JPS596905A - Selective gas permeable membrane - Google Patents

Selective gas permeable membrane

Info

Publication number
JPS596905A
JPS596905A JP11713782A JP11713782A JPS596905A JP S596905 A JPS596905 A JP S596905A JP 11713782 A JP11713782 A JP 11713782A JP 11713782 A JP11713782 A JP 11713782A JP S596905 A JPS596905 A JP S596905A
Authority
JP
Japan
Prior art keywords
oxygen
permeable membrane
membrane
gas permeable
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11713782A
Other languages
Japanese (ja)
Inventor
Takatoshi Shimomura
下村 隆敏
Fumio Fujita
藤田 文男
Manabu Hirakawa
学 平川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP11713782A priority Critical patent/JPS596905A/en
Publication of JPS596905A publication Critical patent/JPS596905A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain to enhance coefficient of oxygen permeation and coefficient of oxygen and nitrogen separation, by selecting a polymer of fluoroalkyl acrylate and/or fluoroalkyl methacrylate as a membrane material. CONSTITUTION:A polymer constituting a selective gas permeable membrane is obtained by polymerizing fluoroalkyl acrylate and/or fluoroalkyl methacrylate. In this case, one kind or more of a compound selected from compounds shown by general formula I (wherein R is H or CH3, R1 is 1-16C alkyl group containing three or more fluorine atoms) is pref. polymerized. Further pref., said membrane is obtained by polymerizing one kind or more compound selected from compounds shown by general formula II (wherein R1 is H or CH3, X is H or F, m is 1-6 and n is 2-6). Air is passed through thus obtained permeable membrane to be capable of obtaining oxygen enriched air.

Description

【発明の詳細な説明】 本発明は選択性透過膜に関するものである。[Detailed description of the invention] The present invention relates to a selectively permeable membrane.

さらに詳しくは、本発明は、薄膜製造が容易で。More specifically, the present invention facilitates thin film production.

しかも薄膜としての機械的強度を有し、さらに透過係数
の大なる選択性気体透過膜に関するものであシ、とくに
空気から膜を用いて酸素濃度の高い酸素を富化した空気
を得るのに好適に用いられる選択性気体透ARK関する
ものである。
Moreover, it has mechanical strength as a thin film and is related to a selective gas permeable membrane with a large permeability coefficient, and is particularly suitable for obtaining oxygen-enriched air with a high oxygen concentration using the membrane from air. This relates to a selective gas permeable ARK used for.

従来から膜を用いて混合物を分離する方法があるが、こ
れらは、逆浸透膜や限外濾過膜を用い六ものであシ主と
して液体を対象とするものであった。一方、混合ガスの
膜による分離に関しては、その選択率、透逮量が不十分
であったために、はとんどかえ力みもれることがなく、
フィルムの気体透過現象の応用としてはむしろ逆に包装
用のガスバリヤ−フィルムが中心トなってい九〇 しかし々から、近年、高分子を主成分とする膜を用いて
気体の種類による気体透過性の相違を利用したガス分画
や濃縮が数多く提案されてきている◇ 一方産業上、非常に分離が要望されている混合ガスに空
気がある。空気の成分のおよそ−〇チを占める酸素は人
間が生きていくためには。
Conventionally, there have been methods for separating mixtures using membranes, but these methods mainly involve liquids using reverse osmosis membranes and ultrafiltration membranes. On the other hand, with regard to the separation of mixed gases by membranes, the selectivity and permeation amount were insufficient, so there was no effort left.
On the contrary, the application of the gas permeation phenomenon in films has been mainly focused on gas barrier films for packaging.However, in recent years, the use of membranes mainly composed of polymers has been used to improve gas permeability depending on the type of gas. Many proposals have been made for gas fractionation and concentration that take advantage of these differences.In industry, air is a mixed gas that is highly desired to be separated. Oxygen, which accounts for approximately -0% of the air's components, is necessary for humans to survive.

必要欠くべからざる気体である仁とはいうまでもないが
、産業上においても、内燃機関、製鉄工業1食品工業、
医療機器、廃棄物処理などに使用される非常に重要力気
体である。従って空気から酸素を効率よく安価にかつ容
易に分離する方法が強く望まれている。
It goes without saying that gas is an indispensable gas, but it is also used in industrial applications such as internal combustion engines, the steel industry, the food industry, and the food industry.
It is a very important gas used in medical equipment, waste treatment, etc. Therefore, there is a strong desire for a method of efficiently, inexpensively, and easily separating oxygen from air.

膜による分離法においては、一段の膜分離で高純度の酸
素濃度の空気を得るのはむずかしい力j、ある稠度の濃
度の酸素を富化した空気を得る試みは、いくつかなされ
ている。その代表的かものはオルガノポリシロキサンを
主成分とする膜を用いる方法である。しかしながらオル
ガノポリシロキサンを主成分とする膜は、酸素の透過係
数鉱大きいが、酸素と窒素の分離係数はコぐらいで小さ
く、得られる酸素富化空気の酸素濃度には限界がある0
その他にもいくつか提案されているが、いずれも酸素の
透4停数がオルガノポリシロキサンを主成分とする膜に
比べて17.oよシ小さく、実用に供し難かった。それ
放電っと透通係数も、分離係数も高い膜が望まれていた
り そこで本発明者らは、種々の高分子重合体(以下重合体
と称す)の膜を検討した結果本発明に到った。すなわち
、アクリル酸フルオロアルキルおよび/あるI/1はメ
タクリル酸フルオロアルキルの重合体からなる膜を使用
することにより、酸素#度の高い富化空気を効率的に得
られることを見い出した・のであみ0換言すると本発明
の目的は、空気を透過膜に通して酸素富化空気を得ゐの
に際し、酸素の透過膜L!1.および酸素と定木との分
離係数の高い選択性気体透通膜を提供することKある。
In membrane separation methods, it is difficult to obtain air with a high purity oxygen concentration through one stage of membrane separation, and several attempts have been made to obtain oxygen-enriched air with a certain consistency. A typical method is a method using a membrane containing organopolysiloxane as a main component. However, membranes whose main component is organopolysiloxane have a high oxygen permeability coefficient, but a small separation coefficient between oxygen and nitrogen, which limits the oxygen concentration of the oxygen-enriched air that can be obtained.
Several other proposals have been made, but in all of them, the oxygen permeation number is 17. It was too small and difficult to put into practical use. A membrane with a high discharge permeability coefficient and high separation coefficient was desired, and the present inventors investigated membranes made of various polymers (hereinafter referred to as polymers) and arrived at the present invention. Ta. That is, we have discovered that enriched air with a high oxygen concentration can be efficiently obtained by using a membrane made of a polymer of fluoroalkyl acrylate and/or fluoroalkyl methacrylate. 0 In other words, the object of the present invention is to provide oxygen-permeable membrane L! when passing air through a permeable membrane to obtain oxygen-enriched air. 1. Another object of the present invention is to provide a selective gas permeable membrane having a high separation coefficient between oxygen and planted trees.

以下に本発明の実施態様について詳細に説明するO 本発明の選択性気体透過膜を構成する重合体は、アクリ
ル酸フルオロアルキルおよび/あるいはメタクリル酸フ
ルオロアルキルを重合するととによって得られる。望ま
しくは一般式cfE、r−<。。□、(只:H1喪はO
H3,Rよ:)、累原子を3個以上含む01〜.6のフ
ルキル基)で表わされる化合物から選ばれた一種あるい
は二種以上の化合物を1+はOH3、x : H,F、
 jQ=/〜7 、n−J〜4)で表わされる化合物か
ら選ばれた一種あるいは二種以上の化合物を重合する仁
とによって得られる。
Embodiments of the present invention will be described in detail below. The polymer constituting the selective gas permeable membrane of the present invention can be obtained by polymerizing fluoroalkyl acrylate and/or fluoroalkyl methacrylate. Preferably, the general formula cfE, r-<. . □, (only: H1 mourning is O
H3, R :), 01~. containing 3 or more cumulative atoms. 1+ is OH3, x : H, F,
It can be obtained by polymerizing one or more compounds selected from the compounds represented by jQ=/~7, n-J~4).

さらに具体的にそれらの化合物を挙けると。Here are some more specific compounds.

アクリル酸およびメタクリル酸のトリフルオロメチルエ
ステル、トルフルオロエチルエステル。
Trifluoromethyl ester, trifluoroethyl ester of acrylic acid and methacrylic acid.

パーフルオロエチルエステル、パーフルオロプロピルエ
ステル、バーフルオロブチルエステル。
Perfluoroethyl ester, perfluoropropyl ester, perfluorobutyl ester.

パーフルオロペンチルエステル、パーフルオロエチルエ
ステル、パーフルオロヘプチルエステル、パーフルオロ
オクチルエステル、パーフルオロノニルエステル、バー
フルオルデシルエステル、パーフルオロラウリルエステ
ル、バーフルオロバルミチルエステル、パーフルオロス
テアリルエステル、パーフルオロヒドロキレアルキルエ
ステル、パーフルオロ7セチルアルキルエステルなどで
ある。
Perfluoropentyl ester, perfluoroethyl ester, perfluoroheptyl ester, perfluorooctyl ester, perfluorononyl ester, perfluorodecyl ester, perfluorolauryl ester, perfluorobalmityl ester, perfluorostearyl ester, perfluorohydro These include chiralkyl ester, perfluoro-7cetyl alkyl ester, and the like.

上記化合物の重合方法については特に制限はなく一般に
よく知られている重合方法が用いられる。例えば開始剤
を用いるラジカル重合、イオン重合あるいはチーグラー
触媒による重合あるいは放射線照射、紫外線照射などの
開始による重合などが挙けられているが、通常簡便であ
るラジカル重合によって行われる。またバルク重合、溶
媒を用いる溶液重合、懸濁重合、乳化重合などのどの方
式をとってもよい。重合導度についてもとくに制限はな
く、また重合圧力についてもとくに制限はない。
There are no particular restrictions on the polymerization method for the above compound, and generally well-known polymerization methods can be used. Examples include radical polymerization using an initiator, ionic polymerization, polymerization using a Ziegler catalyst, or polymerization initiated by radiation irradiation, ultraviolet irradiation, etc., but radical polymerization is usually carried out because it is simple. Further, any method such as bulk polymerization, solution polymerization using a solvent, suspension polymerization, or emulsion polymerization may be used. There are no particular restrictions on the polymerization conductivity, and there are no particular restrictions on the polymerization pressure.

得られた重合体の重合度にもとくに制限は々いか膜形成
性が発現する重合度以上であればよい。望ましくは重合
度は700以上である。
There is no particular restriction on the degree of polymerization of the obtained polymer, as long as it is at least the degree of polymerization at which film-forming properties are exhibited. Desirably, the degree of polymerization is 700 or more.

膜の調製についても一般によく知られている方法が適用
される0たとえば1合体をア七トン、メチルエチルケト
ン、酢酸エチルのような良溶媒に溶解し、平滑なガラス
や金種板上にドクタ−ナイフを用いてキャストし溶謀を
蒸発させたのち剥離して得られる。膜の厚みは重合体溶
液の濃度とキャストした溶液の厚みによって調整される
。また多孔質の支持体上などに重合体溶液をドクターナ
イフを用いてキャストし、溶奴を蒸発させてイhられる
For the preparation of the membrane, generally well-known methods are applied. It is obtained by casting it using a molten metal, evaporating the melt, and then peeling it off. The thickness of the membrane is adjusted by the concentration of the polymer solution and the thickness of the cast solution. Alternatively, the polymer solution is cast onto a porous support using a doctor knife, and the melt is evaporated.

1だ、一般に膜の具体的な形態については平膜状、管状
、中空繊維状、糸状などが知られているが、本発明はい
ずれの形態にも適用できる。
1. In general, specific shapes of membranes are known, such as flat membrane, tubular, hollow fiber, and filament, but the present invention can be applied to any of these shapes.

上述したように本発明の選択性気体透過膜は大きい透過
膜Vを有しており、とくに空気から本発明の膜を用いて
酸素を富化した空気を得る際には従来の選択性透過膜に
比べて酸素と窒素との分離係数が大きい上に酸素の透過
係数が大きくてすぐれた性能を示すものである。
As mentioned above, the selective gas permeable membrane of the present invention has a large permeable membrane V, and in particular, when obtaining oxygen-enriched air from air using the membrane of the present invention, it is difficult to use the conventional selective gas permeable membrane. It has a large separation coefficient between oxygen and nitrogen as well as a large oxygen permeability coefficient, and exhibits excellent performance.

本発明の選択性気体透過膜は、天然ガスか脅ヘリウムの
分離、合成ガスから生成ガス、原料ガスの分解回収、原
子炉排ガスから放射性希ガスの除去、脱値後の石油廃ガ
スから水素ガスの回収、亜愼酌ガスおよび値化水素ガス
などの人気汚染物質の除去などに使用される。とくに前
述のように空気中の酸素の濃縮に好適に用いられ、燃焼
システムへの酸素富化空気の供給、医療機器への酸素富
化空気の供給および河川の浄化のための酸素富化空気の
供給などに使用することができる。
The selective gas permeable membrane of the present invention can be used to separate natural gas or threatening helium, to decompose and recover produced gas from synthesis gas, to decompose and recover raw material gas, to remove radioactive noble gas from nuclear reactor exhaust gas, and to produce hydrogen gas from petroleum waste gas after price removal. recovery, removal of popular pollutants such as sulfur gas and valuable hydrogen gas, etc. In particular, as mentioned above, it is suitably used for concentrating oxygen in the air, supplying oxygen-enriched air to combustion systems, supplying oxygen-enriched air to medical equipment, and purifying rivers. It can be used for supply, etc.

以下の実施例により本発明をさらに具体的に説明するが
、本発明はイ5]らこれらの実施例に限定されるもので
はない。
The present invention will be explained in more detail with reference to the following examples, but the present invention is not limited to these examples.

なお、透過係数はts3arm/Cn126 see 
ecnHgという単位であられし、分離係数は例えば酸
素と窒素の場合は、分離係数α(PO2/PN2) =
酸素の透過係数/窒素の透過係数であられす。
In addition, the transmission coefficient is ts3arm/Cn126 see
It is expressed in units of ecnHg, and the separation coefficient is, for example, in the case of oxygen and nitrogen, the separation coefficient α (PO2/PN2) =
This is the oxygen permeability coefficient/nitrogen permeability coefficient.

実施例/ 3θθmlの四つロフラスコに水/θθml f加えポ
リビニルアルコール0.7部を加えて9素を吹き流しな
がら(厩拌して溶解させる。そこへ2、 @2,3.3
−テトラフルオロプロピルメタクリレート3θ部と、ド
デシルメルカプタン0.フ5部とラウロイルパーオキシ
ド6.75部とを加える。そして乙θ°Cでダ時間重合
させる。重合後ポリマーを濾過して水を洗浄してjoo
CでJ9時間真空乾燥させる。得られた重合物の収量は
2乙、jyであった。ここで得られた重合物/θyをア
セトン907に溶解させる。その溶液をガラス根土に5
θμの厚さでキャストし、風乾した。それから膜を剥離
して空気の透過テストを行った。酸素の透過係数は−I
J%x/θ−9cr713− (:m/6n2. II
 e e・mHg  であり、α(PO2/PN2 )
 −3,llであった。
Example / Add water/θθml f to a 3θθml four-loaf flask, add 0.7 part of polyvinyl alcohol, and while blowing away element 9 (stir to dissolve). Add 2, @2, 3.3 to it.
- 3θ parts of tetrafluoropropyl methacrylate and 0.0 parts of dodecyl mercaptan. Add 5 parts of hydroxide and 6.75 parts of lauroyl peroxide. Then, it is polymerized at θ°C for a period of time. After polymerization, filter the polymer and wash the water.
Vacuum dry at C for 9 hours. The yield of the obtained polymer was 2 y. The polymer/θy obtained here is dissolved in acetone 907. Pour the solution into glass root soil for 5 minutes.
It was cast to a thickness of θμ and air-dried. The membrane was then peeled off and an air permeation test was performed. The permeability coefficient of oxygen is -I
J%x/θ-9cr713- (:m/6n2. II
e e・mHg and α(PO2/PN2 )
-3,11.

実施例 実施例/の、!、、2,3.3−テトラフルオロプロピ
ルメタクリレート30部の代わりにパーフルオロノニル
メタクリレート30部を用いた他は同様の条件で行った
。得られた重合物の収量はdダ、7Fであった。さらに
実施例/と同じように製膜し、空気の透過テストを行っ
た。酸素の透過係数は/、θグ×/θ−8crn” c
rn/cm2* s e c 1Hgであり、α(PO
2/PN2)=3.7であった。
ExamplesExamples/of! The same conditions were used except that 30 parts of perfluorononyl methacrylate was used instead of 30 parts of 2,3.3-tetrafluoropropyl methacrylate. The yield of the obtained polymer was 7F. Further, a film was formed in the same manner as in Example/, and an air permeation test was conducted. The permeability coefficient of oxygen is /, θg×/θ−8crn” c
rn/cm2* s e c 1Hg, α(PO
2/PN2)=3.7.

実施例3 実施例/の、2,2,3.3−テトラフルオロプロピル
メタクリレート3θ部の代わりに同様の条件で行った。
Example 3 The experiment was carried out under the same conditions as in Example 1, except for the 3θ portion of 2,2,3,3-tetrafluoropropyl methacrylate.

得られた重合物の収量は、2/、3Fであった。さらに
実施例/と同じように製膜し、空気の透過テストを行っ
た。酸素のa過係数if、り、5?jx/θ−173 
m(yIH/ff7p’ 8 e Q 口Hgであり、
α(PO2/ PN2 ) −J、Jであった。
The yield of the obtained polymer was 2/3F. Further, a film was formed in the same manner as in Example/, and an air permeation test was conducted. Oxygen a-excess coefficient if, ri, 5? jx/θ−173
m(yIH/ff7p' 8 e Q mouth Hg,
α(PO2/PN2)-J, J.

実施例り〜乙 実施例/の2.2,3.3−テトラフルオロプロピルメ
タクリレート30部の代わりに表/に示す化合物を用い
た他は同様の条件で行った。得られた重合物の収量は表
/に示す。
Examples 1 to 2 were carried out under the same conditions except that the compounds shown in Table 1 were used in place of 30 parts of 2.2,3.3-tetrafluoropropyl methacrylate in Example 1. The yield of the obtained polymer is shown in Table/.

また空気の透過テストを行った結果も又表/に示す。The results of an air permeation test are also shown in Table/.

Claims (1)

【特許請求の範囲】 (ハ アクリル酸フルオロアルキルおよび/あるいけメ
タクリル酸フルオロアルキルの重合体からなることを特
徴とする選択性気体透過膜。 卯 一般式0H2= Oぐ。。6、(式中RけHまたは
OH3、R1はフッ素原子を3個以上含む炭素数/〜/
6のアルキル基を表わす0)の重合体からなることを特
徴とする特許請求の範囲第7項の選またはOH3、Xは
HまたはF、m++=/−4,n=−2〜6を表わす0
)の重合体からなることを特徴とする特許請求の範囲第
1項の選択性気体透過膜。
[Scope of Claims] (C) A selective gas permeable membrane comprising a polymer of fluoroalkyl acrylate and/or fluoroalkyl methacrylate. R H or OH3, R1 is a carbon number containing 3 or more fluorine atoms/~/
or OH3, X represents H or F, m++=/-4, n=-2 to 6; 0
2. The selective gas permeable membrane according to claim 1, characterized in that the selective gas permeable membrane is made of a polymer of:
JP11713782A 1982-07-05 1982-07-05 Selective gas permeable membrane Pending JPS596905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11713782A JPS596905A (en) 1982-07-05 1982-07-05 Selective gas permeable membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11713782A JPS596905A (en) 1982-07-05 1982-07-05 Selective gas permeable membrane

Publications (1)

Publication Number Publication Date
JPS596905A true JPS596905A (en) 1984-01-14

Family

ID=14704364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11713782A Pending JPS596905A (en) 1982-07-05 1982-07-05 Selective gas permeable membrane

Country Status (1)

Country Link
JP (1) JPS596905A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118217A (en) * 1983-11-29 1985-06-25 Daikin Ind Ltd Gas separation membrane
JPS62109936A (en) * 1985-11-08 1987-05-21 Nippon Mining Co Ltd Titanium alloy having superior corrosion resistance
JPH0583622A (en) * 1991-09-24 1993-04-02 Nec Corp Shading correction circuit for ccd camera

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118217A (en) * 1983-11-29 1985-06-25 Daikin Ind Ltd Gas separation membrane
EP0146020A2 (en) * 1983-11-29 1985-06-26 Daikin Kogyo Co., Ltd. Gas separating membrane
JPH0250769B2 (en) * 1983-11-29 1990-11-05 Daikin Ind Ltd
JPS62109936A (en) * 1985-11-08 1987-05-21 Nippon Mining Co Ltd Titanium alloy having superior corrosion resistance
JPH0577733B2 (en) * 1985-11-08 1993-10-27 Nippon Mining Co Ltd
JPH0583622A (en) * 1991-09-24 1993-04-02 Nec Corp Shading correction circuit for ccd camera

Similar Documents

Publication Publication Date Title
JPH0515498B2 (en)
KR880007581A (en) Polytrialkyl Germanyl Propine Polymer and Membrane
JPS59225705A (en) Composite membrane and preparation thereof
WO1986000819A1 (en) Separation of water from organic fluids
JPS596905A (en) Selective gas permeable membrane
US4751104A (en) Preparation of gas selective membranes
JPS5569627A (en) Production of porous film of vinylidene fluoride resin
CN113069598B (en) Anticoagulation modification method of hemodialyzer
JPS61174920A (en) Permselective membrane of gas
JPS586208A (en) Production of gas permselective composite membrane
WO2020087761A1 (en) Polyurethanee/polyvinylidene fluoride composite film for extracting organic sulfide from naphtha and preparation method therefor
RU2174130C1 (en) Method of modifying cellulose acetates for preparing films, membranes and biofilters
JPS63151333A (en) Gas separation membrane and its preparation
JP2003093856A (en) Method for protecting zeolite membrane
JPS5640415A (en) Manufacture of extremely thin membrane
JPS61200833A (en) Carbon dioxide permselective membrane
JPS57159821A (en) Production of photopolymer
JPS6223401A (en) Ultrafiltration membrane
JPS62294419A (en) Manufacture of gas separating membrane
JP2952685B2 (en) Separation membrane for liquid separation
JPS5858106A (en) Separation of mixed liquid
JPS60220109A (en) Cellulose acetate for semi-permeable membrane and refining method thereof
JPS57141434A (en) Improved porous polycarbonate membrane
FR2504022A1 (en) PROCESS FOR PREPARING A SEMI-PERMEABLE MEMBRANE
JPS60222111A (en) Gas separating membrane