JPS5932832A - Temperature measuring method - Google Patents

Temperature measuring method

Info

Publication number
JPS5932832A
JPS5932832A JP14268882A JP14268882A JPS5932832A JP S5932832 A JPS5932832 A JP S5932832A JP 14268882 A JP14268882 A JP 14268882A JP 14268882 A JP14268882 A JP 14268882A JP S5932832 A JPS5932832 A JP S5932832A
Authority
JP
Japan
Prior art keywords
measured
temperature
radiation
measurement position
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14268882A
Other languages
Japanese (ja)
Inventor
Kiyoshi Tamura
清 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14268882A priority Critical patent/JPS5932832A/en
Publication of JPS5932832A publication Critical patent/JPS5932832A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0022Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation of moving bodies

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To make it possible to perform accurate measurement of the temperature of a body to be measured, with the emissivity of the body to be measured being obtained by radiation thermometers, by obtaining the total emissivity of the body to be measured and the temperature of each measuring point of the body to be measured at a specified time by expressions. CONSTITUTION:Each measuring point of a body to be measured, which is moved at a constant speed, passes the interval between a first measuring position and a second measuring position, which are separated each other. The time DELTAt required for passing is determined in advance. Radiation thermometers are arranged at the first measuring position and the second measuring positions. The radiation thermometers measure the amount of radiation S(t) radiated from the measuring points of the body to be measured at the time (t) when each measuring point passes the each measuring position (the amount of radiation S1 radiated from the first measuring position and the amount of radiation S2 radiated from the second measuring position). The total emissivity epsilon of the body to be measured is obtained by the expression I . A temperature T(t) of each measuring point of the body to be measurd at the time (t) is obtained by the expression II. Since the emissivity and the temperature are computed in this way, the radiation thermometers (radiometers) are not rquired to be arranged in the vicinity of the body to be measured.

Description

【発明の詳細な説明】 本発明は放射温度計による温度計測方法に係り、特に熱
間圧延ライン等に用いられて好適な温度計測方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature measuring method using a radiation thermometer, and particularly to a temperature measuring method suitable for use in hot rolling lines and the like.

一般に、放射温度計に入射する被測定物体からの放射計
Eは下記式によって近似される。
Generally, the radiometer E from the object to be measured that enters the radiation thermometer is approximated by the following formula.

E=εKTn ここで、εは被測定物体の放射率、Kは定数、nは放射
定数C2と波長λ、被測定物体の温度Tによってn=C
2/λ・Tと表わされ、通常n値と呼ばれる。すなわち
、上記式に示すように、放射温度計は、単体では被測定
物体からの放射量を計測するものであり、被測定物体に
より異なる放射率εという不確かなパラメークが存在す
るために、十分に正確な計測ができず、従来、これを解
決するために、金メッキを施した空洞などを用いて熱平
衡に近い状態で測定するなどの方法が提案されている。
E=εKTn Here, ε is the emissivity of the object to be measured, K is a constant, n is the radiation constant C2, the wavelength λ, and the temperature T of the object to be measured, so that n=C
It is expressed as 2/λ·T and is usually called the n value. In other words, as shown in the above equation, a radiation thermometer alone measures the amount of radiation from an object to be measured, and since there is an uncertain parameter of emissivity ε that differs depending on the object to be measured, Accurate measurement is not possible, and in order to solve this problem, methods have been proposed in the past, such as using a gold-plated cavity or the like to measure in a state close to thermal equilibrium.

しかしながら、金メッキを施した空洞、その他、黒化し
た空洞を用いる方法では、空洞をできるだけ破測定物体
に近接して、熱平衡状態に近くして測定するのが有利で
あった。すなわち、測定装置を被測定物体に近接して配
置する必要があり、測定位置に通常設置するのに困難を
伴うという問題点がある。
However, in methods using gold-plated cavities or other blackened cavities, it has been advantageous to measure the cavities as close to the object to be measured as possible and close to a state of thermal equilibrium. That is, there is a problem in that the measuring device must be placed close to the object to be measured, and it is difficult to normally install it at the measuring position.

本発明は、放射温度計により、被測定物体の放射率を末
めつゝ、被測定物体の温度を正確に計測可能とする温度
計測方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a temperature measurement method that enables accurate measurement of the temperature of an object to be measured while determining the emissivity of the object using a radiation thermometer.

上記目的を達成するために、本発明に係る温度計測方法
は、一定速度で移動する被測定物体の各被測定点がその
移動力向において相互に離間している第1測定位置と第
2測定位置との間を通過するに要する時間Δtを予め定
め、第1測定位碓および第2測定位置にそれぞれ配置さ
れている各放射温度計によって被測定物体の各被測定点
が各測定位置通過時刻tにおいて放射する放射量S(t
)(各被測定点が第1測定位置において放射する放射量
S、および第2測定位置において放射する放射量S2)
を測定し、被測定物体の全放射率εを、(式中、cは被
測定物体の比熱、wは被測定物体の単位表面積当りの重
量、σはステファン・ポルツマンの定数、θは被測定物
体が第1測定位置と第2測定位置との間で熱伝導によっ
て失う熱量)によって求め、波測定物体各測定点の時刻
tにおける温度T(t)を、 T(t)=ε・S() によって求めるようにしたものである。
In order to achieve the above object, the temperature measurement method according to the present invention provides a first measurement position and a second measurement position in which each measurement point of a measurement object moving at a constant speed is spaced apart from each other in the direction of the moving force. By predetermining the time Δt required for passing between the positions, each radiation thermometer placed at the first measurement position and the second measurement position determines the time at which each measurement point of the object passes through each measurement position. The amount of radiation S(t
) (Radiation amount S emitted by each measured point at the first measurement position, and radiation amount S2 emitted at the second measurement position)
Measure the total emissivity ε of the object to be measured, (where c is the specific heat of the object to be measured, w is the weight per unit surface area of the object to be measured, σ is the Stefan-Poltzmann constant, and θ is the The amount of heat that the object loses due to heat conduction between the first measurement position and the second measurement position), and the temperature T(t) at each measurement point of the wave measurement object at time t is determined by T(t) = ε・S( ).

以下、本発明をより詳細に説明する。The present invention will be explained in more detail below.

第1図は本発明の実施に用いられる計測装置の一例を示
す測定系統図である。周囲温度に比して高温の被測定物
体1は、搬送ローラ2によって一定速度で移動されてい
る。被測定物体1の移動方向において相互に離間してい
る第1測定位置と第2測定位とにはそれぞれ第1放射温
度計3および第2放射温度計4が設置されている。各放
射温度計3,4は、各測定位置を通過する被測定物体が
放射する放射量を視野限定用のサイテイングチューブ5
を通して測定する。各放射温度計3,4が測定した各放
射量は、順次信号処理器6に伝達され、信号処理器6は
後述する温度算出式に従って被測定物体の温度を演算す
る。なお、図において、7はCRT表示器であり、信号
処理器6によって算出された被測定物体1の移動方向に
おける温度分布を表示可能としている。また、8は被測
定物体検出スイッチであり、被測定物体1の接近を検知
して、信号処理器6の動作を開始可能としている。
FIG. 1 is a measurement system diagram showing an example of a measuring device used in implementing the present invention. An object to be measured 1 having a high temperature compared to the ambient temperature is being moved at a constant speed by a conveying roller 2. A first radiation thermometer 3 and a second radiation thermometer 4 are installed at a first measurement position and a second measurement position, which are spaced apart from each other in the moving direction of the object to be measured 1, respectively. Each radiation thermometer 3, 4 measures the amount of radiation emitted by the object to be measured passing through each measurement position using a sighting tube 5 for limiting the field of view.
Measure through. The radiation amounts measured by the radiation thermometers 3 and 4 are sequentially transmitted to the signal processor 6, and the signal processor 6 calculates the temperature of the object to be measured according to a temperature calculation formula described later. In the figure, 7 is a CRT display, which is capable of displaying the temperature distribution in the moving direction of the object to be measured 1 calculated by the signal processor 6. Further, reference numeral 8 denotes a measured object detection switch, which detects the approach of the measured object 1 and enables the signal processor 6 to start operating.

次に、周囲温度よりも高温である被測定物体が一定時間
に失う熱量を用いて得られる、不発明に係る温度算出式
について説明する。
Next, an inventive temperature calculation formula obtained using the amount of heat lost in a certain period of time by an object to be measured whose temperature is higher than the ambient temperature will be explained.

まず、被測定物体のある被測定点が第1測定位置を通過
して第2測定位置に到達する間に、放射および熱伝導(
ここでは対流のみを取扱うものとする)によりその表面
から失う熱Q5は、である。ただし、t1は被測定物体
のある被測定点が第1測定位置を通過する時刻、t2は
被測定物体のある被測定点が第2測定位置を通過する時
刻である。また、上記(1)式におけるF(T)は、F
(T)=2F1(T)+2F2(T)・・(2)であり
、F1(T)は放射により、F2(T)は熱伝導により
それぞれ温度Tの被測定物体のある被測定点が単位時間
に失う熱量であり、(2)式においては被測定物体の表
面と裏面を考慮してそれぞれ2倍している。ここで、F
1(T)は、 F1(T)=ε・σ・{T(t)4−T4a}・・(3
)である。ただし、εは被測定物体の全放射率、σはス
テファン・ボルツマンの定数で、σ=5.67X10−
8[W・m−2・K−4〕である。また、T(t)は時
刻tにおける被測定物体のある被測定点の温度、Taは
周囲温度である。また、対流項F2(T)は、F2(T
)=α・{T(t)−Ta}β・・・(4)とおける。
First, radiation and thermal conduction (
The heat Q5 lost from the surface due to convection (only convection is considered here) is. However, t1 is the time when a certain measured point of the measured object passes the first measurement position, and t2 is the time when the measured point of the measured object passes the second measurement position. In addition, F(T) in the above formula (1) is F
(T)=2F1(T)+2F2(T)...(2), where F1(T) is due to radiation and F2(T) is due to thermal conduction.The unit is the measured point where the measured object is at temperature T. It is the amount of heat lost over time, and in equation (2), it is doubled to take into account the front and back surfaces of the object to be measured. Here, F
1(T) is F1(T)=ε・σ・{T(t)4−T4a}...(3
). However, ε is the total emissivity of the object to be measured, σ is the Stefan-Boltzmann constant, and σ=5.67X10−
8 [W·m-2·K-4]. Furthermore, T(t) is the temperature at a point to be measured at the object to be measured at time t, and Ta is the ambient temperature. Also, the convection term F2(T) is F2(T
)=α・{T(t)−Ta}β...(4).

ただし、αは熱伝達率、βは定数である。ここで、被測
定物体が高温状態にある場合には、F2(T)はF1(
T)に比して1/10以下であり、比較的短い時間内に
おいては一定値0を用いて、F2(T)=θ/2・Δt
・・・(5)と表わすことが可能である。なお、θは、
(4)式を用いて、熱伝達率αは文献値を用い、周囲温
度Taは室温、および被測定物体の温度Tの変動範囲に
おける平均値から算出する。また、その他の接触式表面
温計などと比較して、その数値を実験的に確認すること
が必要である。ただし、被測定物体の各被測定点が第1
測定位置と第2測定位置との間を通過するに要する時間
Δt=t2−t1とおいた。
However, α is the heat transfer coefficient and β is a constant. Here, when the object to be measured is in a high temperature state, F2(T) is F1(
F2(T)=θ/2・Δt using a constant value of 0 within a relatively short time.
...(5). Note that θ is
Using equation (4), the heat transfer coefficient α is calculated using literature values, and the ambient temperature Ta is calculated from the average value in the range of fluctuations of the room temperature and the temperature T of the object to be measured. It is also necessary to compare the value with other contact surface thermometers and confirm the value experimentally. However, each measured point of the measured object is
The time required to pass between the measurement position and the second measurement position was set as Δt=t2−t1.

なお、このΔtは、被測定物体が一定速度で移動してい
るものであることから、その移動速度および各測定位置
間距離とによって予め定められる。
Note that since the object to be measured is moving at a constant speed, Δt is predetermined based on its moving speed and the distance between each measurement position.

上記(3)式および(5)式を用いて、QSは次式で表
わされる。
Using the above equations (3) and (5), QS is expressed by the following equation.

更に、破測定物体の温度が周囲温度に対して非常に高く
、T(t)>>Taである場合には、上記(6)次式に
よって近似可能である。
Furthermore, if the temperature of the object to be measured is very high relative to the ambient temperature and T(t)>>Ta, it can be approximated by the following equation (6).

ただし、時刻t1,t2でそれぞれ第1測定位置と第2
測定位置とを通過する被測定物体のある被測定点の温度
T(t1)、T(t2)%を、それぞれT1,T2とお
いた。
However, at times t1 and t2, the first measurement position and the second measurement position are
Temperatures T(t1) and T(t2)% of the measured point where the measured object passes through the measuring position are respectively set as T1 and T2.

次に、被測定物体のある被測定点内部において、時刻t
1から時刻t2の間に失う熱量ΔQは、ΔQ=c・w・
(T1−T2)・・・(8)である。ただし、cは被測
定物の比熱、wは被測定物体の単位表面当りの重量であ
る。なお、上記(8)式においては、被測定物体の温度
変化が小であるものとして、比熱cは定数であるとした
Next, inside the measured point of the measured object, at time t
The amount of heat ΔQ lost between time 1 and time t2 is ΔQ=c・w・
(T1-T2)...(8). However, c is the specific heat of the object to be measured, and w is the weight per unit surface of the object to be measured. In the above equation (8), it is assumed that the temperature change of the object to be measured is small, and the specific heat c is a constant.

また、被測定物体の内部は、十分に厚さが小さいものと
し、または十分に定常状態に達しているものとし、厚さ
方向での温度変化(T1−T2)は変化しないものとし
て考えた。
Furthermore, it was assumed that the inside of the object to be measured had a sufficiently small thickness or had reached a sufficiently steady state, and that the temperature change (T1-T2) in the thickness direction did not change.

被測定物体に関する熱収支からQS=ΔQであり、した
がって、前記(7)式および(8)式を用いて、次の関
係式が得られる。
From the heat balance regarding the object to be measured, QS=ΔQ, and therefore, using equations (7) and (8) above, the following relational expression can be obtained.

ここで、放射温度計として全放射型のものを用いれば、
放射温度計指示すなわち時刻tにおける放射量S(t)
と、被測定物体の同一時刻tにおける温度T(t)との
間には、 なる関係か成立する。上記(10)式を用いて、前記(
9)式は次式のように変形可能である。
Here, if a total radiation type is used as the radiation thermometer,
Radiation thermometer indication, that is, radiation amount S(t) at time t
The following relationship holds between T(t) and the temperature T(t) of the measured object at the same time t. Using the above equation (10), the above (
Equation 9) can be transformed as shown in the following equation.

したがって、被測定物体の全放射εは、上記(11)式
を解くことにより、 によって求めることが可能となる。次に、前記(11)
式を変形した次式に、上記全放射率εを代入すれば、破
測定物体各被測定点の時刻tにおける温度T(t)、し
たがって温度T1およびT2を求めることが可能となる
Therefore, by solving the above equation (11), the total radiation ε of the object to be measured can be determined as follows. Next, the above (11)
By substituting the above-mentioned total emissivity ε into the following equation, which is a modified version of the equation, it becomes possible to obtain the temperature T(t) at time t of each measured point of the measurement object, and therefore the temperatures T1 and T2.

上記温度算出式を用いて被測定物体の移動方向の温度分
布を測定する手順は以下の通りである。
The procedure for measuring the temperature distribution in the moving direction of the object to be measured using the above temperature calculation formula is as follows.

まず、被測定物体の各被測定点について、第1放射温度
計および第2放射温度計が判定した各放射能S1、S2
が前述の信号処理器6に逐次伝達されて記憶される。次
に、被測定物体の各被測定点に対応する一対の放射量S
1、S2が順次選び出され、前述のように、予め定めら
れている時間Δt、被測定物体の比熱c、重量w、周囲
温度Ta、対流により失う熱量θを用いて、順次温度T
1(ならびにT2)を算出し、被測定物体の移動方向に
おける温度分布が求められる。本発明では、被測定物体
からの放射量、すなわちそれによって単位時間に被測定
物体が失う熱量を用いて、被測定物体の放射率及び温度
を算出するので、特に放射温度計(放射計)を被測定物
体に近接配置する必要がない。
First, for each measured point of the measured object, each radioactivity S1, S2 determined by the first radiation thermometer and the second radiation thermometer
are sequentially transmitted to the aforementioned signal processor 6 and stored therein. Next, a pair of radiation amounts S corresponding to each measured point of the measured object
1 and S2 are selected sequentially, and as mentioned above, the temperature T is sequentially determined using a predetermined time Δt, specific heat c of the object to be measured, weight w, ambient temperature Ta, and amount of heat lost due to convection θ.
1 (as well as T2), and the temperature distribution in the moving direction of the object to be measured is determined. In the present invention, the emissivity and temperature of the measured object are calculated using the amount of radiation from the measured object, that is, the amount of heat that the measured object loses per unit time, so in particular a radiation thermometer (radiometer) is used. There is no need to place it close to the object to be measured.

なお、被測定物体の温度変化の一例を示せば、厚さ1m
m、放射率0.5、温度1,000℃である錆板は、1
秒後に約30℃温度が低下する。また、温度T1とT2
との温度サに対する計算上の制限はないが、その上限値
は被測定物体の比熱c、全放射率εなどの物性値が変化
しない範囲により規定され、その下限値は放射温度計の
分解能および精度により規定される。したがって、各放
射温度計の配設位置は、被測定物体が各放射温度計を通
過する間l(、用′吊5℃/′、1′いし5()℃稈用
買1′1に度変化するる間に、通常5℃ないし50℃程
度温度変化するだけの間隔を保って配置するのが良い。
In addition, to give an example of the temperature change of the object to be measured, a thickness of 1 m
m, a rust plate with an emissivity of 0.5 and a temperature of 1,000°C is 1
After seconds the temperature drops by about 30°C. Also, temperatures T1 and T2
There is no calculation limit to the temperature sa, but its upper limit is determined by the range within which physical property values such as specific heat c and total emissivity ε of the object to be measured do not change, and its lower limit is determined by the resolution of the radiation thermometer and Defined by accuracy. Therefore, the installation position of each radiation thermometer should be set at a temperature of 1' to 5()°C while the object to be measured passes through each radiation thermometer. It is preferable to maintain an interval that allows the temperature to change by approximately 5° C. to 50° C. during the change.

なお、被測定物体の同一測定点を測定するために、第2
の放射温度計の測定放射量S2は、第1の放射温度計の
測定放射量S1に対して、時間Δ1だけ遅延した測定値
を用いる必要がある。
In addition, in order to measure the same measurement point of the object to be measured, a second
For the measured radiation amount S2 of the radiation thermometer, it is necessary to use a measured value delayed by a time Δ1 with respect to the measured radiation amount S1 of the first radiation thermometer.

また、本発明は、被測定物体の温度が周囲温度に比して
高く、その温度変化が小で、被測定物体の厚みが比較的
小である場合に有効である。
Further, the present invention is effective when the temperature of the object to be measured is higher than the ambient temperature, the temperature change is small, and the thickness of the object to be measured is relatively small.

以上のように、本発明に係わる温度計測方法は、一定速
度で移動する被測定物体の各被測定点がその移動方向に
おいて相互に離間している第1測定位置と第2測定位置
との間を通過するに要する時間Δtを予め定め、第1測
定位置および第2測定位置にそれぞれ配置されている各
放射温度計によって被測定物体の各被測定点が各測定位
置通過時刻tにおいて放射する放射量S(t)(各被測
定点が第1測定位置において放射する放射量S1および
第2測定位置において放射する放射量S2)を測定し、
被測定物体の全放射率εを、 (式中、cは被測定物体の比熱、wは被測定物体の単位
表面積当りの重量、σはステファン・ポルツマンの定数
、θは被測定物体が第1測定位置と第2測定位置との間
で熱伝導によって失う熱量)ことよって求め、被測定物
体各線測定点の時刻tにおける温度T(1)を、 T(t)=ε−1/4・S(t) によって求めるようにしたので、放射温度計により、被
測定物体の放射率を求めつゝ、被測定物体の温度を正確
に計測することが可能となる。
As described above, in the temperature measurement method according to the present invention, each measured point of a measured object moving at a constant speed is located between a first measurement position and a second measurement position which are spaced apart from each other in the direction of movement. The time Δt required for passing through is predetermined, and the radiation emitted by each measurement point of the object to be measured at the time t of passing through each measurement position by each radiation thermometer placed at the first measurement position and the second measurement position, respectively. Measuring the amount S(t) (the amount of radiation S1 emitted by each measured point at the first measurement position and the amount S2 of radiation emitted at the second measurement position),
The total emissivity ε of the measured object is expressed as, (where c is the specific heat of the measured object, w is the weight per unit surface area of the measured object, σ is the Stefan-Poltzmann constant, and θ is the The amount of heat lost due to heat conduction between the measurement position and the second measurement position), and the temperature T(1) of each line measurement point of the object to be measured at time t is calculated as: T(t)=ε-1/4・S (t) Therefore, it becomes possible to accurately measure the temperature of the object to be measured while determining the emissivity of the object to be measured using the radiation thermometer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施に用いられる計測装置の一例を示
す測定系統図である。 1・・・被測定物体、3・・第1放射温度計、4・・・
第2放射温度計。
FIG. 1 is a measurement system diagram showing an example of a measuring device used in implementing the present invention. 1... Object to be measured, 3... First radiation thermometer, 4...
Second radiation thermometer.

Claims (1)

【特許請求の範囲】[Claims] (1)一定速度で移動する被測定物体の各被測定点がそ
の移動力向において相互に離間している第1測定位置と
第2測定位置との間を通過するに要する時間Δtを予め
定め、第1測定位置および第2測定位置にそれぞれ配置
されている各放射温度計によつて被測定物体の各被測定
点が各測定位置通過時刻tにおいて放射する放射量S(
t)(各被測定点が第1測定位置において放射する放射
量S1および第2測定位置において放射する放射量S2
)を測定し、被測定物体の全放射率εを (式中、cは被測定物体の比熱、wは被測定物体の単位
表面積当りの重量、σはステファン・ポルツマンの定数
、θは被測定物体が第1測定位置と第2測定位置との間
で熱伝導によって失う熱量)によって求め、被測定物各
被測定点の時刻tにおける温度T(t)を、 T(tl二ε−1/4・Sft) によって求める温度計測方法。
(1) Determine in advance the time Δt required for each measured point of the measured object moving at a constant speed to pass between the first measurement position and the second measurement position that are separated from each other in the direction of the moving force. , the amount of radiation S(
t) (Radiation amount S1 emitted by each measured point at the first measurement position and radiation amount S2 emitted at the second measurement position
), and the total emissivity ε of the object to be measured is determined by (where c is the specific heat of the object to be measured, w is the weight per unit surface area of the object to be measured, σ is the Stefan-Polzmann constant, and θ is the object to be measured. The amount of heat that the object loses due to thermal conduction between the first measurement position and the second measurement position) is calculated, and the temperature T(t) of each measurement point of the object at time t is determined as 4.Sft) Temperature measurement method.
JP14268882A 1982-08-19 1982-08-19 Temperature measuring method Pending JPS5932832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14268882A JPS5932832A (en) 1982-08-19 1982-08-19 Temperature measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14268882A JPS5932832A (en) 1982-08-19 1982-08-19 Temperature measuring method

Publications (1)

Publication Number Publication Date
JPS5932832A true JPS5932832A (en) 1984-02-22

Family

ID=15321210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14268882A Pending JPS5932832A (en) 1982-08-19 1982-08-19 Temperature measuring method

Country Status (1)

Country Link
JP (1) JPS5932832A (en)

Similar Documents

Publication Publication Date Title
US5178464A (en) Balance infrared thermometer and method for measuring temperature
CA2012528C (en) Infrared thermometry system and method
US3715923A (en) Temperature measuring method and apparatus
US5294200A (en) Autocalibrating dual sensor non-contact temperature measuring device
EP0426517B1 (en) Autocalibrating dual sensor non-contact temperature measuring device
US6637931B2 (en) Probe for use in an infrared thermometer
US5464284A (en) Autocalibrating non-contact temperature measuring technique employing dual recessed heat flow sensors
JPH0666639A (en) Infrared thermometer
JPS5932832A (en) Temperature measuring method
US3610592A (en) Method and apparatus for estimating errors in pyrometer readings
Stock et al. The double-heatpipe black body: a high-accuracy standard source of spectral irradiance for measurements of T− T90
JPS6049246B2 (en) Measured value compensation method in infrared temperature measurement method
JPH03273121A (en) Radiation thermometer
JP3328408B2 (en) Surface temperature measurement method
JPS61270840A (en) Temperature measurement of semiconductor wafer
Pant et al. Realization of ITS-90 Radiance Temperature Scale from 961.78° C to 3000° C at CSIR-NPL
JPH0533330B2 (en)
JPH034855B2 (en)
KR100940741B1 (en) An apparatus for measuring emissivity of stainless steel
JPS5923369B2 (en) Zero-level heat flow meter
JPS5922501Y2 (en) radiation thermometer
JPH0427496B2 (en)
SU679823A1 (en) Thermosound
JP2697781B2 (en) Non-contact measurement method of object surface temperature facing a narrow gap
Cheng et al. Two simple and novel pyrheliometers