JPS59501068A - Method for thermal decomposition of hydrocarbon oil - Google Patents

Method for thermal decomposition of hydrocarbon oil

Info

Publication number
JPS59501068A
JPS59501068A JP58501848A JP50184883A JPS59501068A JP S59501068 A JPS59501068 A JP S59501068A JP 58501848 A JP58501848 A JP 58501848A JP 50184883 A JP50184883 A JP 50184883A JP S59501068 A JPS59501068 A JP S59501068A
Authority
JP
Japan
Prior art keywords
reaction zone
nozzle
pressure vessel
gas
liquid mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58501848A
Other languages
Japanese (ja)
Other versions
JPS6362557B2 (en
Inventor
エルンヒエルム・カユ−エリツク
ヤク−ラ・ユ−ハ
ゲ−ダ・ラルス
キテ−ネン・ペルチ
グロス・ステフアン
Original Assignee
ネステ・オ−・ワイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ネステ・オ−・ワイ filed Critical ネステ・オ−・ワイ
Publication of JPS59501068A publication Critical patent/JPS59501068A/en
Publication of JPS6362557B2 publication Critical patent/JPS6362557B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00823Mixing elements
    • B01J2208/00831Stationary elements
    • B01J2208/0084Stationary elements inside the bed, e.g. baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • B01J2219/0077Baffles attached to the reactor wall inclined
    • B01J2219/00772Baffles attached to the reactor wall inclined in a helix

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 炭化水素油の熱分解方法 この発明は炭化水素油の熱分解方法であって、炭化水素類を反応温度1で加熱し 、次いで反応帯域に導入して、ここでの流れが下から上へ向かうように流すこと から成る分解方法に関する。[Detailed description of the invention] Method for thermal decomposition of hydrocarbon oil This invention is a method for thermally decomposing hydrocarbon oil, in which hydrocarbons are heated at a reaction temperature of 1. , then introduced into the reaction zone, where the flow is from bottom to top. Concerning a decomposition method consisting of:

炭化水素油の熱分解では、重質油留分が軽質油留分へと分解されて軽質油留分の 得率が増加する。分解に際しては原料は分解炉中の加熱管内で分解温度捷で加熱 される。一般には二つの様式の方法がある。その一つは、分解が分解炉内の加熱 管中で起こる場合であって、この際一部の分解反応は分解工程に引き続く次の工 程への接続導管内でも起こる。この形式の分解方法ではジレード時間(dela y time)については正確には解明されていないが、比較的に短く1公租度 である。In pyrolysis of hydrocarbon oil, heavy oil fraction is cracked into light oil fraction. Gain rate increases. During decomposition, the raw material is heated in a heating tube in the decomposition furnace using a decomposition temperature switch. be done. Generally, there are two styles of methods. One of them is that decomposition is caused by heating inside the decomposition furnace. In this case, some decomposition reactions occur in the next process following the decomposition process. It also occurs in the conduits connecting to the pipe. This type of decomposition method uses the girade time (dela y time) is not precisely elucidated, but it is relatively short and one common tax It is.

圧力は著しく変動し、炉入口から出口へと低下する。The pressure fluctuates significantly and drops from the furnace inlet to the outlet.

他のタイプの分解方式は、捷ず原料炭化水素を分解炉中で好適な反応温度才で加 熱し、別途の反応帯域を設けてここで実際の分解反応を起こさせるもので、この 際のジレード時間は前記の方式に比べて極めて長く、10〜30分の程度である 。反応帯域には熱の導入はしない。Other types of cracking processes involve processing raw hydrocarbon feedstocks in a cracking furnace at a suitable reaction temperature. The process is heated and a separate reaction zone is set up where the actual decomposition reaction occurs. The actual girade time is extremely long compared to the above method, about 10 to 30 minutes. . No heat is introduced into the reaction zone.

後者の方法ては反応帯域は通常は直立円筒形の圧力槽から成っていて一端から分 解炉で加熱された原料がフィードされ、他端からは気液の混合物が抜き出されて 次の精製工程、例えば蒸留工程に送られる。反応帯域中での流れの方向は上方か ら下方か、下方から上方へのいずれかである。In the latter method, the reaction zone usually consists of an upright cylindrical pressure vessel separated from one end. Raw materials heated in the cracking furnace are fed into the furnace, and a gas-liquid mixture is extracted from the other end. It is sent to the next purification step, such as a distillation step. Is the direction of flow in the reaction zone upward? Either from the top down or from the bottom up.

炭化水素油の熱分解では、実質的に2種類の反応が生起する。その一つは、分解 反応そのものであって、長鎖分子がより短鎖の分子に分断されて粘度の減少を伴 う。他の反応は重縮合反応と呼称されるものであって、ここでは各分子が結合し て水素を放ちながらピッチやコークスが生成していく。後者の反応はアスファル テン分を増加せしめるので好ましくない。高温になる程、この重縮合が優勢にな るので、できるだけ温度を下け、それに応じてジレード時間が長くなるような操 作がとられている。In the thermal decomposition of hydrocarbon oils, essentially two types of reactions occur. One of them is decomposition It is a reaction itself, in which long-chain molecules are split into shorter-chain molecules, accompanied by a decrease in viscosity. cormorant. The other reaction is called a polycondensation reaction, in which each molecule joins together. Pitch and coke are generated while releasing hydrogen. The latter reaction is asphalt This is not preferable because it increases the tensile content. The higher the temperature, the more this polycondensation becomes dominant. Therefore, the temperature should be lowered as much as possible and the girade time should be increased accordingly. The work is being done.

熱分解ではジレード時間は極めて重要である。このジレート時間がち捷りにも短 いと分解する時間がなく、又ジレート時間が長ずきると分解生成物が相互に反応 を始めて好ましからぬ生成物を生ずる。この結果生成する成分は不安定なのでこ れを含む油は燃料用に使用する際に困難を伴う。そこで可能な限り均一な分解が 生起することが至上命令になる。反応帯域としての圧力槽中での流れが不均一で あると、そのためにジレード時間が変動する。Girade time is extremely important in pyrolysis. This dilation time is also short. If the dilation time is too long, the decomposition products will react with each other. , resulting in undesirable products. This is because the resulting component is unstable. Oil containing this is difficult to use as a fuel. Therefore, the decomposition is as uniform as possible. It becomes the supreme command to arise. The flow in the pressure tank as a reaction zone is non-uniform. If so, the girade time will fluctuate.

分解反応においては、生成した軽質成分は反応帯域における温度、圧力条件下で 蒸発する。そこで混合物が圧力槽中を上方へ流れるにつれて気液混合物の密度は 減少する。圧力槽内部での静力学的圧力差によって、ガス相の密度も寸だ混合物 が上方へ流れるにつれて減少する。分解反応によって生成しだ液状留分は原料よ りも密度が小さいので、これも又気液混合物の密度を低下させる要因である。そ のために、通常用いられる円筒形反応器は均一な径を有していても流速は一定で はなくて、むしろ混合物が上方へ向かうにつれて加速される。In the decomposition reaction, the light components produced are decomposed under the temperature and pressure conditions in the reaction zone. Evaporate. So as the mixture flows upwards in the pressure tank, the density of the gas-liquid mixture decreases. Decrease. Due to the static pressure difference inside the pressure vessel, the density of the gas phase also increases. decreases as it flows upward. The liquid fraction produced by the decomposition reaction is used as a raw material. This is also a factor in reducing the density of the gas-liquid mixture, since it has a low density. So Therefore, the flow rate is constant even though the diameter of the commonly used cylindrical reactor is uniform. Rather, the mixture is accelerated as it moves upwards.

米国特許第4,247,387号公報に開示される熱分解方法では反応帯域とし て円筒形直立圧力槽が用いられていて、反応器内での還流を防ぐために、多孔性 の中間底を配設して一連の混合部位を器中に構成させている。In the pyrolysis method disclosed in U.S. Pat. No. 4,247,387, the reaction zone is A cylindrical upright pressure vessel is used, and a porous pressure vessel is used to prevent reflux within the reactor. An intermediate bottom is provided to form a series of mixing sites in the vessel.

この目的は該帯域中にフィードされる留分に対しててきるだけ均一なジレード時 間を与えろことにある。かかる中間板を配設すると欠点も生ずる。ミス操作をす ると全反応器中にコークスが充満することがあるが、このような中間底が設けら れているとコークスの除去及び反応器の清浄化が不便になりコスト高になる。The objective is to achieve as uniform a girade time as possible for the fraction fed into the zone. It's about giving yourself some time. Disadvantages also arise from the provision of such an intermediate plate. Make a mistake If this happens, the entire reactor may be filled with coke, but if such an intermediate bottom is not provided, If this happens, removing coke and cleaning the reactor becomes inconvenient and increases costs.

この発明の目的は従来公知の方法を改良することにあり、詳しくは清浄化を阻害 するような中間底を設けずに均一なジレード時間を達成しうるような方法の提供 にある。The purpose of this invention is to improve the conventionally known method, in particular to prevent cleaning To provide a method by which a uniform girade time can be achieved without providing an intermediate bottom such as It is in.

この発明の目的は、気液混合物が反応帯域を構成する圧力槽中で切線回転運動を なすようにすることを主な特徴とする方法によって達成される。The purpose of this invention is to cause a gas-liquid mixture to undergo tangential rotational motion in a pressure vessel constituting a reaction zone. This is achieved by a method whose main feature is to do as follows.

その他の特許請求の範囲第2項ないし第6項中に記載せられている。The invention is described in other claims 2 to 6.

この発明の方法では、反応帯域中、で切線方向に回転するが垂直に均一に上方へ 進行する気液の流れが生じ、この際に不均一なジレード時間を引き起こすような 還流が生じない。気液混合物が切線方向に回転するような流れは種々の方法で得 ることができる。有利な一実施態様によれば、反応器を構成する圧力槽中にらせ ん形の上昇回廊を形成するらせん部材を配設することによって回転運動を生せし めることができる。この形の通路ては、流れは常に上向きであって下方への流れ は起こらない。このらせん系統は反応帯域の全長に亘って設けてもよく、部分的 に配設してもよい。ある場合には、このらせん部材を反応帯域の人口部分だけに 配設しても十分満足できる結果が得られる。In the method of this invention, the reaction zone rotates tangentially but vertically uniformly upward. A progressive gas-liquid flow occurs, which causes non-uniform girade times. No reflux occurs. A flow in which a gas-liquid mixture rotates in the tangential direction can be obtained by various methods. can be done. According to one advantageous embodiment, a pressure vessel constituting the reactor is provided with a Rotational motion is created by arranging a spiral member that forms a spiral-shaped ascending corridor. You can In this type of passage, the flow is always upward and downward. doesn't happen. This helical system may be provided over the entire length of the reaction zone, or may be partially It may be placed in In some cases, this helical member is placed only in the artificial part of the reaction zone. Satisfactory results can be obtained even with this arrangement.

また反応器中に二つ又はそれ以上のらせん部材を配設して、気液混合物の回転方 向が逆転するようにすることもできる。この際には反応帯域を流れる気液混合物 に対して1段又は数段の混合工程が生ずる。In addition, two or more spiral members are arranged in the reactor to control the rotation of the gas-liquid mixture. The direction can also be reversed. In this case, the gas-liquid mixture flowing through the reaction zone One or several mixing steps take place.

気液混合物を切線方向に回転させるだめの他の実施態様には、切線方向に配設し たノズルを用いる方法がある。原料又はスチームの如き他の液体がこのノズル部 分を通過するととによって原料に好ましい回転運動を与えることができる。ノズ ル数は必要に応じて選択するが、例えば2〜20ノズルである。寸だ該帯域の人 口部分において、分解される炭化水素原料が反応帯域に切線方向に送入される如 く原料供給管を配管してもよい。Other embodiments of the reservoir for rotating the gas-liquid mixture in the tangential direction include There is a method using a nozzle. Raw materials or other liquids such as steam may pass through this nozzle. A favorable rotational motion can be imparted to the raw material by passing through the material. Noz The number of nozzles is selected as required, and is, for example, 2 to 20 nozzles. People in that range At the mouth, the hydrocarbon feedstock to be cracked is fed tangentially into the reaction zone. Alternatively, a raw material supply pipe may be installed.

さらに有利な他の実施態様によれば、反応帯域がその全長に亘って上方に拡大し ているか又は例えば供給部のみ部分的に上方へ向かって拡大された形をなしてい ることもてきる。かかる円錐形はそれ自体でもシレー 1一時間の分布を均一化 する効果を有しでいる。According to a further advantageous embodiment, the reaction zone extends upwardly over its entire length. or, for example, only the supply section is partially enlarged upwards. You can also do that. Such a conical shape evens out the distribution of sillage by itself. It has the effect of

分解反応の見地からして、好適な温度は410〜470°Cであり、圧力は2バ ールと20バ一ル間であることが判っている。反応帯域の平均直径と長さの比率 は好捷しくけ】:1〜1:20の範囲である。From the decomposition reaction point of view, the preferred temperature is 410-470°C and the pressure is 2 bar. It is known that the range is between 1 and 20 bars. Ratio of average diameter and length of reaction zone is in the range of 1 to 1:20.

次に添付の図面にしたがってこの発明の有利な実施態様の若干を詳しく述べるが 、この発明は専らこれに限定せられるものではない。Some advantageous embodiments of the invention will now be described in detail with reference to the accompanying drawings. However, the present invention is not limited to this.

第1図はこの発明の方法の有利な実施態様の一つを示す略図である。FIG. 1 is a schematic representation of one advantageous embodiment of the method of the invention.

第2図はこの発明に用いる反応器の有利な実施態様を示す立面略図である。FIG. 2 is a schematic elevational view of an advantageous embodiment of the reactor used in the invention.

第3A図はこの発明の方法に用いる反応器の他の有利な実施態様を示す上方から の図である。FIG. 3A shows, from above, another advantageous embodiment of the reactor for use in the process of the invention. This is a diagram.

第3B図は第3A図の反応器の立面図である。FIG. 3B is an elevational view of the reactor of FIG. 3A.

第4A図は反応器の上方からみたこの発明で用いる反応器の他の有利な態様を示 す。Figure 4A shows another advantageous embodiment of the reactor for use in the invention, seen from above the reactor. vinegar.

第4B図は第4A図の反応器の立面図である。FIG. 4B is an elevational view of the reactor of FIG. 4A.

実施例 I 第1図において、原料油は管】1を通って炉12中へ導入され、ここで温度41 0及び470℃間に加熱される。Example I In FIG. 1, the feedstock is introduced into a furnace 12 through a tube 1, where it is brought to a temperature of 41 Heated between 0 and 470°C.

炉12から、原料油は管13を径由して反応器14に導入され、ここで上方に流 れて反応器の頂部から抜き出されて管15を径で別途のユニット(図示せず)へ 送られる。このユニットではガス、ベトロール、軽質燃料油及び重質燃料油に相 互に分離される。反応帯域中の平均ジレード時間け5分及び100分の間である 。From the furnace 12, the feedstock oil is introduced into the reactor 14 via a pipe 13, where it flows upward. The tube 15 is then extracted from the top of the reactor and sent to a separate unit (not shown). Sent. This unit is compatible with gas, vetol, light fuel oil and heavy fuel oil. separated from each other. The average girade time in the reaction zone is between 5 and 100 minutes. .

第2図の実施態様では、円錐部材16が反応器14内部に形成されている。分解 されるべき炭化水素は反応器14中に下方から上方へ導入され、ここでらせん部 制御Gから構成されるらせん回廊に入ってここで実際の分解が生起する。In the embodiment of FIG. 2, a conical member 16 is formed within the reactor 14. In the embodiment of FIG. Disassembly The hydrocarbons to be treated are introduced into the reactor 14 from below upwards, where the helical section It enters the spiral corridor consisting of the control G, where the actual decomposition occurs.

第2図の実施態様では、反応帯域18には、らせん方向が逆転している2コのら せん部材16及び]7が等しく配設されている。これにより、反応帯域18中を 流れる気゛液混合物はその回転方向が逆転する。In the embodiment of FIG. 2, reaction zone 18 includes two spirals with opposite helical directions. The helical members 16 and ]7 are equally arranged. This allows the inside of the reaction zone 18 to The flowing gas-liquid mixture reverses its direction of rotation.

第3A図及び第3B図は反応帯域18を構成する圧力槽14の低部を示し、ここ では分解されるべき炭化水素の流れは下方から上方へと導ひかれる。圧力槽14 の底部ではノズルj9が切線方向に連結していて、原料又は水蒸気の如き他の液 体は該ノズルを通して導入されて分解されるべき炭化水素の流れに回転運動を与 える。3A and 3B show the lower part of the pressure vessel 14 constituting the reaction zone 18, where In this case, the flow of hydrocarbons to be cracked is directed from below to above. Pressure tank 14 A nozzle j9 is connected in the tangential direction at the bottom of the The body imparts a rotational motion to the stream of hydrocarbons introduced through the nozzle to be decomposed. I can do it.

第4A図及び4B図では、原料供給管20の端部にはノズル21が形成されてい て、このノズルが原料に回転運動を強制する。In FIGS. 4A and 4B, a nozzle 21 is formed at the end of the raw material supply pipe 20. This nozzle forces the material into a rotational motion.

第1図に示す装置を用いてパイロットプラント規模においで原油の熱分解を行な った。同様の装置であってらせん系統を有しない反応器のものを比較実験用とし た。その他の条件は同一であった。原料油はノ連産原油の減圧蒸留基油てあった 。比較結果を次表に示す。Thermal cracking of crude oil was carried out on a pilot plant scale using the equipment shown in Figure 1. It was. A similar device with a reactor without a spiral system was used for comparative experiments. Ta. Other conditions were the same. The raw material oil was vacuum distilled base oil of non-produced crude oil. . The comparison results are shown in the table below.

表 物性項 目 フィート 基油生成物の性状(留 分 180℃+) らせん系統なし らせん系統あり 密度(g/篩20°C) 1.0011 1.001 1.002アスフアルテ ン(重量係) 6.28 10.70 11.10硫黄(重量係) 3,65  3,38 3.54粘度”cSt(50℃) 43000 42000 330 0安定性(1) −2,02,1 □ (1+ 安定性に関しての詳細は次の文献に記載がある:Van Kerkvo ort、W、J、 、Nieuwstad、 A、J、J、IV : ECon gress Int−ern、du Chauffage Industrj、 el、paper number 220. Paris。table Physical property items Feet Properties of base oil product (distillate 180℃+) No spiral system, spiral system available Density (g/sieve 20°C) 1.0011 1.001 1.002 Asphalte (weight) 6.28 10.70 11.10 Sulfur (weight) 3,65 3,38 3.54 Viscosity "cSt (50℃) 43000 42000 330 0 stability (1) -2,02,1 □ (Details regarding 1+ stability are described in the following document: Van Kerkvo ort, W, J, , Nieuwstad, A, J, J, IV: ECon gress Int-ern, du Chauffage Industrj, el, paper number 220. Paris.

’ 1952 国際調査報告'1952 international search report

Claims (1)

【特許請求の範囲】[Claims] 1.炭化水素油を反応温度捷で加熱してから反応帯域に導入して、該帯域中での 流れが下方から上方へ向かっているような炭化水素の熱分解方法であって、気液 混合物が反応帯域(18)を構成する圧力槽(14)中において切線方向に回転 運動与えられることを特徴とする方法。 2 該気液混合物が少なくとも一つのらせん形部材(16,17)の手段によっ て回転運動を与えられることを特徴とする請求の範囲第1項に記載の方法。 3 反応帯域(18)のらせん系統(16,17)が圧力槽(14)の全長に亘 って配設せられていることを特徴とする請求の範囲第2項に記載の方法。 4 反応帯域(18)のらせん系統(16,17)が圧力槽(14)の長さの一 部に配設されるか、又は単に人口部分及び/又は出口部分に配設せられることを 特徴とする請求の範囲第2項に記載の方法。 5 該らせん系統(16,17)が、二つ又はそれ以上のらせん系統から構成さ れ、気液混合物の回転方向を逆転せしめうろことを特徴とする請求の範囲第1項 、第2項、第3項及び第4項のいずれか一つに記載の方法。 6 該気液混合物がノズル(19,21)の手段によって回転運動を与えられる ことを特徴とする請求の範囲第1項に記載の方法。 7 該ノズル(19)が反応帯域(18)の人口部分と切線方向に接続している ことを特徴とする請求の範囲第6項に記載の方法。 8 ノズル(21)が炭化水素の供給管(20)の伸長線上において反応帯域中 に配設せられることを特徴とする請求の範囲第6項又は第7項に記載の方法。 9 気液混合物がノズル系統(19)の手段によって回転運動を与えられ、該ノ ズルを径由して原料油、又は水蒸気もしくは他の液体が圧力槽(14)中に導入 せられることを特徴とする請求の範囲第6項、第7項及び第8項のいずれか一つ に記載の方法。 10 熱分解が温度410〜470℃、圧力2〜20バール、平均ジレード時間 が5及び100分間の条件下で反応帯域(18)中で行なわれることを特徴とす る請求の範囲第1項、第2項、第3項、第4項、第5項、第6項、第7項、第8 項及び第9項のいずれか一つに記載の方法。 11 反応帯域(18)として上方に拡大している円錐形圧力槽(14)を用い ることを特徴とする第1項、第2項、第3項、第4項、第5項、第6項、第7項 、第8項、第9項及び第10項のいずれか一つに記載の方法。1. The hydrocarbon oil is heated in a reaction temperature chamber and then introduced into the reaction zone. A method of thermal decomposition of hydrocarbons in which the flow is from the bottom to the top; The mixture rotates tangentially in the pressure vessel (14) constituting the reaction zone (18). A method characterized in that exercise is given. 2 the gas-liquid mixture is transported by means of at least one helical member (16, 17); 2. A method as claimed in claim 1, characterized in that the rotational movement is imparted by means of a rotational motion. 3 The helical system (16, 17) of the reaction zone (18) spans the entire length of the pressure vessel (14) 3. A method according to claim 2, characterized in that the method is arranged as follows. 4 The helical system (16, 17) of the reaction zone (18) is one of the length of the pressure vessel (14) or simply located in the population part and/or the exit part. A method according to claim 2, characterized in that: 5 The helical system (16, 17) is composed of two or more helical systems Claim 1, characterized in that the scale reverses the direction of rotation of the gas-liquid mixture. , the method according to any one of paragraphs 2, 3, and 4. 6. Said gas-liquid mixture is given a rotational movement by means of nozzles (19, 21) A method according to claim 1, characterized in that: 7 The nozzle (19) is connected to the artificial part of the reaction zone (18) in the tangential direction 7. A method according to claim 6, characterized in that: 8 The nozzle (21) is placed in the reaction zone on the extension line of the hydrocarbon supply pipe (20). 8. A method according to claim 6 or 7, characterized in that the method is arranged in a. 9. The gas-liquid mixture is given a rotational movement by means of the nozzle system (19), and the nozzle Feedstock oil or steam or other liquid is introduced into the pressure vessel (14) through the nozzle. Any one of claims 6, 7 and 8, characterized in that: The method described in. 10 Pyrolysis at temperature 410-470℃, pressure 2-20 bar, average girade time is carried out in the reaction zone (18) under conditions of 5 and 100 minutes. Claims 1, 2, 3, 4, 5, 6, 7, and 8 The method according to any one of paragraphs 1 and 9. 11 Using an upwardly expanding conical pressure vessel (14) as the reaction zone (18) Items 1, 2, 3, 4, 5, 6, and 7, characterized in that: , the method according to any one of paragraphs 8, 9 and 10.
JP58501848A 1982-06-14 1983-06-10 Method for thermal decomposition of hydrocarbon oil Granted JPS59501068A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI822119 1982-06-14
FI822119A FI65274C (en) 1982-06-14 1982-06-14 FOERFARANDE FOER TERMISK KRACKNING AV KOLVAETEOLJA

Publications (2)

Publication Number Publication Date
JPS59501068A true JPS59501068A (en) 1984-06-21
JPS6362557B2 JPS6362557B2 (en) 1988-12-02

Family

ID=8515691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58501848A Granted JPS59501068A (en) 1982-06-14 1983-06-10 Method for thermal decomposition of hydrocarbon oil

Country Status (13)

Country Link
JP (1) JPS59501068A (en)
BE (1) BE896901A (en)
CA (1) CA1209943A (en)
CS (1) CS241059B2 (en)
DE (1) DE3390051T1 (en)
FI (1) FI65274C (en)
FR (1) FR2528444B1 (en)
GB (1) GB2133034B (en)
HU (1) HU202573B (en)
IE (1) IE55266B1 (en)
IT (1) IT1163501B (en)
NL (1) NL8320167A (en)
WO (1) WO1984000035A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038731A1 (en) * 2006-09-28 2008-04-03 Chiyoda Corporation Method of thermal cracking processing, thermal cracking reaction vessel and thermal cracking processing apparatus for petroleum heavy oil
US9713491B2 (en) 2013-02-19 2017-07-25 Covidien Lp Method for manufacturing an electrode assembly configured for use with an electrosurigcal instrument
US9713493B2 (en) 2012-04-30 2017-07-25 Covidien Lp Method of switching energy modality on a cordless RF device
US9717550B2 (en) 2011-10-20 2017-08-01 Covidien Lp Multi-circuit seal plates
US9717548B2 (en) 2013-09-24 2017-08-01 Covidien Lp Electrode for use in a bipolar electrosurgical instrument
US9717549B2 (en) 2011-10-03 2017-08-01 Covidien Lp Surgical forceps
US9724157B2 (en) 2011-08-09 2017-08-08 Covidien Lp Microwave sensing for tissue sealing
US9724116B2 (en) 2009-10-06 2017-08-08 Covidien Lp Jaw, blade and gap manufacturing for surgical instruments with small jaws
USRE47375E1 (en) 2003-05-15 2019-05-07 Coviden Ag Tissue sealer with non-conductive variable stop members and method of sealing tissue

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0232772B1 (en) * 1986-02-05 1989-12-27 Siemens Aktiengesellschaft Process for preparing a pulverulent amorphous material by way of a milling process
FI85598C (en) * 1989-09-13 1992-05-11 Antero Ollila FOERFARANDE OCH ANORDNING FOER TERMISK KRACKNING AV KOLVAETEOLJOR OCH FOER ANDRA VAETSKE / -GASREAKTIONER.
LT3884B (en) 1994-06-22 1996-04-25 Akcine Bendrove Mazeikiu Nafta Reactor of thermal cracking
FR2741889B1 (en) 1995-12-04 1999-01-29 Total Raffinage Distribution IMPROVEMENTS IN PROCESSES AND DEVICES FOR VISCOREDUCING HEAVY HYDROCARBON LOADS
JP5038674B2 (en) 2006-09-28 2012-10-03 千代田化工建設株式会社 Pyrolysis treatment method and pyrolysis treatment equipment for heavy petroleum oil

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE27692C (en) * G. SCHRADßR in Ehrenfeld, Venloerstr. 168 Automatic protective device fMT joining and dressing machines
US2717865A (en) * 1951-05-17 1955-09-13 Exxon Research Engineering Co Coking of heavy hydrocarbonaceous residues
US2759880A (en) * 1951-10-31 1956-08-21 Exxon Research Engineering Co Short-time contacting of fluids with solids in hydrocarbon conversion
GB1174870A (en) * 1966-07-04 1969-12-17 Japanese Geon Co Ltd An apparatus for Thermal Cracking of Hydrocarbon
US3652451A (en) * 1968-12-20 1972-03-28 Universal Oil Prod Co Fluid distribution for fluid-solids contacting chambers
JPS5247006A (en) * 1975-10-14 1977-04-14 Kureha Chem Ind Co Ltd Method for preventing deposition of coke to vessels for thermal cracki ng of heavy hydrocarbons
JPS5247007A (en) * 1975-10-14 1977-04-14 Kureha Chem Ind Co Ltd Method and apparatus for preventing deposition of coke to vessels for thermal cracking of heavy hydrocarbons
US4085034A (en) * 1975-10-14 1978-04-18 Kureha Kagaku Kogyo Kabushiki Kaisha Method for the thermal cracking of heavy hydrocarbon
US4247387A (en) * 1978-07-11 1981-01-27 Shell Oil Company Process for the continuous thermal cracking of hydrocarbon oils

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB178734A (en) * 1921-05-09 1922-04-27 Frederick Southwell Cripps Improvements in apparatus for evaporating paraffin or other liquids, and mixing the vapours produced with coal gas
DE749498C (en) * 1942-05-29 1944-11-24 Standing cracking and distillation kettle with feed nozzles for hot flame gases and atomized oil
US2460463A (en) * 1946-11-07 1949-02-01 Phillips Petroleum Co Process for the noncatalytic cracking of a hydrocarbon oil
FR2229757A1 (en) * 1973-05-14 1974-12-13 Union Carbide Corp Hydrocarbon cracker using hot gases - for naphtha, gas oil or crude feedstock
EP0027692B1 (en) * 1979-10-18 1984-05-30 Imperial Chemical Industries Plc A process and reactor for the pyrolysis of a hydrocarbon feedstock

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE27692C (en) * G. SCHRADßR in Ehrenfeld, Venloerstr. 168 Automatic protective device fMT joining and dressing machines
US2717865A (en) * 1951-05-17 1955-09-13 Exxon Research Engineering Co Coking of heavy hydrocarbonaceous residues
US2759880A (en) * 1951-10-31 1956-08-21 Exxon Research Engineering Co Short-time contacting of fluids with solids in hydrocarbon conversion
GB1174870A (en) * 1966-07-04 1969-12-17 Japanese Geon Co Ltd An apparatus for Thermal Cracking of Hydrocarbon
US3652451A (en) * 1968-12-20 1972-03-28 Universal Oil Prod Co Fluid distribution for fluid-solids contacting chambers
JPS5247006A (en) * 1975-10-14 1977-04-14 Kureha Chem Ind Co Ltd Method for preventing deposition of coke to vessels for thermal cracki ng of heavy hydrocarbons
JPS5247007A (en) * 1975-10-14 1977-04-14 Kureha Chem Ind Co Ltd Method and apparatus for preventing deposition of coke to vessels for thermal cracking of heavy hydrocarbons
US4085034A (en) * 1975-10-14 1978-04-18 Kureha Kagaku Kogyo Kabushiki Kaisha Method for the thermal cracking of heavy hydrocarbon
US4247387A (en) * 1978-07-11 1981-01-27 Shell Oil Company Process for the continuous thermal cracking of hydrocarbon oils

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE47375E1 (en) 2003-05-15 2019-05-07 Coviden Ag Tissue sealer with non-conductive variable stop members and method of sealing tissue
WO2008038731A1 (en) * 2006-09-28 2008-04-03 Chiyoda Corporation Method of thermal cracking processing, thermal cracking reaction vessel and thermal cracking processing apparatus for petroleum heavy oil
US9724116B2 (en) 2009-10-06 2017-08-08 Covidien Lp Jaw, blade and gap manufacturing for surgical instruments with small jaws
US9724157B2 (en) 2011-08-09 2017-08-08 Covidien Lp Microwave sensing for tissue sealing
US9717549B2 (en) 2011-10-03 2017-08-01 Covidien Lp Surgical forceps
US9717550B2 (en) 2011-10-20 2017-08-01 Covidien Lp Multi-circuit seal plates
US9713493B2 (en) 2012-04-30 2017-07-25 Covidien Lp Method of switching energy modality on a cordless RF device
US9713491B2 (en) 2013-02-19 2017-07-25 Covidien Lp Method for manufacturing an electrode assembly configured for use with an electrosurigcal instrument
US9717548B2 (en) 2013-09-24 2017-08-01 Covidien Lp Electrode for use in a bipolar electrosurgical instrument

Also Published As

Publication number Publication date
IT1163501B (en) 1987-04-08
DE3390051T1 (en) 1984-06-14
JPS6362557B2 (en) 1988-12-02
GB2133034B (en) 1986-05-29
WO1984000035A1 (en) 1984-01-05
IT8321574A0 (en) 1983-06-10
BE896901A (en) 1983-09-16
GB2133034A (en) 1984-07-18
IE831379L (en) 1983-12-14
FI65274B (en) 1983-12-30
CS241059B2 (en) 1986-03-13
HU202573B (en) 1991-03-28
FI822119A0 (en) 1982-06-14
FR2528444B1 (en) 1987-06-19
NL8320167A (en) 1984-04-02
CA1209943A (en) 1986-08-19
GB8401584D0 (en) 1984-02-22
IE55266B1 (en) 1990-07-18
CS423183A2 (en) 1985-07-16
FI65274C (en) 1984-04-10
HUT34535A (en) 1985-03-28
FR2528444A1 (en) 1983-12-16

Similar Documents

Publication Publication Date Title
JPS59501068A (en) Method for thermal decomposition of hydrocarbon oil
US4194964A (en) Catalytic conversion of hydrocarbons in reactor fractionator
US4422927A (en) Process for removing polymer-forming impurities from naphtha fraction
US4601814A (en) Method and apparatus for cracking residual oils
US4883583A (en) Process for the catalytic cracking of hydrocarbons in a fluidized bed and their applications
EP0007656B1 (en) Process for the continuous thermal cracking of hydrocarbon oils and hydrocarbon mixtures thus prepared
US4877513A (en) Oil characteristic improvement process and device therefor
US2525276A (en) Method of cracking hydrocarbons
US5925236A (en) Processes for visbreaking heavy hydrocarbon feedstocks
US1942191A (en) Process for the heat treatment of liquids
RU2170755C1 (en) Method of processing of secondary heavy hydrocarbon materials
GB2148937A (en) Two-stage petroleum residuum hydroconversion using a countercurrent gas-liquid first stage
CS241060B2 (en) Equipment for hydrocarbons thermal cracking
RU2108366C1 (en) Hydrogenation treating of oil distillates in fluidized bed
US11866447B2 (en) Reactive deasphalting process
RU2641761C1 (en) Method for producing bitumen and installation for its implementation
JPH0575795B2 (en)
US20230035683A1 (en) Process for Multistage Hydroprocessing in a Single Reactor
US1046683A (en) Apparatus for distilling hydrocarbon oil.
EP0232259B1 (en) Method and apparatus for cracking residual oils
US1963717A (en) Method for the heat treatment under pressure of high boiling hydrocarbons
KR20230096956A (en) Process for handling heavy oil or bitumen, or a mixture of diluent and heavy oil or bitumen
US2379563A (en) Apparatus for refining crude petroleum
US1341975A (en) Making gas-oil
US1337144A (en) Process of converting liquid hydrocarbons