JPS5959212A - Cellulose ether gas separation membrane - Google Patents

Cellulose ether gas separation membrane

Info

Publication number
JPS5959212A
JPS5959212A JP17041882A JP17041882A JPS5959212A JP S5959212 A JPS5959212 A JP S5959212A JP 17041882 A JP17041882 A JP 17041882A JP 17041882 A JP17041882 A JP 17041882A JP S5959212 A JPS5959212 A JP S5959212A
Authority
JP
Japan
Prior art keywords
gas separation
cellulose ether
membrane
gas
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17041882A
Other languages
Japanese (ja)
Other versions
JPH0226529B2 (en
Inventor
Kazuto Hamada
濱田 一人
Hideki Mitani
三谷 秀樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP17041882A priority Critical patent/JPS5959212A/en
Publication of JPS5959212A publication Critical patent/JPS5959212A/en
Publication of JPH0226529B2 publication Critical patent/JPH0226529B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a cellulose ether hollow yarn dry membrane extremely high in gas separation capacity and permeability, by providing a dense active layer having gas separation capacity to the outer surface of a hollow yarn while a sponge like structure is provided under said active layer. CONSTITUTION:Cellulose ether with an alkoxyl substitution degree of 2.0-2.7 is dissolved in a mixed solution of a solvent such as dimethylformamide and a non-solvent such as triethylene glycol and the resulting solution is extruded into a gaseous atmosphere from a spinneret to be immersed into a coagulation bath containing water and a solvent and the formed extrudate is washed by water to form a wet hollow yarn. Thereafter, the hollow yarn is subjected to heat treatment by heating the same at 60-95 deg.C in water and, after drying, the treated yarn is further subjected to dry heat treatment at 50-100 deg.C for 5min or more. By the above-mentioned method, a cellulose ether hollow yarn dry membrane having dense active layer exhibiting a gas separation characteristic on the outer surface thereof and having a sponge like structure with a pore size of 0.01-3mum formed under said active layer is obtained.

Description

【発明の詳細な説明】 本発明はセルロースエーテル系ガス分離中空糸膜に関す
るものである。特に酸素と炭素ガスの分離性能と透過性
能が良好なセルロースエーテル系中空糸膜に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cellulose ether gas separation hollow fiber membrane. In particular, the present invention relates to a cellulose ether-based hollow fiber membrane that has good oxygen and carbon gas separation performance and permeation performance.

膜によるガスの分離の研究は古くからあり、ポリエチレ
ンテレフタレート中空糸膜を用いて天然ガス等から水素
ガス回収したり、ヘリウム混合排ガスからヘリウムガス
を回収したり、或はシリコンゴムフィルムを用いて空気
中の酸素ガスの濃縮などが報告されているが、ガス透過
性及びガス分離性が不充分なため実用化されたものは極
めて希である。
Research on gas separation using membranes has been going on for a long time. Polyethylene terephthalate hollow fiber membranes have been used to recover hydrogen gas from natural gas, helium gas has been recovered from helium mixed exhaust gas, and silicone rubber films have been used to recover hydrogen gas from air. Concentration of oxygen gas has been reported, but it is extremely rare that it has been put into practical use due to insufficient gas permeability and gas separation properties.

ある種のガス(A)及びガス(E)のある種の均一膜に
おけるガス透過鰍Q(匡/ sea )はで表わされる
。こ\でDA及びDBは夫々Aガス及びBガスの透過係
数(cjt * c!1/ sec 、 cwt 、c
s+Hg)sAは供給原ガスと接触する膜面積(ej 
)・Pl及びP、は膜に対するガスの供給側及び透過側
の該ガスの分圧(国Hg)、である。
The gas permeation rate Q (container/sea) in a certain homogeneous membrane of a certain gas (A) and a certain gas (E) is expressed as: Here, DA and DB are the permeability coefficients of A gas and B gas, respectively (cjt * c!1/sec, cwt, c
s+Hg) sA is the membrane area in contact with the feed gas (ej
)・Pl and P are the partial pressures (in Hg) of the gas on the supply side and the permeate side to the membrane.

膜によるガス分離法を適用するには、目標とするガスA
に対する透過係数が大きく、分離係数PA/PBが充分
に大又は小の材料を選定し、膜面積が出来るだけ大きく
、膜厚が出来るだけ小さい膜にする事が重要である。一
般に成る高分子膜に対するガスの透過性はガスの種類に
より異なり、透過係数の大きい順は水素、ヘリウム>0
0.>O,、Ar>00・OH4、N2の様になってお
り、透過係数の差の大きい混合ガス、例えば水素ガスと
窒素ガスの分離は容易であるが、その差の小さい混合物
例えば−酸化炭素とメタンの分離は困難である。又分離
しようとする成る混合ガスの種類が決まれば、高分子分
離膜の種類による特性の違いは、ガスの透過係数が大き
い膜はど一般に分離係数が小さい傾向にあり、透過係数
と分離係数が共に大きな性能の材料はなく、この中で目
的を達成する様な葉材の選定が極めて重要となる。例え
ば空気より酸素を選択濃縮しようとするとき、ポリジメ
チルシロキサン膜は酸素ガスの透過係数が極めて大きい
が、分離係数は小さく1回透過で35%以上の酸素濃度
を得る事は困難である。これに対しボ1ノエチレンテレ
フタレート膜は酸素の透過係数力;ホ゛1ノジメチルシ
ロキサンのそれに比し1遥かに小さいが分離係数は大き
く、1回透過で50%の酸素濃度を得る事が出来る。従
って目的に応じて膜素材の選択が行われる。更に実用的
な意味から重要なことは透過係数が大きくても膜厚Tが
小さくならなければ有効なガス透過量は得られず、Tが
充分小さい薄膜に加工出来てDA/Tが3 X I O
−’(cj/cwt、 sea )CIIH9)  以
上の透過率が得られて始めて実用化が可能となるのであ
る。しかし乍らこ\で如何に薄膜に加工出来ても使用条
件に耐え得る熱的特性及び機械的特性をその膜が有して
いなければならず、この点も膜材料の選定に当っては充
分留意すべき因子である。更に分離膜の実用化に当って
は、膜を効率的に使用出来る様一定の圧力容器に納めた
モジュールに組立てられるが、このモジュール当りの膜
面積を大きくシ、処理量当りのモジュール本数を減らし
てプラント設備費の低下が図られる。この様な膜モジユ
ール形態としては中空糸型、平膜スパイラル型、プレー
トアンドフレーム型、及びチュブラ−型があるが、中空
糸型がモジュール中への膜充填密度が最も高く、モジュ
ールコスト面でも有利である。これらの観点から本発明
者らはガス分離膜の開発研死に鋭意取組み、従来にない
ガス分離性能及び透過性能が極めて高く実用的な膜の開
発に成功した。
To apply the membrane gas separation method, the target gas A
It is important to select a material with a large permeability coefficient and a sufficiently large or small separation coefficient PA/PB, and to make the membrane as large as possible and as thin as possible. The gas permeability of general polymer membranes varies depending on the type of gas, and the order of the permeability coefficient is hydrogen, helium >0
0. >O,, Ar>00・OH4, N2, it is easy to separate mixed gases with a large difference in permeability coefficients, such as hydrogen gas and nitrogen gas, but mixtures with small differences, such as carbon oxide. Separation of methane and methane is difficult. Once the type of mixed gas to be separated is determined, the difference in characteristics depending on the type of polymer separation membrane is that membranes with a large gas permeability coefficient generally tend to have a small separation coefficient, and the difference between the permeation coefficient and separation coefficient is There is no material that has great performance for both, and it is extremely important to select a leaf material that achieves the purpose. For example, when trying to selectively concentrate oxygen over air, a polydimethylsiloxane membrane has an extremely high permeability coefficient for oxygen gas, but a small separation coefficient, making it difficult to obtain an oxygen concentration of 35% or more in one pass. On the other hand, the oxygen permeability coefficient of the bo-1-no-ethylene terephthalate membrane is much smaller than that of bo-1-no-dimethylsiloxane by 1, but the separation coefficient is large, and an oxygen concentration of 50% can be obtained in one pass. Therefore, the membrane material is selected depending on the purpose. Furthermore, from a practical point of view, it is important to note that even if the permeability coefficient is large, effective gas permeation cannot be obtained unless the film thickness T is small. O
-'(cj/cwt, sea) CIIH9) Practical use is possible only when the above transmittance is obtained. However, no matter how thin a film can be processed into a film, it must have thermal and mechanical properties that can withstand the usage conditions, and this point is also important when selecting film materials. This is a factor to keep in mind. Furthermore, when putting separation membranes into practical use, membranes are assembled into modules housed in a certain pressure vessel in order to use them efficiently, but it is necessary to increase the membrane area per module and reduce the number of modules per processing amount. This will reduce plant equipment costs. Such membrane module configurations include hollow fiber type, flat membrane spiral type, plate and frame type, and tubular type, but the hollow fiber type has the highest membrane packing density in the module and is advantageous in terms of module cost. It is. From these viewpoints, the present inventors have worked diligently to develop gas separation membranes, and have succeeded in developing a practical membrane with extremely high gas separation performance and permeation performance that has never been seen before.

即ち、中空糸外面に緻密なガス分能性能を有する活性層
を有し、その下層に細孔の平均孔径0゜01〜3μのス
ポンジ状組織を有し、かつアルコキシル基置換度が2.
0〜2.7であるセルロースエーテル系中附糸乾燥膜が
それである。
That is, the hollow fiber has an active layer having a dense gas separation performance on the outer surface, a sponge-like structure with an average pore diameter of 0.01 to 3 μm in the lower layer, and an alkoxyl group substitution degree of 2.0 μm.
This is a cellulose ether-based medium thread drying membrane with a rating of 0 to 2.7.

ガス分離膜材料としてはポリビニルアルコール、ポリア
ミド、ポリエステル、ポリ塩化ビニル、ポリプロピレン
、ポリエチレン、ポリカーボネート或はポリシロキサン
等各種の高分子材料が考えられるが、これらの材料によ
りガスの透過性は広範囲に変化し、例えば酸素力゛ス透
過係数は10−13から10−8のオーダーのものまで
存在しており高分子の極性基の種類により分離性能も大
巾に変化している。これらめ中から分離性能、膜の機械
的特性及び薄膜化加工性も含めて検討し、最適材料の選
択を行うのが望ましい。本発明者らは永年この様な観点
から種々の材料を検討して来たが、高いガス分離性能を
有し実用性のある膜をセルロースエーテル系ポリマーを
用いて達し得る結論に到達した。即ち膜の実用性からガ
ス分離性能が成る程度高いレベルにあって、しかもガス
透過性が充分大きいことが最大の重要性であるがセルロ
ースエーテルは上の合成高分子の中では中程度にランク
されている半合成高分子材料であるが、特定の条件下で
は薄膜加工性が極めて高く通常の高分子材料より薄膜加
工が容易である。
Various polymer materials can be considered as gas separation membrane materials, such as polyvinyl alcohol, polyamide, polyester, polyvinyl chloride, polypropylene, polyethylene, polycarbonate, or polysiloxane, but gas permeability varies widely depending on these materials. For example, the oxygen force permeability coefficient ranges from 10-13 to 10-8, and the separation performance varies widely depending on the type of polar group in the polymer. It is desirable to select the optimal material by considering the separation performance, mechanical properties of the membrane, and processability for thinning the membrane from among these considerations. The present inventors have been studying various materials from this point of view for many years, and have reached the conclusion that a practical membrane with high gas separation performance can be created using a cellulose ether polymer. In other words, it is of utmost importance that the gas separation performance be at a sufficiently high level for the practicality of the membrane, and that the gas permeability be sufficiently large, but cellulose ether is ranked in the middle among the above synthetic polymers. Although it is a semi-synthetic polymer material, under certain conditions it has extremely high processability into thin films and is easier to process into thin films than ordinary polymer materials.

こ\に言うセルロースエーテルとはメチルセルロース、
エチルセルロース、ヒドロキシエチルセルロース、シア
ノエチルセルロース等である。
The cellulose ether mentioned here is methyl cellulose.
These include ethyl cellulose, hydroxyethyl cellulose, and cyanoethyl cellulose.

膜の製法としては、ポリマーを有機溶剤に溶解した溶液
をガラス板上にキャストして非対称平膜にする方法、中
空糸状に押出し凝固させて非対称中空糸にする方法或は
多孔質膜又は多孔質中空糸上に薄膜をコートした複合膜
とする方法等が採られるが、生産性及び面積拡大の点か
ら中空糸非対称膜にする方法が最も有利である。特に、
こ\で目的としている酸素と窒素の分離及び炭酸ガスと
他の窒素やメタンガスとの分離にはアルコキシル基置換
度2゜0〜2.7のセルロースエーテルの中空糸ガス分
離膜が優れ1例えばlφのゲージ圧で空気を分離すると
酸素濃度30%以上で酸素ガスの透過速度5 X I 
O”−’ cc /cd、 sea N 0IH9以上
と実用性のある事を見出した。
Membrane manufacturing methods include casting a solution of a polymer dissolved in an organic solvent onto a glass plate to form an asymmetric flat membrane, extruding it into hollow fibers and coagulating it to form an asymmetric hollow fiber, or forming a porous membrane or porous membrane. Although a method of forming a composite membrane in which a thin film is coated on a hollow fiber is adopted, the method of forming a hollow fiber asymmetric membrane is the most advantageous in terms of productivity and area expansion. especially,
Hollow fiber gas separation membranes made of cellulose ether with a degree of alkoxyl group substitution of 2°0 to 2.7 are excellent for the separation of oxygen and nitrogen and separation of carbon dioxide and other nitrogen and methane gases, which are the objective here. When air is separated at a gauge pressure of 30% or more, the permeation rate of oxygen gas is 5
O"-' cc/cd, sea N 0IH9 or more, which was found to be practical.

次に詳しくその製膜方法について述べる。Next, the film forming method will be described in detail.

アルコキシル基置換度2.0〜267のセルロースエー
テルを有機溶剤と非溶剤の混合溶液に溶解し1共紡糸口
金を通して気体雰囲気中に押出し、引続いて凝固浴で凝
固し、水洗、熱処理後乾燥、さらに乾熱処理することに
よって特に酸素と炭素ガスの分離性能と透過性能の良好
な中空糸膜が得られる。
Cellulose ether with an alkoxyl group substitution degree of 2.0 to 267 is dissolved in a mixed solution of an organic solvent and a non-solvent, extruded through a co-spinneret into a gas atmosphere, then coagulated in a coagulation bath, washed with water, heat treated, and then dried. Furthermore, by dry heat treatment, a hollow fiber membrane having particularly good oxygen and carbon gas separation performance and permeation performance can be obtained.

本発明に用いる溶剤は、その種類により中空糸膜のガス
選択は重要である。今迄にセルロースエーテル系ポリマ
ーの溶剤は、数多く提案されているがこのような観点か
らジメチルホルムアミドジメチルアセトアミド、ジメチ
ルスルホキシド、N−メチル−2−ピロリドンが最も好
ましく1透過性能において非溶剤との併用により相剰効
果が大きく現われる。
The gas selection for the hollow fiber membrane is important depending on the type of solvent used in the present invention. Up to now, many solvents for cellulose ether polymers have been proposed, but from this point of view, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, and N-methyl-2-pyrrolidone are the most preferred. Significant reciprocal effects appear.

非溶剤はその種類により中空糸膜の透過性能に影響を及
ぼす。従ってガス分離膜性能の向上のためには最も適切
な溶剤と非溶剤の組合せ力;最も重要な技術的要素の一
つとなる0 本発明においては下記一般式の非溶剤が用いられる。
The type of nonsolvent affects the permeation performance of the hollow fiber membrane. Therefore, in order to improve gas separation membrane performance, the most appropriate combination of solvent and nonsolvent is one of the most important technical elements. In the present invention, a nonsolvent of the following general formula is used.

R10(0,H40)nR。R10(0,H40)nR.

(式中、R1及びR3けそれぞれ本葉炭素数1〜6の炭
化水素基、−0,H4R’又は−00R【であり、なお
R1は−○IJ)−0001、−0ONH,又は−OH
,MW。
(In the formula, R1 and R3 are each a hydrocarbon group having 1 to 6 true carbon atoms, -0, H4R' or -00R[, and R1 is -○IJ) -0001, -0ONH, or -OH
, M.W.

を示し、Ri及び%Id−それぞれ単独に水素又は炭素
数1〜6の炭化水素基を示すOnは2〜10の例えばト
リエチレングリコール、テトラエチレングリコール、ポ
リエチレングリコール、メチルカルピトール1ジメチル
カルピトール、メトキシトリグリコール、トリエチレン
グリコールモノエチルエーテル、アセチル化ポリエチレ
ングリコール、アミノエチル化ポリエチレングリコール
等が挙げられこれらは1種又は2種以上を混合してもよ
い。
, Ri and %Id- each independently represents hydrogen or a hydrocarbon group having 1 to 6 carbon atoms, and On represents 2 to 10, such as triethylene glycol, tetraethylene glycol, polyethylene glycol, methylcarpitol, 1 dimethylcarpitol, Examples include methoxy triglycol, triethylene glycol monoethyl ether, acetylated polyethylene glycol, and aminoethylated polyethylene glycol, and these may be used alone or in combination of two or more.

紡糸原液中のセルロースエーテル濃度は為中空糸膜の可
紡性及びガス分離性能との関係が大きい。
The cellulose ether concentration in the spinning dope has a strong relationship with the spinnability and gas separation performance of the hollow fiber membrane.

本発明においてはセルロースエーテル30〜50重量%
、溶剤とポリエーテルの混合物50〜70重量%の割合
で用いられる。
In the present invention, 30 to 50% by weight of cellulose ether
, a mixture of solvent and polyether is used in a proportion of 50 to 70% by weight.

本発明において用いられる凝固液上しては、水と該原液
に用いられる溶剤との混合溶剤が好ましく、用いられる
凝固温度としては20〜70°Cが好ましい。
The coagulating liquid used in the present invention is preferably a mixed solvent of water and the solvent used for the stock solution, and the coagulating temperature used is preferably 20 to 70°C.

本発明の中空糸膜の紡糸法は、セルロースエーテルを溶
剤とポリエーテルからなる混合溶液に必要により加熱を
行なって攪拌溶解し、濾過、脱泡を行ない、紡糸口金か
ら空気、不活性ガスの気体雰囲気中に押出す。なお紡糸
口金はアーク型、0型又は紡糸孔内に気体導入管を設け
た二重型のものが用いられる。
The method for spinning hollow fiber membranes of the present invention involves dissolving cellulose ether in a mixed solution consisting of a solvent and polyether by stirring and heating if necessary, performing filtration and defoaming, and releasing air or inert gas from a spinneret. Extrude into the atmosphere. Note that the spinneret used is an arc type, 0 type, or a double type spinneret in which a gas introduction tube is provided in the spinning hole.

押出紡糸された中空糸は、気体雰囲気中を通して溶剤と
ポリエーテルを含有する水浴中に浸漬、凝固した後水洗
して湿潤中空糸を得る。
The extrusion-spun hollow fibers are immersed in a water bath containing a solvent and polyether through a gas atmosphere, coagulated, and then washed with water to obtain wet hollow fibers.

次に、中空糸膜を緻密化するために熱処理される熱処理
は中空糸に対して不活性な加熱媒体中に中夜糸を浸漬す
ることによって行われる。熱処理媒体は不活性なもので
あればどのようなものでもよいが取扱上の問題と経済性
から水を用いるのが好ましい。
Next, the heat treatment for densifying the hollow fiber membrane is carried out by immersing the hollow fiber in a heating medium that is inert to the hollow fiber. Although any inert heat treatment medium may be used, it is preferable to use water from the viewpoint of handling problems and economic efficiency.

熱処理温度は60〜95゛C好ましくは75〜90°C
である。熱処理温度が60 ’Cより低い場合は、乾燥
時の収縮が大きく安定した膜性能のものが得られない。
Heat treatment temperature is 60-95°C, preferably 75-90°C
It is. If the heat treatment temperature is lower than 60'C, shrinkage during drying is large and stable membrane performance cannot be obtained.

又熱処理温度が95°C以上になると熱処理時に膜が大
きく収縮し、膜性能が実用的でなくなる。
Furthermore, if the heat treatment temperature is 95° C. or higher, the film will shrink significantly during the heat treatment, making the film performance impractical.

このようにして得られた湿潤中空糸を乾燥する方法とし
ては凍結乾燥法又は普通の空気乾燥法を用いることがで
きる。空気乾燥法では10〜50°Cが好ましい。乾燥
後50 + l OO’Cで5分以上して 乾熱処理枦−膜をさらに緻密化し、膜分離性能を向上さ
せる。
Freeze drying or ordinary air drying can be used to dry the wet hollow fibers thus obtained. In the air drying method, the temperature is preferably 10 to 50°C. After drying, dry heat treatment is carried out at 50 + l OO'C for 5 minutes or more to further densify the membrane and improve membrane separation performance.

以上詳述した方法により、中空糸外面に緻密なガス分離
性能を発揮する活性層を有し、その下層に細孔の平均孔
径0.01〜3μのスポンジ状組織を有するセルロース
エーテル系中空糸乾燥膜を得るこ七ができる。
By the method detailed above, cellulose ether hollow fibers having an active layer exhibiting dense gas separation performance on the outer surface of the hollow fibers and a spongy structure with an average pore diameter of 0.01 to 3μ in the lower layer are dried. It is possible to obtain a membrane.

これらの方法により得られるセルロースエーテル系中空
糸乾燥膜は、酸素透過速度として5 X I 0=CC
/ej、 sea 、 18部以上、ガス分離係数とし
て酸素と窒素の透過速度比は3以上の性能を有し、炭酸
ガスの透過速度は4 X I O−’釦/adz B6
c\σH9以上であり、炭酸ガスと窒素の透過速度比は
15以上の性能を有する。
The cellulose ether hollow fiber dry membrane obtained by these methods has an oxygen permeation rate of 5 X I 0 = CC
/ej, sea, 18 parts or more, the permeation rate ratio of oxygen and nitrogen as a gas separation coefficient is 3 or more, and the permeation rate of carbon dioxide is 4.
c\σH is 9 or more, and the carbon dioxide gas to nitrogen permeation rate ratio is 15 or more.

なお、モジュール装置化は、一般的な方法で実崩され各
種用途に使用される。
Note that the modular device is actually broken down using a general method and used for various purposes.

以下、本発明を実施例によって具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例 L ジメチルアセトアミド(DMAO)50部とエチレング
リコール(NG)10部からなる混合溶液にエチルセル
ロース(エトキシル基if換度2.5)40部を入れて
120 ℃で攪拌溶解した。
Example L 40 parts of ethyl cellulose (conversion degree of ethoxyl group if 2.5) was added to a mixed solution consisting of 50 parts of dimethylacetamide (DMAO) and 10 parts of ethylene glycol (NG), and the mixture was stirred and dissolved at 120°C.

この紡糸原液を濾過脱泡後2重管型紡糸口金を用いて空
気中に押出し、空間時間0.12秒通して、引続き凝固
浴(組織DMA020重量%、IG05重量%、水75
重量%)で温度50 ’Cで凝固し、ネルソンローラ一
方式で水洗を行ったのち20W1府の速度で捲取った。
This spinning stock solution was filtered and degassed, then extruded into the air using a double-tube spinneret, and then passed through a space time of 0.12 seconds, followed by a coagulation bath (tissue DMA020%, IG05%, water 75% by weight).
% by weight) at a temperature of 50'C, washed with water using a Nelson roller, and then rolled up at a speed of 20W1.

次に中空糸をかせ散機で巻取り集束状態で緊張下熱水で
80°c120分間熱処理した。
Next, the hollow fibers were wound with a spinner and heated under tension in hot water at 80° C. for 120 minutes in a bundled state.

得られた湿潤中空糸を熱風乾燥機を用いて40℃で30
分間乾燥し、更に90°Cで乾熱処理した。
The obtained wet hollow fibers were dried at 40℃ for 30 minutes using a hot air dryer.
It was dried for a minute and then subjected to dry heat treatment at 90°C.

このようにして得られた中空糸膜を水銀ポロシメーター
を用いて外径を測定した結果0.03〜3.0μであっ
た。又、中空糸の断面を走査型電子顕微鏡で観察すると
表面層が緻密でその下層はスポンジ状になっていること
が認められた。
The outer diameter of the thus obtained hollow fiber membrane was measured using a mercury porosimeter and found to be 0.03 to 3.0 μm. Furthermore, when the cross section of the hollow fiber was observed using a scanning electron microscope, it was found that the surface layer was dense and the layer underneath was spongy.

なお1この中空糸を長さ1喝、巻数100のかせ糸とし
、その一端を開放し、エホ“キシ接着したのち圧力容器
に装着して2 kg/lG及び5 kg/lGの圧力で
酸素と窒素と炭酸ガスの透過速度を測定し、透過速度比
を求めた。その結果は下記の通りであった。
Note 1: This hollow fiber was made into a strand with a length of 1 mm and a number of turns of 100, one end of which was opened, and after being glued with epoxy, it was attached to a pressure vessel and exposed to oxygen at pressures of 2 kg/lG and 5 kg/lG. The permeation rates of nitrogen and carbon dioxide gas were measured and the permeation rate ratio was determined.The results were as follows.

PO,:  8.3 X 1o−s部/−1BeC1”
 H9PM、:  2,6  X  1O−1Boo、
  :  6.1  X  10−’Os / Is 
:  3−19 00、/N、  :  23゜46 実施例 N−メチル−2−ピロリドン56部とポリエチレングリ
コ−ルナ600フ部からなる混合溶液にエチルセルロー
ル(エトキシル基ft[c 2゜2 )37部を入れて
l 30 ’Cで攪拌溶解した。
PO,: 8.3 X 1o-s part/-1BeC1"
H9PM,: 2,6 X 1O-1Boo,
: 6.1 x 10-'Os/Is
: 3-19 00, /N, : 23°46 Example N- Ethyl cellulose (ethoxyl group ft [c 2°2 )] was added to a mixed solution consisting of 56 parts of methyl-2-pyrrolidone and 600 parts of polyethylene glycol. 37 parts were added and dissolved with stirring at 130'C.

この紡糸原液を実施例1と同様な方法で紡糸を行った。This spinning stock solution was subjected to spinning in the same manner as in Example 1.

次に中空糸を熱水で87℃で20分間熱処理した。Next, the hollow fibers were heat treated with hot water at 87° C. for 20 minutes.

この湿潤中空糸を凍結乾燥機で乾燥し、さらに90°C
で乾熱処理したものを水銀ポロシメーターで孔径を測定
すると0003〜2.6μであった。又中空糸の断面を
走査型電子顕微鏡で観察すると表面層が緻密でその下層
はスポンジ状になっていることが認められた。なお1実
施例1と同様な方法で透過速度を測定した。その結果は
下記の通りであった。
This wet hollow fiber was dried in a freeze dryer and further heated to 90°C.
The pore diameter of the dry heat-treated sample was measured using a mercury porosimeter and was found to be 0003 to 2.6 μm. Furthermore, when the cross section of the hollow fiber was observed using a scanning electron microscope, it was found that the surface layer was dense and the underlying layer was spongy. Note that the permeation rate was measured in the same manner as in Example 1. The results were as follows.

Fog  :  7.7  X  10−’ cc/C
i−、sec % −H9P1’J、  :  2.5
  X  10””POO,:  5.2 10−4 0、/N、:  3.0B 00、/N、  :  20.8 比較例 エトキシル基置換度が1.7であるエチルセルロースを
用い他は実施例1と同様な方法で中空糸ガス分離膜を作
製した。水銀ポロシメーターで孔径を測定すると実施例
1のものとは家同程度の結果であったが、酸素の透過速
度を測定したところ1.5Xlo″′6エ/d・sec
・国〜 と低く実用的なガス分離膜となり得なかった。
Fog: 7.7 x 10-' cc/C
i-, sec %-H9P1'J, : 2.5
X 10""POO,: 5.2 10-4 0, /N,: 3.0B 00, /N, : 20.8 Comparative Example Ethyl cellulose with an ethoxyl group substitution degree of 1.7 was used, and the other examples were as follows. A hollow fiber gas separation membrane was produced in the same manner as in Example 1. When the pore size was measured with a mercury porosimeter, the results were comparable to those of Example 1, but when the oxygen permeation rate was measured, it was 1.5Xlo'''6E/d・sec.
・It was so low that it could not be a practical gas separation membrane.

またエトキシル基置換度が2.9のものは水可溶性で紡
糸不可能であった。
Also, those having a degree of ethoxyl group substitution of 2.9 were water-soluble and could not be spun.

特許出願人   東洋紡績株式会社Patent applicant: Toyobo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 中空糸外面に緻蕃なガス分離性能を発揮する活性層を有
し、その下層に細孔の平均孔径0.01〜3μのスポン
ジ状組織を有し、かつアルコキシル基置換度が2.0〜
2.7であるセルロースエーテル系ガス分離膜。
It has an active layer on the outer surface of the hollow fiber that exhibits precise gas separation performance, has a spongy structure with an average pore diameter of 0.01 to 3μ in the lower layer, and has an alkoxyl group substitution degree of 2.0 to 2.0.
2.7 cellulose ether-based gas separation membrane.
JP17041882A 1982-09-28 1982-09-28 Cellulose ether gas separation membrane Granted JPS5959212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17041882A JPS5959212A (en) 1982-09-28 1982-09-28 Cellulose ether gas separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17041882A JPS5959212A (en) 1982-09-28 1982-09-28 Cellulose ether gas separation membrane

Publications (2)

Publication Number Publication Date
JPS5959212A true JPS5959212A (en) 1984-04-05
JPH0226529B2 JPH0226529B2 (en) 1990-06-11

Family

ID=15904553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17041882A Granted JPS5959212A (en) 1982-09-28 1982-09-28 Cellulose ether gas separation membrane

Country Status (1)

Country Link
JP (1) JPS5959212A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS639792A (en) * 1986-06-27 1988-01-16 Matsushita Electric Ind Co Ltd Mixing device of hot and cold water
JPS63166404A (en) * 1986-12-27 1988-07-09 Sumitomo Bakelite Co Ltd Hollow yarn filter membrane and manufacture thereof
JPH04501735A (en) * 1988-11-18 1992-03-26 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチェン Washing and cleaning formulations containing secondary dialkyl ether sulfates

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4127625A (en) * 1975-03-27 1978-11-28 Daicel Ltd. Process for preparing hollow fiber having selective gas permeability

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4127625A (en) * 1975-03-27 1978-11-28 Daicel Ltd. Process for preparing hollow fiber having selective gas permeability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS639792A (en) * 1986-06-27 1988-01-16 Matsushita Electric Ind Co Ltd Mixing device of hot and cold water
JPS63166404A (en) * 1986-12-27 1988-07-09 Sumitomo Bakelite Co Ltd Hollow yarn filter membrane and manufacture thereof
JPH04501735A (en) * 1988-11-18 1992-03-26 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチェン Washing and cleaning formulations containing secondary dialkyl ether sulfates

Also Published As

Publication number Publication date
JPH0226529B2 (en) 1990-06-11

Similar Documents

Publication Publication Date Title
JP4050977B2 (en) Composite hollow fiber membrane reinforced by knitted fabric
EP0732143B1 (en) Fluid separation membranes prepared from blends of polyimide polymers
EP0207721B1 (en) Anisotropic membranes for gas separation
EP0459623B1 (en) Asymmetric hollow filamentary carbon membrane and process for producing same
NL9401548A (en) Highly selective asymmetric membranes for the separation of gases and a process for their manufacture.
JPH08150327A (en) Preparation of film from blend of polyether imide polymer and polyimide polymer
EP0235051B1 (en) Hollow composite fibre for removing water vapour from air or from carbonic-acid gas
JPS5959212A (en) Cellulose ether gas separation membrane
KR0149879B1 (en) Composite film for gas stripping and its manufacture
JP2002126479A (en) Porous membrane, gas separating membrane and method of manufacturing for the same
JPS6391122A (en) Separation of steam
JPS6051524A (en) Polymer membrane having ammonium salt
JPS588504A (en) Gas separation membrane comprising polysulfone hollow fiber
JPS61402A (en) Semipermeable membrane for separation
JP2592725B2 (en) Manufacturing method of hollow fiber membrane
JPS6227025A (en) Composite membrane for separating gas
JPS5955308A (en) Separation membrane for gas
JPH0453572B2 (en)
JPS62117811A (en) Production of conjugated hollow fiber membrane
JPS6227022A (en) Stabilizing method for membrane
JPS6297980A (en) Composite hollow fiber membrane
JPH08323166A (en) Surface treatment of separating membrane
CN114733360A (en) Preparation method of polyolefin hollow fiber membrane
JPH08323169A (en) Surface-modified polyimidazopyprolone separating membrane and its production
JPH02152528A (en) Production of porous hollow fiber