JPS5942981B2 - Reflow method - Google Patents

Reflow method

Info

Publication number
JPS5942981B2
JPS5942981B2 JP6987777A JP6987777A JPS5942981B2 JP S5942981 B2 JPS5942981 B2 JP S5942981B2 JP 6987777 A JP6987777 A JP 6987777A JP 6987777 A JP6987777 A JP 6987777A JP S5942981 B2 JPS5942981 B2 JP S5942981B2
Authority
JP
Japan
Prior art keywords
flux
soft
pattern
silicon wafer
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6987777A
Other languages
Japanese (ja)
Other versions
JPS545381A (en
Inventor
広一 井上
富郎 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6987777A priority Critical patent/JPS5942981B2/en
Publication of JPS545381A publication Critical patent/JPS545381A/en
Publication of JPS5942981B2 publication Critical patent/JPS5942981B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

【発明の詳細な説明】 本発明ははんだのリフロー方法に係り、特に液状のフラ
ックス中で加熱するリフロー方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solder reflow method, and more particularly to a reflow method in which solder is heated in liquid flux.

第1図から第2図に従つて従来技術の説明をする。The prior art will be explained with reference to FIGS. 1 and 2.

すなわち第1図a、bに示すシリコンウェハ1上のはん
だ付パターン4上に蒸着により鉛−スズ系のはんだ2を
被着してある。この上から筆により液状フラックス3を
塗布し、不活性ガス雰囲気中ではんだ2の融点以上まで
加熱し、冷却するとcに示すようにパターン4上にはん
だボール5が形成される。ところが、液状フラックス3
ははんだ2の表面の酸化物や、不活性ガス中に含まれる
酸素あるいは水分等と反応し、取り去ることが非常に困
難な反応物6となつてシリコンウェハ1上に固着してし
まう。これをさける方法として最も効果的であるのは第
2図dに示すようなフラックス3を多量につける方法で
ある。この方法では反応物6がフラックス3の中あるい
は表面に浮遊しており、シリコンウェハ1に付着するこ
とがほとんどない。(e参照)ところが、この方法では
fに示すように加熱途中にフラックス3の粘性が下がる
ためシリコンウェハ1からフラックス3がヒータ7の上
に流れ出し、有効なフラックス量が不足してcで示した
のと同じ状態になる場合が多い。さらにfの状態ではヒ
ータTとシリコンウェハ1の間に侵入したフラックス3
によりシリコンウェハ1がヒータ7に付着し、取り難く
なるという欠点もあわせ持つている。本発明は上記した
従来技術の欠点をなくし、フラックスの反応物の固着が
ないリフロー方法を提供するにある。
That is, lead-tin solder 2 is deposited by vapor deposition on the soldering pattern 4 on the silicon wafer 1 shown in FIGS. 1a and 1b. A liquid flux 3 is applied onto this with a brush, heated in an inert gas atmosphere to a temperature higher than the melting point of the solder 2, and then cooled to form a solder ball 5 on the pattern 4 as shown in c. However, liquid flux 3
The solder reacts with oxides on the surface of the solder 2, oxygen or moisture contained in the inert gas, and becomes a reactant 6 that is very difficult to remove and is fixed on the silicon wafer 1. The most effective way to avoid this is to apply a large amount of flux 3 as shown in FIG. 2d. In this method, the reactants 6 are suspended in the flux 3 or on the surface thereof, and are hardly attached to the silicon wafer 1. (See e) However, with this method, as shown in f, the viscosity of the flux 3 decreases during heating, and the flux 3 flows from the silicon wafer 1 onto the heater 7, resulting in an insufficient amount of effective flux, as shown in c. The situation is often the same. Furthermore, in the state f, flux 3 has entered between the heater T and the silicon wafer 1.
This also has the disadvantage that the silicon wafer 1 adheres to the heater 7 and becomes difficult to remove. The present invention eliminates the above-mentioned drawbacks of the prior art and provides a reflow method in which flux reactants do not stick.

フラックスの反応物がシリコンウェハの表面に固着する
割合がフラックスの厚さによりどのように変化するかを
調べた結果、第3図の実線のようになつた。
As a result of investigating how the rate at which flux reactants adhere to the surface of a silicon wafer changes depending on the thickness of the flux, the result is as shown by the solid line in FIG. 3.

すなわち、第4図に示すように、フラックスの反応物の
厚さは約O、17llRあり、フラックス中の揮発成分
がなくなることによつてフラックスの厚さが約0.3顧
減少するため、フラックスの厚さを0.4驕以上にして
おかないとフラックスが全て反応し、固着することがわ
かつた。
That is, as shown in Fig. 4, the thickness of the flux reactant is approximately 0.17llR, and the thickness of the flux decreases by approximately 0.3x due to the disappearance of volatile components in the flux. It was found that if the thickness was not set to 0.4 mm or more, all the flux would react and become stuck.

さらに、実用上差しつかえのない程度にまでフラックス
の反応物を除去するには第3図の実線に示すように0.
5−以上のフラックス厚が必要となる。逆にフラックス
厚を0.4驕から減少させると第3図の実線で明らかな
ようにフラツクスの反応物の固着量は減少する。
Furthermore, in order to remove the flux reactants to an extent that is not a problem for practical use, it is necessary to remove 0.0% as shown by the solid line in Fig. 3.
A flux thickness of 5- or more is required. On the other hand, when the flux thickness is decreased from 0.4 mm, the amount of reactants fixed on the flux decreases, as is clear from the solid line in FIG.

従つてフラツクス量を少なくすることによつても反応物
の固着に関しては同様の結果を得ることができるが、フ
ラツクス作用(はんだの表面清浄化や雰囲気中の酸素混
入の防止等)が不完全となるため、第3図の破線で示す
ようにリフロー性能が悪くなる。以上の結果から、フラ
ツクスの厚さは0.51!IR以上必要であることがわ
かつたが、この値を確実(こ実現するにはフラツクスを
満たした容器にシリコンウエハを浸漬し、この容器全体
を加熱する方法を採用しなければならない。
Therefore, similar results can be obtained in terms of fixation of reactants by reducing the amount of flux, but the flux action (cleaning the solder surface, preventing oxygen from entering the atmosphere, etc.) may be incomplete. As a result, the reflow performance deteriorates as shown by the broken line in FIG. From the above results, the thickness of the flux is 0.51! It has been found that more than IR is required, but in order to reliably achieve this value, a method must be adopted in which the silicon wafer is immersed in a container filled with flux and the entire container is heated.

第5図に実施例を示す。An example is shown in FIG.

0.5駅以上のフラツクス厚を実現させるため、ヒータ
7上にリフロー治具8を置き、この中にシリコンウエハ
1を入れ、シリコンウエハ1の周囲をフラツクス3が完
全におおう形状とした。
In order to achieve a flux thickness of 0.5 centimeters or more, a reflow jig 8 was placed on the heater 7, a silicon wafer 1 was placed therein, and the periphery of the silicon wafer 1 was completely covered with the flux 3.

本実施例ではシリコンウエハ1を複数の突起9の先端で
支えているが、このことにより次の効果がある。
In this embodiment, the silicon wafer 1 is supported by the tips of the plurality of protrusions 9, which has the following effects.

(1)シリコンウエハ1の下部にまわり込むフラツクス
3の層が厚いため、冷却後溶剤でフラツクスを除去する
ことが容易である。
(1) Since the layer of flux 3 surrounding the lower part of the silicon wafer 1 is thick, it is easy to remove the flux with a solvent after cooling.

(2)シリコンウエハ1の下部に確実にフラツクス3が
まわり込むため一層完全な形での液中加熱が実現でき、
温度の均一性がよい。
(2) Since the flux 3 reliably wraps around the bottom of the silicon wafer 1, more complete submerged heating can be achieved;
Good temperature uniformity.

本発明による方法でリフローを行なうと、フラツクス厚
が常に0.5?以上あるため、第2図eの状態すなわち
、シリコンウエハ1にフラツクスの反応物6が固着しな
い状態が確実に得られる。
When reflowing is performed using the method according to the present invention, the flux thickness is always 0.5? Because of the above, the state shown in FIG. 2e, that is, the state in which the flux reactant 6 does not stick to the silicon wafer 1 can be reliably obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法の一例を示す平面図および拡大断面図、
第2図は従来法の一例を示す断面図および拡大断面図、
第3図はフラツクスの厚さと固着との関係を示すグラフ
、第4図はフラツクスの固着機構を示す拡大断面図、第
5図は実施例を示す断面図である。 1・・・・・・シリコンウエハ、2・・・・・・蒸着さ
れたはんだ、3・・・・・・液状フラツクス、4・・・
・・・はんだ付パターン、5・・・・・・はんだボール
、6・・・・・・フラツクスの反応物、7・・・・・・
ヒータ、8・・・・・・リフロー治具、9・・・・・・
突起。
FIG. 1 is a plan view and an enlarged sectional view showing an example of the conventional method;
FIG. 2 is a sectional view and an enlarged sectional view showing an example of the conventional method,
FIG. 3 is a graph showing the relationship between flux thickness and fixation, FIG. 4 is an enlarged sectional view showing the flux fixation mechanism, and FIG. 5 is a sectional view showing an example. 1...Silicon wafer, 2...Vapour-deposited solder, 3...Liquid flux, 4...
...Soldering pattern, 5...Solder ball, 6...Flux reactant, 7...
Heater, 8... Reflow jig, 9...
protrusion.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体ウェハ上にはんだ付可能な物質で構成された
パターンの上に蒸着、めつき、印刷の方法を用いて軟ろ
う材を被着したのち、該軟ろう材の溶融温度以上に加熱
することにより該軟ろう材を該パターンの上に密着せし
めるリフロー工程において、該軟ろう材に適した液状フ
ラックスが少くとも0.5mm以上の厚さで該軟ろう材
および該パターンをおおつた状態で該軟ろう材の溶融温
度以上に加熱し、室温まで冷却することを特徴とするリ
フロー方法。
1. Applying a soft brazing material to a pattern made of a solderable substance on a semiconductor wafer using vapor deposition, plating, or printing methods, and then heating the pattern to a temperature higher than the melting temperature of the soft brazing material. In the reflow process in which the soft solder metal is brought into close contact with the pattern, the soft solder metal and the pattern are covered with a liquid flux suitable for the soft solder metal to a thickness of at least 0.5 mm. A reflow method characterized by heating the soft filler metal above its melting temperature and cooling it to room temperature.
JP6987777A 1977-06-15 1977-06-15 Reflow method Expired JPS5942981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6987777A JPS5942981B2 (en) 1977-06-15 1977-06-15 Reflow method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6987777A JPS5942981B2 (en) 1977-06-15 1977-06-15 Reflow method

Publications (2)

Publication Number Publication Date
JPS545381A JPS545381A (en) 1979-01-16
JPS5942981B2 true JPS5942981B2 (en) 1984-10-18

Family

ID=13415438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6987777A Expired JPS5942981B2 (en) 1977-06-15 1977-06-15 Reflow method

Country Status (1)

Country Link
JP (1) JPS5942981B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5982587U (en) * 1982-11-29 1984-06-04 住友重機械工業株式会社 Metal plate sorting device on metal plate conveyor
JPS61176902U (en) * 1985-04-24 1986-11-05

Also Published As

Publication number Publication date
JPS545381A (en) 1979-01-16

Similar Documents

Publication Publication Date Title
JP4956963B2 (en) Reflow apparatus, reflow method, and semiconductor device manufacturing method
US4801069A (en) Method and apparatus for solder deposition
US4142662A (en) Method of bonding microelectronic chips
US4909429A (en) Method and apparatus for solder deposition
US6935553B2 (en) Reflow soldering method
US4345814A (en) Solder-bearing lead having solder flow-control stop means
US4840305A (en) Method for vapor phase soldering
US4019671A (en) Method for dip-soldering semiconductor components
JPS5942981B2 (en) Reflow method
US4802276A (en) Apparatus for printed wiring board component assembly
US5833128A (en) Flux-free contacting of components
ZA852547B (en) Process and apparatus for thermally bonding metal surfaces
JP3346280B2 (en) Solder surface treatment method, solder and soldering method
KR960013708B1 (en) Fluxless solder coating & joining
CA1056514A (en) Lead bond structure
JP2818204B2 (en) Method of forming bump
JPH0648840Y2 (en) Semiconductor manufacturing equipment
JP4467260B2 (en) Bump formation method
JP3267181B2 (en) Metal bump electrode forming apparatus and metal bump electrode forming method
JP2737341B2 (en) Welcome soldering method
JP2903711B2 (en) Pre-soldering method for flat package
JPH0697174A (en) Formation of solder bump
JPH07335649A (en) Bump electrode forming method of semiconductor device
JPS5884437A (en) Tray for semiconductor wafer
JPS5879738A (en) Manufacture of semiconductor element