ware Systems Method, system and apparatus for accurate and stable LC-based reference oscillators
JP2012122834A (en) * 2010-12-08 2012-06-28 Lasertec Corp Thickness measurement apparatus for battery electrode material and thickness measurement method thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR1003431B (en) * 1999-05-19 2000-09-07 / New type of oscillator
US7545229B2 (en) 2003-08-06 2009-06-09 Synergy Microwave Corporation Tunable frequency, low phase noise and low thermal drift oscillator
US7196591B2 (en) 2003-08-06 2007-03-27 Synergy Microwave Corporation Tunable frequency, low phase noise and low thermal drift oscillator
US7088189B2 (en) 2003-09-09 2006-08-08 Synergy Microwave Corporation Integrated low noise microwave wideband push-push VCO
US7292113B2 (en) 2003-09-09 2007-11-06 Synergy Microwave Corporation Multi-octave band tunable coupled-resonator oscillator
EP1542353A1 (en) 2003-12-09 2005-06-15 Synergy Microwave Corproation Uniform and user-definable thermal drift voltage control oscillator
US7262670B2 (en) 2003-12-09 2007-08-28 Synergy Microwave Corporation Low thermal drift, tunable frequency voltage controlled oscillator
US7265642B2 (en) 2003-12-09 2007-09-04 Synergy Microwave Corporation User-definable thermal drift voltage control oscillator
US7180381B2 (en) 2004-04-21 2007-02-20 Synergy Microwave Corporation Wideband voltage controlled oscillator employing evanescent mode coupled-resonators
US7365612B2 (en) 2004-08-16 2008-04-29 Synergy Microwave Corporation Low noise, hybrid tuned wideband voltage controlled oscillator
US7636021B2 (en) 2005-05-20 2009-12-22 Synergy Microwave Corporation Low noise and low phase hits tunable oscillator
US7586381B2 (en) 2005-11-02 2009-09-08 Synergy Microwave Corporation User-definable, low cost, low phase hit and spectrally pure tunable oscillator
US7605670B2 (en) 2005-11-15 2009-10-20 Synergy Microwave Corporation User-definable low cost, low noise, and phase hit insensitive multi-octave-band tunable oscillator
EP2157690A1 (en) * 2008-08-23 2010-02-24 Si-Ware Systems Method, system and apparatus for accurate and stable LC-based reference oscillators
US8072281B2 (en) 2008-08-23 2011-12-06 Si-Ware Systems Inc. Method, system and apparatus for accurate and stable LC-based reference oscillators
US8847695B2 (en) 2008-08-23 2014-09-30 Si-Ware Systems Method, system and apparatus for accurate and stable LC-based reference oscillators
JP2012122834A (en) * 2010-12-08 2012-06-28 Lasertec Corp Thickness measurement apparatus for battery electrode material and thickness measurement method thereof

Similar Documents

Publication Publication Date Title
US4068189A (en) Linear oscillator for proximity sensor
US5012206A (en) Inductive proximity switch
US5065093A (en) Inductive proximity sensor for detecting an object starting electrical conductivity
US9995778B1 (en) Sensor apparatus
JPS5972205A (en) Frequency varying method of lc oscillator for analog value detection
EP0044434B1 (en) Capacitive level sensor and method of controlling a capacitive level sensor
US4310807A (en) Digital position sensor including L/C sensing oscillator
GB1073465A (en) Non-contact thermometer
US4045728A (en) Direct reading inductance meter
US3046535A (en) Measurement apparatus
GB2054867A (en) Eddy-current distance measuring apparatus
US6208215B1 (en) VCO and filter controlled by common integrated thermal frequency reference
EP3644510B1 (en) Inductive sensor for measurement device
US3449661A (en) Eddy current testing system having lift-off compensation,and utilizing a tuned plate-tuned grid oscillator
JP2003075487A (en) Impedance detection apparatus and capacitance detection apparatus
JP2843067B2 (en) Glass container thickness inspection machine
US20140285274A1 (en) Wien-Bridge Oscillator and Circuit Arrangement for Regulating a Detuning
Slavin A MOSFET oscillator suitable for measurements of small changes in capacitance or inductance at cryogenic temperatures
JPH10173437A (en) Lc oscillation circuit and proximity sensor using the same
US3023621A (en) Electric control, detection or measuring system
SU907485A1 (en) Device for measuring magnetic susceptibility
Ghidini et al. A 15 ppm resolution measurement system for capacitance transducers
US2513530A (en) Impedance measuring device utilizing oscillatory electric circuits
SU1071988A1 (en) Metal detector
RU1807310C (en) Device for contact-free measuring mechanical vibrations and displacements