JPS5955390A - Wet type oxidation device - Google Patents

Wet type oxidation device

Info

Publication number
JPS5955390A
JPS5955390A JP16539182A JP16539182A JPS5955390A JP S5955390 A JPS5955390 A JP S5955390A JP 16539182 A JP16539182 A JP 16539182A JP 16539182 A JP16539182 A JP 16539182A JP S5955390 A JPS5955390 A JP S5955390A
Authority
JP
Japan
Prior art keywords
oxygen
pressure
oxygen gas
air
wet oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16539182A
Other languages
Japanese (ja)
Inventor
Kaoru Tanaka
馨 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata Engineering Co Ltd
Original Assignee
Niigata Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Engineering Co Ltd filed Critical Niigata Engineering Co Ltd
Priority to JP16539182A priority Critical patent/JPS5955390A/en
Publication of JPS5955390A publication Critical patent/JPS5955390A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a wet type oxidization device of a small size having good efficiency, by constituting the same of a production device for gaseous O2 of >=21vol% concn. of O2 and a wet type oxidation device body which uses the gaseous O2 obtd. by said device as an O2 source by utilizing the back pressure thereof. CONSTITUTION:A production device 8 for gaseous oxygen 8 pressurizes raw material air to about 3-5kg/cm<2>G with an air compressor 9, feeds the same into an adsorption cylinder packed therein with a nitrogen adsorbent such as molecular sieves or the like, and produces gaseous oxygen of a high oxygen concn. by adsorbing and removing the nitrogen in the air on and by the nitrogen adsorbent. The satd. nitrogen adsorbent on which nitrogen is adsorbed is decreased in pressure down to the atm. pressure by which the adsorbent is regenerated. The regenerated adsorbent is reused. Gaseous oxygen having about 1kg/cm<2>G back pressure is obtd. from the device 8 when the pressure of the raw material air is 3kg/cm<2>G. Such back pressure is used as it is and the gaseous oxygen is fed as an oxygen source into a wet oxidation device body 7.

Description

【発明の詳細な説明】 この発明は、ランニングコストおよび設備コストの著る
しい低減を図ることのできる湿式酸化装置途に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wet oxidation apparatus capable of significantly reducing running costs and equipment costs.

湿式酸化は、酸素要求物質を浴解または微細固形物浮遊
の形で含有する水を高温高圧下、例えば/に0〜320
℃、30〜−00Kg / cJにおいて系内に水分が
充分存在する状態において空気と接触させ、水中の酸素
要求物質を空気中の酸素で酸化するものである。この湿
式酸化は、石油化学工場廃水、生し尿、下水汚泥等の処
理や産業廃水処理等に利用されている。
In wet oxidation, water containing oxygen-requiring substances in the form of bath solution or suspended fine solids is heated under high temperature and pressure, e.g.
℃ and 30 to -00 kg/cJ in a state where there is sufficient water in the system, the system is brought into contact with air, and the oxygen-requiring substances in the water are oxidized with the oxygen in the air. This wet oxidation is used to treat petrochemical factory wastewater, human waste, sewage sludge, etc., and industrial wastewater treatment.

従来の湿式酸化は、第1図に示すように、高圧ポンプ1
で処理すべき供給液を昇圧し、さらに熱交換器2を通し
て反応開始rコf能な温度まで外淵し反応器3に導入す
る。一方、酸化に必要な酸素源の空気は、圧縮機4によ
シ高圧ポンプ1出口の圧力と同じ圧力まで圧縮され、熱
交換器2の入口または反応器3の人口で上記供給液に加
えられる。
In conventional wet oxidation, as shown in Figure 1, a high pressure pump 1 is used.
The feed liquid to be treated is pressurized and then passed through a heat exchanger 2 to the outside to a temperature sufficient to start the reaction, and then introduced into a reactor 3. On the other hand, air as an oxygen source necessary for oxidation is compressed by a compressor 4 to the same pressure as the pressure at the outlet of the high-pressure pump 1, and is added to the feed liquid at the inlet of the heat exchanger 2 or at the outlet of the reactor 3. .

蒸気加熱器5は始動時、蒸気によシ反応系内を供給液の
酸化開始可能な温度まで加熱するためのものであり、ま
た供給液の酸化熱不足の場合に常時使用し、反応器3内
の酸化反応を継続させるものである。反応器3内では、
供給液中の酸素要求物質が空気中の酸素で酸化されこれ
に伴って酸化熱が発生ずる。酸化された供給液は反応器
3から熱交換器2に送られ、ここで原料供給液と熱交換
して冷却され、気液分離器6に送られ、排出ガスと酸化
液とに分離される。
The steam heater 5 is used to heat the inside of the reaction system using steam to a temperature at which oxidation of the feed liquid can start at the time of startup, and is used constantly when the oxidation heat of the feed liquid is insufficient. This is to continue the oxidation reaction within. Inside reactor 3,
Oxygen-requiring substances in the feed liquid are oxidized by oxygen in the air, and heat of oxidation is generated accordingly. The oxidized feed liquid is sent from the reactor 3 to the heat exchanger 2, where it is cooled by exchanging heat with the raw material feed liquid, and sent to the gas-liquid separator 6, where it is separated into exhaust gas and oxidized liquid. .

従来、上述のごとき湿式酸化では、酸素源として空気が
使用されているが、空気中の酸素は約Jvo1%である
ため、反応器3での酸化が進行するに従い、酸素濃度(
酸素分圧)が次第に低下し、(第2図参照)これに応じ
て反応速度も低下し、酸化反応の進行も遅いものとなる
。(第3図参照)このため、実用装置における供給液の
滞留時間は短いもので3θ分、一般には60分以上を要
しているのが実情である。このように、滞留時間が長い
と反応器3等の設備を大型のものとせねばならず、設備
費用が嵩み、運転上も種々の問題がある。
Conventionally, in the above-mentioned wet oxidation, air is used as an oxygen source, but since the oxygen in air is approximately Jvo 1%, as the oxidation in the reactor 3 progresses, the oxygen concentration (
The oxygen partial pressure) gradually decreases (see Figure 2), the reaction rate decreases accordingly, and the oxidation reaction progresses slowly. (See FIG. 3) Therefore, the residence time of the feed liquid in practical equipment is short at most 3θ minutes, and in reality, it generally takes 60 minutes or more. As described above, when the residence time is long, equipment such as the reactor 3 must be large-sized, which increases equipment costs and causes various operational problems.

また、酸素源として空気を使用する場合は、酸化に関与
しない窒素を約に6%も含むため、反応器3内でこれに
同伴して蒸発する水分は極めて大量になシ、これに決す
る蒸発熱として酸化により発生した熱量の中の大部分が
使用されることになる。このように蒸発量が大きくなる
とこれに伴って熱交換器2を大型のものとせねばならず
、やけシ設備費用が嵩む欠点がある。
In addition, when air is used as an oxygen source, it contains about 6% of nitrogen, which does not participate in oxidation, so an extremely large amount of water evaporates along with it in the reactor 3, and the evaporation does not occur. Most of the heat generated by oxidation is used as heat. If the amount of evaporation increases in this way, the heat exchanger 2 must be made larger, which has the drawback of increasing equipment costs.

さらに、従来の湿式酸化装置の動力消費t:をみると、
例えば供給液中のC0I)、、 (JIS Cr法)3
0〜グθyitを除去する一般的な湿式酸化装置で処理
量jθθ−/日の場合には、全消費動力はjθθ〜にθ
θlK/Hであり、その20に以上は酸素源としての空
気圧縮のために必要なものである。ところが空気のざ6
%近くが酸化に関与しない窒素であり、この無駄な窒素
の圧縮に多くの動力を消費していることになる。
Furthermore, if we look at the power consumption t: of the conventional wet oxidizer,
For example, COI in the feed liquid), (JIS Cr method) 3
In the case of a general wet oxidizer that removes 0~g θyit and the throughput is jθθ−/day, the total power consumption is jθθ~
θlK/H, of which 20 or more is necessary for compressing air as an oxygen source. However, air zone 6
Nearly % is nitrogen that does not participate in oxidation, and a lot of power is consumed in compressing this wasteful nitrogen.

この発明は上記事情に鑑みてなされたもので、短時間で
酸化を行うことができ、設備を小型化でき、運転動力を
低減できる湿式酸化装置を提供することを目的とするも
のである。
This invention was made in view of the above circumstances, and aims to provide a wet oxidation apparatus that can perform oxidation in a short time, downsize the equipment, and reduce operating power.

以下、図面を参照してこの発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第4図はこの発明の湿式酸化装置の第1の例を示すもの
で、酸素ガス製造装置に、ブレラシャ・スイング・アト
ソープション法による酸素ガス製造装置を適用したもの
である。第4図中1点鎖線で囲まれた部分は第1図に示
した従来の湿式酸化’iURと同一であるので、各構成
部分には同一符号を付して説明を省略するとともにこの
部分に符号7を付し、湿式酸化装置本体とする。また、
図中符号8はプレシャ・スイング・アトソープション法
を用いfQ濃縮酸素ガスを製造する酸素ガス製造装置で
あり、9はこの装置に原料空気を送り込む空気圧縮機で
ある。
FIG. 4 shows a first example of the wet oxidation apparatus of the present invention, in which an oxygen gas production apparatus based on the Brerascha swing atsorption method is applied to the oxygen gas production apparatus. The part surrounded by the dashed-dotted line in Fig. 4 is the same as the conventional wet oxidation 'iUR shown in Fig. 1, so each component is given the same reference numeral and the explanation will be omitted. It is denoted by numeral 7 and is the main body of the wet oxidizer. Also,
In the figure, reference numeral 8 is an oxygen gas production device that produces fQ concentrated oxygen gas using the pressure swing atsorption method, and 9 is an air compressor that feeds raw material air into this device.

上記7−レシヤ・スイング・アトソープション法を用い
た酸素ガス製造装置8は、モレキュラーシープスなどの
窒素吸着剤を充填し/こ吸着筒に原料空気を空気圧縮5
機9で3〜!; KW / cdl G程度に加圧して
送シ込み、2素吸着剤に空気中の窒素を吸着させて除去
し、酸素濃度の高い酸素ガスを製造するものである。そ
して、窒素を吸着して飽和した窒素吸着剤を常圧に減圧
すること°にょシ再生し、再び使用する。この装置8か
らは原料空気圧力3Kf / cyl Gの時、背圧約
/j’:f/cJGtl−$す7) 酸g ljスが得
られる。この実施例では、この背圧をそのまま利用して
この酸素ガスを酸素源として湿式酸化装置本体7に送り
込むことを特徴とするものである。
The oxygen gas production device 8 using the 7-reshear swing atsorption method is constructed by filling an adsorption cylinder with a nitrogen adsorbent such as molecular sheep, and compressing the raw air into the adsorption cylinder.
3 on machine 9! ; KW/cdl G is pressurized and pumped in, and nitrogen in the air is adsorbed and removed by a diatomic adsorbent to produce oxygen gas with a high oxygen concentration. The nitrogen adsorbent, which has become saturated by adsorbing nitrogen, is then reduced to normal pressure to be regenerated and used again. From this device 8, when the raw air pressure is 3 Kf/cyl G, a back pressure of about /j':f/cJGtl-$7) Acid g lj is obtained. This embodiment is characterized in that this back pressure is directly utilized to send this oxygen gas to the wet oxidizer main body 7 as an oxygen source.

い才、供給液のCot)cr:’1.2t/l、C0D
or除去率ニアθ夕(、反応条件:、2乙θC,7θK
y/crl G 、供給酸素過剰率:79%、供給液量
、23にn? / H1供給液温度=7℃とし、空気圧
縮短9の出口圧を3 kt / c4 G 、酸素ガス
製造装置8で製造サレる酸素ガスの酸素濃度を2θ夕σ
、装置8の酸素利用率を5θ%とすると、次表に示すよ
うに、空気圧縮機7および湿式酸化装置本体9の圧縮器
4の必要動力はそれぞれJ 33 KWおよび/り6K
Wとなり、合計37りKWとなる。
Cot)cr of feed liquid: '1.2t/l, C0D
or removal rate near θ(, reaction conditions: , 2θC, 7θK
y/crl G, supply oxygen excess rate: 79%, supply liquid amount, n? at 23? / H1 supply liquid temperature = 7°C, the outlet pressure of the air compressor 9 is 3 kt / c4 G, and the oxygen concentration of the oxygen gas produced by the oxygen gas production device 8 is 2θ σ
, assuming that the oxygen utilization rate of the device 8 is 5θ%, the required power of the air compressor 7 and the compressor 4 of the wet oxidizer main body 9 is J33 KW and /6K, respectively, as shown in the following table.
W, resulting in a total of 37 KW.

表 これに対して、従来の酸素源に空気を用いた場合には、
圧縮機4の動力は63θKW必要となり、結局この実施
例においては所要動力を約qθ%低減できることになる
。捷た、反応器3内での蒸発水分量が少なく、交換熱量
も少さくなるので、酸素源に空気を用いfc場合に比べ
て熱交換器2を小型化することができる。さらに、湿式
酸化における酸素a度は、酸化反応に対して一次反応的
に働き、反応速度は酸素濃度に比例する。したがってこ
の実施例と空気を使用する場合とを比較すると第2図に
示すように、酸素濃度は、同温同圧で反応開始時りθ%
二27%で約’A3倍、反応終了時と一%:/7%で約
久3倍であり、全反応時間を通して約久3倍の濃度を示
している。このことは逆に反応時間が//久3となるこ
とを示している。
In contrast, when air is used as the conventional oxygen source,
The compressor 4 requires a power of 63 θ KW, which means that in this embodiment, the required power can be reduced by approximately qθ%. Since the amount of evaporated water in the reactor 3 is small and the amount of heat exchanged is also small, the heat exchanger 2 can be made smaller compared to the case where air is used as the oxygen source. Furthermore, the degree of oxygen in wet oxidation acts as a primary reaction for the oxidation reaction, and the reaction rate is proportional to the oxygen concentration. Therefore, when comparing this example with the case where air is used, as shown in Figure 2, the oxygen concentration is θ% at the start of the reaction at the same temperature and pressure.
The concentration was about 3 times as high at 227%, and about 3 times as high at 1%:/7% at the end of the reaction, indicating a concentration about 3 times as high throughout the entire reaction time. This shows that, on the contrary, the reaction time is //K3.

よって、従来の反応液の滞留時間を3θ〜乙θ分から7
〜l1分に格段に短縮することが可能となる。(第3図
参照)さらにまた、第2図に示すように、反応終点にお
いての酸素濃度が高いため、同じ反応時間に対しては反
応終点における酸化度を高めることになり、よって酸素
濃度を同じくなるように反応を行わせれば、同じ反応時
間で同じ酸化度を得るための全圧は、その酸素含有率に
応じて低くすることが可能となる。すなわち、圧縮機4
、空気圧縮機7をあわせて、圧縮動力を単に節減できる
にとどまらず、高圧反応系全体にわたって装置、機器類
の耐圧を低くすることができ、運転上の安全性が高くな
り、設備費も低減することができる。また、この実施例
のように酸素濃度り0%の酸素ガスを使用する場合は、
空気を用いる場合と比較して、反応に関与しない嗜素分
が少なくな9、この分だけ気液分離器6で分離される排
出ガス駄が少なくなり、排出ガス脱臭処理設備をも小型
化できる。なお、酸素縫度の高い酸素ガスを用いるほど
上記例示した作用効果が向上するが、酸素ガス製造装置
と湿式酸化装置本体とを合せたトータルコストを考えれ
ば、酸素濃度はダθvo1%以上あることが好ましく、
これにより上記効果が顕著に現われる。
Therefore, the residence time of the conventional reaction solution was changed from 3θ to Otsuθ minutes to 7
It becomes possible to significantly shorten the time to ~11 minutes. (See Figure 3) Furthermore, as shown in Figure 2, since the oxygen concentration at the end point of the reaction is high, the degree of oxidation at the end point of the reaction increases for the same reaction time. If the reaction is carried out so that the same degree of oxidation is obtained in the same reaction time, the total pressure can be lowered in accordance with the oxygen content. That is, compressor 4
, together with the air compressor 7, it is possible to not only simply save compression power, but also to lower the pressure resistance of equipment and equipment throughout the high-pressure reaction system, increasing operational safety and reducing equipment costs. can do. In addition, when using oxygen gas with an oxygen concentration of 0% as in this example,
Compared to the case where air is used, there are fewer diluted elements that do not participate in the reaction 9, and the waste gas separated by the gas-liquid separator 6 is reduced by this amount, and the exhaust gas deodorization treatment equipment can also be downsized. . Note that the above-mentioned effects are improved as oxygen gas with a higher oxygen concentration is used, but when considering the total cost of the oxygen gas production equipment and the wet oxidation equipment, the oxygen concentration must be 1% or more. is preferable,
This brings out the above-mentioned effects significantly.

第5図は、第4図に示した第1の実施例の変形例を示す
もので、第4図に示したものと同一構成部分には同一符
号を付してその説明を省略する。
FIG. 5 shows a modification of the first embodiment shown in FIG. 4, and the same components as those shown in FIG. 4 are denoted by the same reference numerals and their explanations will be omitted.

この例では気液分離器6で分離された排出ガス中の酸素
濃度を酸素濃度センサ10で検出し、この酸素濃度に基
づいて調節計11によって圧縮機4または1および空気
圧縮機9の供給空気量あるいは供給酸素ガス量を直接又
は間接に制御するように構成したものでおる。この場合
、圧縮Ja4を調節計11により回転数制御し、空気圧
縮機9は圧縮機や酸素ガス製造装置8からの圧力信号等
により制御するのが好ましい。
In this example, the oxygen concentration in the exhaust gas separated by the gas-liquid separator 6 is detected by the oxygen concentration sensor 10, and based on this oxygen concentration, the controller 11 controls the supply of air to the compressor 4 or 1 and the air compressor 9. It is configured to directly or indirectly control the amount of oxygen gas or the amount of oxygen gas supplied. In this case, it is preferable that the rotation speed of the compression Ja4 is controlled by the controller 11, and the air compressor 9 is controlled by a pressure signal from the compressor or the oxygen gas production device 8, etc.

一般に、供給液のC0Dorは、一定でなく、常時おる
程度の変動を伴っている。このC0Dcrの変動に追随
して安定な運転を行うためには、供給液のC0Dcrを
測定して、これによって酸素供給量を調節することが望
ましい。しかし、供給液のC0Dcrの連続測定は困難
であるので、実用的には、この変形例のように排出ガス
の酸素濃度を測定し、これによって供給酸素量を調節す
ることになる。この例によれば、りθ%濃度酸素ガスを
用いた場合は、第2図に示すように排出ガス中の酸素濃
度が例えばg、、2%となるよりに酸素供給量を調節す
れば、常に酸素を過不足なく反応器3に送り込むことが
でき、安定な運転を行うことができるとともに余分の動
力を消費することがない。
In general, the C0Dor of the feed liquid is not constant and always fluctuates to some extent. In order to perform stable operation following the fluctuations in C0Dcr, it is desirable to measure the C0Dcr of the feed liquid and adjust the oxygen supply amount accordingly. However, since it is difficult to continuously measure the C0Dcr of the supplied liquid, in practice, the oxygen concentration of the exhaust gas is measured as in this modification, and the amount of supplied oxygen is adjusted accordingly. According to this example, when oxygen gas with a concentration of θ% is used, if the oxygen supply amount is adjusted so that the oxygen concentration in the exhaust gas becomes, for example, g, 2% as shown in FIG. Just the right amount of oxygen can be sent to the reactor 3 at all times, and stable operation can be performed without consuming excess power.

第6図はこの発明の第2の実施例を示すもので酸素ガス
製造装置に液化酸素または液化濃厚酸素を気化させて酸
素ガスを製造する装置を適用したものである。第6図中
1点鎖線で囲まれた部分は第1図に示した従来の湿式酸
化装置と同一であるので各構成部分には同一符号を付し
て説明を省略するとともにこの部分に符号7を付し、湿
式酸化装置本体とする。図中符号12は液化酸素または
液化濃厚酸素を貯える貯槽である。この貯槽12から抜
き出された液化酸素または液化濃厚酸素は高圧ポンプ1
3によって湿式酸化に必要な圧力にまで昇圧され気化器
14に導かれる。気化器14では、液化酸素または液化
濃厚酸素は、その気化このような構成の湿式酸化装置に
よれば、液化酸素または液化濃厚酸素を高圧ポンプ13
で必要圧まで昇圧するため、気体を圧縮機で昇圧する場
合に比べて、その動力は比較に値しない程少なくなり、
動力費が大幅に少なくてすむ。また、気化に必要な熱媒
体の温度も常温または常温以下でよくエネルギー的にも
有利となる。さらに、気化した高圧の酸素ガスをそのま
ま湿式酸化装置本体7に送り込むことができるので本体
7には多くの動力を消費する圧縮機4か不要となり、全
体としての動力費が極めて小さくなる。さらに、反応時
間の短縮化、装置機器類の耐圧の低下、装置の小型化な
どの第1の実施例と同様の作用効果を得ることができる
FIG. 6 shows a second embodiment of the present invention, in which an apparatus for producing oxygen gas by vaporizing liquefied oxygen or liquefied concentrated oxygen is applied to the oxygen gas production apparatus. The portion surrounded by a dashed line in FIG. 6 is the same as the conventional wet oxidation apparatus shown in FIG. is attached to the main body of the wet oxidizer. Reference numeral 12 in the figure is a storage tank for storing liquefied oxygen or liquefied concentrated oxygen. The liquefied oxygen or liquefied concentrated oxygen extracted from this storage tank 12 is pumped into the high-pressure pump 1
3 to the pressure required for wet oxidation and led to the vaporizer 14. In the vaporizer 14, the liquefied oxygen or liquefied concentrated oxygen is vaporized.According to a wet oxidation apparatus having such a configuration, the liquefied oxygen or liquefied concentrated oxygen is vaporized by the high-pressure pump 13.
Since the pressure is increased to the required pressure with
Power costs are significantly lower. Furthermore, the temperature of the heat medium required for vaporization may be at or below room temperature, which is advantageous in terms of energy. Furthermore, since the vaporized high-pressure oxygen gas can be directly fed into the wet oxidizer main body 7, the main body 7 does not require the compressor 4, which consumes a lot of power, and the overall power cost is extremely reduced. Furthermore, it is possible to obtain the same effects as in the first embodiment, such as shortening the reaction time, reducing the withstand pressure of equipment, and downsizing the device.

第7図は、第6図に示した第2の実施例の変形例を示す
もので、第6図に示したものと同一構成部分には同一符
号を付してその説明を省略する。
FIG. 7 shows a modification of the second embodiment shown in FIG. 6, and the same components as those shown in FIG. 6 are given the same reference numerals and their explanations will be omitted.

この変形例は第5図に示した変形例と同様に排出ガス中
の酸素濃度を測定し、この酸累vA度によって反応器3
に送り込む酸素量を調節するようにしたものである。酸
素濃度センサ10で測定した排出ガス中の酸素濃度に基
づいて調節計11は、高圧ポンプ13の吐出量、気化器
14の気化器および気化酸素ガスの調整弁15の開度を
直接又は間接に制御し、湿式酸化装置本体7に送り込む
酸素ガス量を調節する。この例においても第5図に示し
た例と同様の作用効果が得られる。
In this modification, the oxygen concentration in the exhaust gas is measured in the same way as the modification shown in FIG.
The system is designed to adjust the amount of oxygen sent to the Based on the oxygen concentration in the exhaust gas measured by the oxygen concentration sensor 10, the controller 11 directly or indirectly controls the discharge amount of the high-pressure pump 13, the opening of the vaporizer 14 and the vaporized oxygen gas regulating valve 15. The amount of oxygen gas sent to the wet oxidizer main body 7 is adjusted. In this example as well, the same effects as in the example shown in FIG. 5 can be obtained.

′なお、近時湿式酸化に触媒を用いて酸化反応を促進す
る方法が提案されているが、本発明の装置においては触
媒の添加の有無にかかわらず前述の作用効果を得ること
ができる。
'In addition, although a method of promoting the oxidation reaction using a catalyst in wet oxidation has recently been proposed, in the apparatus of the present invention, the above-mentioned effects can be obtained regardless of whether or not a catalyst is added.

以上説明したように、この発明の湿式酸化装置は、酸素
濃度、2/vo1%以上の酸素ガスを製造する酸素ガス
製造装置と、この酸素ガス製造装置から得られる酸素ガ
スをその背圧を保持したまま酸素源として使用する湿式
酸化装置本体とからなるものであるので、装置全体の所
要動力が大きく低減すれ、ランニングコストの大幅な低
減が計れる。
As explained above, the wet oxidation device of the present invention includes an oxygen gas production device that produces oxygen gas with an oxygen concentration of 2/vo1% or more, and a back pressure for the oxygen gas obtained from this oxygen gas production device. Since it consists of a wet oxidizer main body which is used as an oxygen source as it is, the power required for the entire device is greatly reduced, and running costs can be significantly reduced.

また、従来の酸素源に空気を使用するものに比べて、酸
素濃度が高いため、酸化反応時間が短縮されるとともに
運転圧力を低下でき、装置、機器類の耐圧を下げること
ができ設備費用を低減できる。
In addition, compared to conventional oxygen sources that use air, the oxygen concentration is higher, so the oxidation reaction time is shortened and the operating pressure can be lowered, reducing the pressure resistance of equipment and equipment and reducing equipment costs. Can be reduced.

さらに、反応系内に持ち込まれるガス量が少なくなるの
で熱交換器の容量を小型とすることができ排出ガス量も
少なくなり、脱臭設備をも小型化できるなどの利点を有
する。
Furthermore, since the amount of gas brought into the reaction system is reduced, the capacity of the heat exchanger can be made smaller, the amount of exhaust gas is also reduced, and the deodorizing equipment can also be made smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の湿式酸化装f4を示す概略構成図第2図
は反応系内における酸素分率と酸素消費率との関係を示
すグラフ、第3図は反応時間と酸化度との関係を示すグ
ラフ、第4図ないし第7図はいずれもこの発明の湿式酸
化装置の例を示す概略構成図である。 l・・・・高圧ポンプ、2・・・・熱交換器、3・・・
・反応器、4・・・・圧縮機、5・・・・蒸気加熱器、
6・・・・気液分離器、7・・・・湿式酸化装置本体、
8・・・・酸素ガス製造装置、9・・・・空気圧縮機ニ
ス 1 図 級東須ト1%) (J 3  H“I Lk Qh”+ (min ) 第4図 15 図 慎6「り 坏7 pl
Figure 1 is a schematic diagram showing the conventional wet oxidizer f4. Figure 2 is a graph showing the relationship between the oxygen fraction in the reaction system and the oxygen consumption rate. Figure 3 is the graph showing the relationship between reaction time and degree of oxidation. The graphs shown in FIGS. 4 to 7 are all schematic configuration diagrams showing examples of the wet oxidation apparatus of the present invention. l... High pressure pump, 2... Heat exchanger, 3...
・Reactor, 4... Compressor, 5... Steam heater,
6... Gas-liquid separator, 7... Wet oxidizer main body,
8... Oxygen gas production equipment, 9... Air compressor varnish 1 Diagram grade 1%) (J 3 H"I Lk Qh" + (min) Figure 4 15 Figure 6 "Ri" 7 pl

Claims (4)

【特許請求の範囲】[Claims] (1)酸素濃度、2/vo1%を超える酸素ガスを製造
する酸素ガス製造量f4と、この酸素ガス製造装置から
得られる酸素ガスをその背圧を利用して酸素源として使
用する湿式酸化装置本体とからなることを特徴とする湿
式酸化装置。
(1) Oxygen gas production amount f4 that produces oxygen gas with an oxygen concentration exceeding 2/vo1%, and a wet oxidation device that uses the oxygen gas obtained from this oxygen gas production device as an oxygen source by using its back pressure A wet oxidation device characterized by comprising a main body.
(2)上記酸素ガス製造装置が、プレシャ・スイング・
アドンープション法による酸素ガス製造装置であること
を特徴とする特許請求の範囲第1項記載の湿式酸化装置
(2) The above oxygen gas production equipment
The wet oxidation apparatus according to claim 1, which is an oxygen gas production apparatus using an adoption method.
(3)上記酸素ガス製造装置が、液化酸素または液化濃
厚酸素を気化させて上記酸素ガスを製造する装置である
ことを特徴とする特許請求の範囲第1項記載の湿式酸化
装置。
(3) The wet oxidation apparatus according to claim 1, wherein the oxygen gas production apparatus is an apparatus for producing the oxygen gas by vaporizing liquefied oxygen or liquefied concentrated oxygen.
(4)上記湿式酸化装置本体からの排出ガス中の酸素濃
度を測定する装置と、この装置疲によって得られた排出
ガス中の酸素濃度によって上記酸素ガス製造装置の酸素
ガス製造量を制御する装置とを設けたことを特徴とする
特許請求の範囲第1項ないし第3項のいずれかに記載の
湿式酸化装置。
(4) A device for measuring the oxygen concentration in the exhaust gas from the wet oxidation device body, and a device for controlling the amount of oxygen gas produced by the oxygen gas production device based on the oxygen concentration in the exhaust gas obtained by fatigue of the device. A wet oxidation apparatus according to any one of claims 1 to 3, characterized in that the wet oxidation apparatus is provided with:
JP16539182A 1982-09-22 1982-09-22 Wet type oxidation device Pending JPS5955390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16539182A JPS5955390A (en) 1982-09-22 1982-09-22 Wet type oxidation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16539182A JPS5955390A (en) 1982-09-22 1982-09-22 Wet type oxidation device

Publications (1)

Publication Number Publication Date
JPS5955390A true JPS5955390A (en) 1984-03-30

Family

ID=15811503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16539182A Pending JPS5955390A (en) 1982-09-22 1982-09-22 Wet type oxidation device

Country Status (1)

Country Link
JP (1) JPS5955390A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5063742A (en) * 1989-07-26 1991-11-12 Kabushiki Kaisha Kobe Seiko Sho Method of controlling swing motion of a revolving superstructure and hydraulic control system for carrying out same
US5746806A (en) * 1996-08-15 1998-05-05 Nellcor Puritan Bennett Incorporated Apparatus and method for controlling output of an oxygen concentrator
US5911219A (en) * 1997-04-18 1999-06-15 Aylsworth; Alonzo C. Therapeutic gas flow meter and monitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5063742A (en) * 1989-07-26 1991-11-12 Kabushiki Kaisha Kobe Seiko Sho Method of controlling swing motion of a revolving superstructure and hydraulic control system for carrying out same
US5746806A (en) * 1996-08-15 1998-05-05 Nellcor Puritan Bennett Incorporated Apparatus and method for controlling output of an oxygen concentrator
US5911219A (en) * 1997-04-18 1999-06-15 Aylsworth; Alonzo C. Therapeutic gas flow meter and monitor

Similar Documents

Publication Publication Date Title
NL9120025A (en) APPLICATION OF FUEL CELLS IN ENERGY SUPPLY SYSTEMS.
JP5134532B2 (en) Hydrogen production system and off-gas flow rate control method in the system
JPH11335102A (en) Method and apparatus for continuously generating highly concentrated ozone
US5674382A (en) Wet oxidation apparatus with compressor
KR101310174B1 (en) Method for treatment of drain in hydrogen production and hydrogen production system
JPS5955390A (en) Wet type oxidation device
JPH02160601A (en) Production of hydrogen by methanol reforming and apparatus therefor
CN215102208U (en) Catalytic wet oxidation system for treating high-concentration wastewater
JP4228144B2 (en) Solid polymer water electrolysis hydrogen production system
JPH01275402A (en) Oxygen recycling ozonizer system
JP2005071970A (en) Fuel cell that utilizes methanol
JP2004181427A (en) Hydrothermal reaction method and apparatus therefor
JP3792856B2 (en) Supercritical water oxidation method for organic sludge
JPH08229582A (en) Ozonized water producing device
JPH10118403A (en) Method for concentrating liquid
JP2010076971A (en) Circulation type ozone generating method and apparatus
CN206654801U (en) One kind is used for maleic anhydride wastewater treatment equipment
CA1074028A (en) Method and apparatus for treating aqueous liquids with ozone
JP2004238267A (en) Hydrogen producing apparatus, fuel cell power generation system, and operation method of hydrogen producing apparatus
JPH03236166A (en) Power generating method for molten carbonate fuel cell
JPH10314764A (en) Method for control of catalyst wet type oxidation treating device
JPS591115B2 (en) Ozone water treatment equipment
JP2001137869A (en) Wet process oxidation treating method and wet process oxidation treating device as well as refuse treating method
JP2000106207A (en) Fuel cell generating system
JP2003164828A (en) Method and apparatus for treating animal and plant residue using hydrothermal reaction