JPS5930812A - Preparation of high polymeric composite material - Google Patents

Preparation of high polymeric composite material

Info

Publication number
JPS5930812A
JPS5930812A JP14144482A JP14144482A JPS5930812A JP S5930812 A JPS5930812 A JP S5930812A JP 14144482 A JP14144482 A JP 14144482A JP 14144482 A JP14144482 A JP 14144482A JP S5930812 A JPS5930812 A JP S5930812A
Authority
JP
Japan
Prior art keywords
base material
vinyl monomer
thickness direction
high polymeric
polymeric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14144482A
Other languages
Japanese (ja)
Other versions
JPS6234328B2 (en
Inventor
Masaaki Arakawa
正章 荒川
Tomoyuki Murakami
知之 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP14144482A priority Critical patent/JPS5930812A/en
Publication of JPS5930812A publication Critical patent/JPS5930812A/en
Publication of JPS6234328B2 publication Critical patent/JPS6234328B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:To obtain a material usable for single-sided adhesive tapes, etc., by irradiating a high polymeric material with radiation, heating one side of the base material, cooling the other side at the same time, bringing a vinyl monomer into contact with the resultant high polymeric material to graft polymerize the vinyl monomer in a content different in the thickness direction. CONSTITUTION:A high polymeric material, e.g. a film, sheet or nonwoven fabric made of a synthetic resin or rubber, is irradiated with radiation, e.g. electron rays, of preferably 2-30 megarads dose to generate (hydro)peroxides or polymeric radicals. One side of the above-mentioned high polymeric material is then heated preferably at 50-100 deg.C, and the other side is cooled to preferably -50- +20 deg.C to give a concentration gradient to active sites of the peroxides, etc. present in the base material. The base material is then brought into contact with a vinyl monomer to graft polymerize the vinyl monomer in an amount different in the thickness direction of the base material and give the aimed composite material having functional properties different in the thickness direction of the base material.

Description

【発明の詳細な説明】 本発明は高分子複合材料の製造方法に関し、詳しくは、
その厚さ方向に異なる含有率で異種のビニルポリマーが
グラフト重合され、かくして、厚さ方向に異なる機能性
を有する複合高分子材料の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a polymer composite material.
The present invention relates to a method for producing a composite polymer material in which different types of vinyl polymers are graft-polymerized at different contents in the thickness direction, thus having different functionalities in the thickness direction.

従来、高分子材料に新たな機能性を付与するための方法
として、その表面に異種の重合体材料を接着したり、或
いはその表面に異種の重合体材料の溶液を塗布、乾燥し
たりして、当初の高分子材料表面に異種の重合体材料の
層を形成する方法が広く知られている。しかし、このよ
うな方法によれば、一般に元の高分子材料の上に層を形
成した異種重合体の接着性が悪く、また、溶剤希釈した
接着剤を用いるときは、元の高分子材料を劣化させるお
それがあるほか、環境公害の発生等の問題が生じるおそ
れもある。
Conventionally, methods for imparting new functionality to polymeric materials include adhering different types of polymeric materials to their surfaces, or coating and drying solutions of different types of polymeric materials on their surfaces. A widely known method is to form a layer of a different type of polymer material on the surface of an initial polymer material. However, with this method, the adhesion of the different polymer layer formed on the original polymeric material is generally poor, and when using an adhesive diluted with a solvent, the original polymeric material may be damaged. In addition to the risk of deterioration, there is also the risk of causing problems such as environmental pollution.

このため、高分子材料に異種のモノマーをグラフト共重
合させ、元の材料に異種の重合体を化学的に結合させる
方法が提案されている(特開昭56−49738号)。
For this reason, a method has been proposed in which a polymer material is graft-copolymerized with different types of monomers, and the different types of polymers are chemically bonded to the original material (Japanese Patent Laid-Open No. 49738/1983).

この方法によれば、元の材料と異種重合体との間の接着
性はすぐれているが、しかし、一般的には、高分子材料
の厚さ方向に均一にモノマーがグラフト共重合するので
、厚さ方向に異方性を有するように新たに機能性を付与
することができない。
According to this method, the adhesion between the original material and the different polymer is excellent, but in general, the monomer is graft-copolymerized uniformly in the thickness direction of the polymer material. It is not possible to add new functionality to the material so that it has anisotropy in the thickness direction.

本発明は上記に鑑みてなされたものであって、高分子の
厚さ方向に異なる含有率でビニルポリマーがグラフト重
合され、かくして、厚さ方向に異なる機能性を有する複
合高分子材料の製造方法を提供することを目的とする。
The present invention has been made in view of the above, and is a method for producing a composite polymer material in which vinyl polymers are graft-polymerized at different contents in the thickness direction of the polymer, and thus have different functionality in the thickness direction. The purpose is to provide

本発明による複合高分子材料の製造方法は、高分子材料
に放射線を照射してパーオキサイド、ハイドロパーオキ
サイド又はポリマーラジカルを発生させ、次に、この高
分子材料の一面を加熱すると共に他面を冷却した後、ビ
ニルモノマーを接触させ、上記高分子材料にその厚さ方
向に異なる含有率にてビニルポリマーを形成させること
を特徴とする。
The method for producing a composite polymer material according to the present invention involves irradiating a polymer material with radiation to generate peroxide, hydroperoxide, or polymer radicals, and then heating one side of the polymer material while heating the other side. After cooling, the method is characterized in that a vinyl monomer is brought into contact with the polymer material to form a vinyl polymer at a content rate that varies in the thickness direction of the polymer material.

本発明においては、放射線として、α線、β線、γ線、
X線、中性子線、電子線、紫外線等を用いることができ
るが、好ましくは、電子線が用いられる。また、放射線
量は高分子材料の種類や厚さ等にもよるが、通常、1〜
100メガラツドである。1メガラツド以下のときは、
処理した高分子材料におけるグラフト共重合の速度が小
さく、また、グラフト異重合体量も小さいからであり、
逆に100メガラツドを越えるときは、高分子材料の分
解劣化をきたすおそれがあるからである。特に好ましい
放射線量は2〜30メガラツドである。
In the present invention, radiation includes α rays, β rays, γ rays,
Although X-rays, neutron beams, electron beams, ultraviolet rays, etc. can be used, electron beams are preferably used. Furthermore, although the radiation dose depends on the type and thickness of the polymer material, it is usually 1 to
It is 100 megarads. When it is less than 1 megarad,
This is because the rate of graft copolymerization in the treated polymeric material is low and the amount of grafted heteropolymer is also small.
On the other hand, if it exceeds 100 megarads, there is a risk of decomposition and deterioration of the polymer material. A particularly preferred radiation dose is between 2 and 30 megarads.

放射雰囲気は空気、酸素、不活性気体のいずれでもよい
が、酸素存在下に放射線照射を行なうと、後述するビニ
ルモノマーのグラフト共重合が円滑に進行するので好ま
しい。
The radiation atmosphere may be air, oxygen, or an inert gas, but it is preferable to perform radiation irradiation in the presence of oxygen because the graft copolymerization of vinyl monomers described below proceeds smoothly.

次いで、本発明によれば、このように放射線を照射され
、パーオキサイド、ハイドロパーオキサイド又はポリマ
ーラジカルが発生した高分子材料の一面を加熱すると共
に、他面を冷却する。放射線照射により高分子材料にそ
の匝さ方向に均一にパーオキサイド等が生じている場合
でも、この加熱冷却処理により、高分子材料内にパーオ
キサイド等のグラフト共重合の行なわれる活性点に濃度
勾配が生じ、この結果、これにモノマーを接触させ、加
熱することにより、高分子材料には、その厚さ方向に異
なる含有率にてビニルポリマーがグラフト共重合される
のである。
Next, according to the present invention, one side of the polymeric material that has been irradiated with radiation and in which peroxide, hydroperoxide, or polymer radicals have been generated is heated, and the other side is cooled. Even if peroxide, etc. is uniformly generated in the polymer material in the slender direction due to radiation irradiation, this heating and cooling treatment creates a concentration gradient at the active sites where graft copolymerization of peroxide, etc. takes place within the polymer material. As a result, by bringing the monomer into contact with the monomer and heating it, the vinyl polymer is graft-copolymerized into the polymer material at different contents in the thickness direction.

高分子材料の加熱冷却温度は、用いる材料の種類や厚さ
にもよるが、フィルム又はシートの場合、通常、加熱源
温度は50〜100°Cが適当であり、また、冷却源温
度は一50〜20℃が適当であり、両者の温度差は30
℃以上あることが望ましい。
The heating and cooling temperature of polymeric materials depends on the type and thickness of the material used, but in the case of films or sheets, the appropriate heating source temperature is usually 50 to 100°C, and the cooling source temperature is constant. 50~20℃ is suitable, and the temperature difference between the two is 30℃.
It is desirable that the temperature is above ℃.

しかし、高分子材料が耐熱性を有するときは、加熱温度
を高くし、温度差を上記以上に大きくすることができる
However, when the polymeric material has heat resistance, the heating temperature can be increased to make the temperature difference larger than above.

高分子材料の一面を加熱し、他面を冷却する方法は特に
制限されない。例えば、高分子材料がフィルム又はシー
トの場合、冷却側を一定の低温に保った金属板や金属ロ
ールに接触させると共に、他面側を赤外線ヒーターや加
熱ロール等にて加熱すればよい。フィルム又はシートが
長尺物の場合、連続して一面を加熱し、他面を冷却する
ことができるのはいうまでもない。
The method of heating one side of the polymeric material and cooling the other side is not particularly limited. For example, if the polymeric material is a film or sheet, the cooled side may be brought into contact with a metal plate or metal roll kept at a constant low temperature, and the other side may be heated with an infrared heater, a heating roll, or the like. It goes without saying that when the film or sheet is long, one side can be heated and the other side can be cooled continuously.

本発明において基材として用いられる高分子材料は、合
成樹脂やゴムからなるフィルム、シート、織布、不織布
等である。合成樹脂やゴムは特に制限されることなく、
種々の物を用い得るが、具体例として、ポリエチレン、
ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン
、ポリスチレン、ポリテトラフルオロエチレン、ポリフ
ッ化ビニル、ポリフッ化ビニリデン、エチレン−プロピ
レン共重合体、テトラフルオロエチレンーヘキ号フルオ
ロプロピレン共重合体、ポリエステル、ポリアミド、ポ
リアクリル酸エステル、ポリメタクリル酸エステル、A
BS樹脂、エチレン−酢酸ビニル共重合体、ポリビニル
アルコール、ポリカーボネート、ポリシロキサン、エポ
キシ樹脂等の合成樹脂、天然ゴム、NBR,SBR,ポ
リイソブチレン、ポリブタジェン、イソプレン−イソブ
チレン共重合体等のゴムを挙げることができる。
The polymeric material used as the base material in the present invention is a film, sheet, woven fabric, nonwoven fabric, etc. made of synthetic resin or rubber. Synthetic resins and rubber are not particularly restricted,
Although various materials can be used, specific examples include polyethylene,
Polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polytetrafluoroethylene, polyvinyl fluoride, polyvinylidene fluoride, ethylene-propylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, polyester, polyamide, polyacrylic acid ester, polymethacrylate ester, A
Synthetic resins such as BS resin, ethylene-vinyl acetate copolymer, polyvinyl alcohol, polycarbonate, polysiloxane, epoxy resin, natural rubber, rubber such as NBR, SBR, polyisobutylene, polybutadiene, isoprene-isobutylene copolymer, etc. I can do it.

また、ビニルモノマーとしては、ラジカル重合し得るも
のであれば特に制限されることなく、種々のものを用い
ることができ、付与すべき機能性に応じて適宜に選ばれ
る。例えば、かかるビニルモノマーとして、一般的には
、α、β−不飽和カルボン酸、そのエステル、置換ビニ
ルモノマー、アリルモノマー等が用いられる。これらの
具体例として、例えば、アクリル酸、アクリル酸メチル
、アクリル酸エチル、アクリル酸ブチル、アクリル酸−
2−エチルヘキシル、アクリル酸ヒドロキシエチル、メ
タクリル酸、メタクリル酸メチル、メタクリル酸ヒドロ
キシエチル、クロトン酸、イタコン酸、マレイン酸、ジ
エチルアミノエチルメタクリレート、スルホプロピルア
クリレート、グリシジルメタクリレート、酢酸ビニル、
塩化ビニル、ビニルピリジン、ビニルピロリドン、ビニ
ルカルバゾール、アクリロニトリル、テトラフルオロエ
チレン、ブタジェン、イソプレン、プロピレン、スチレ
ン、スチレンスルホン酸、エチレン、ジアリルアミン等
を挙げることができるが、グラフト共重合性の大きいア
クリル酸、メタクリル酸又はそれらのエステル類が好ま
しく用いられる。
Moreover, as the vinyl monomer, there are no particular restrictions as long as it can be radically polymerized, and various types can be used, and are appropriately selected depending on the functionality to be imparted. For example, such vinyl monomers generally include α,β-unsaturated carboxylic acids, esters thereof, substituted vinyl monomers, allyl monomers, and the like. Specific examples of these include acrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, and acrylic acid.
2-ethylhexyl, hydroxyethyl acrylate, methacrylic acid, methyl methacrylate, hydroxyethyl methacrylate, crotonic acid, itaconic acid, maleic acid, diethylaminoethyl methacrylate, sulfopropyl acrylate, glycidyl methacrylate, vinyl acetate,
Examples include vinyl chloride, vinylpyridine, vinylpyrrolidone, vinylcarbazole, acrylonitrile, tetrafluoroethylene, butadiene, isoprene, propylene, styrene, styrene sulfonic acid, ethylene, diallylamine, etc., but acrylic acid with high graft copolymerizability, Methacrylic acid or esters thereof are preferably used.

本発明においては、このように放射線照射された基材を
、酸素を除去したビニルモノマー(溶液 −を含む。)
に接触させて、ビニルモノマーを基材にグラフト共重合
させる。基材にビニルモノマーを接触させる方法は、通
常、ビニルモノマーを基材に塗布するか、又はビニルモ
ノマー中に浸漬する。このようにして、基材をビニルモ
ノマーに接触させて、グラフト共重合させる際には、通
常、加熱を行なう。そのときの加熱温度は、基材や七ツ
マ−の種類によっても異なるが、通常、40〜150℃
である。しかし、基材がフッ素ポリマーのように耐熱性
を有する場合は、300°C以上に加熱することもでき
る。
In the present invention, the base material irradiated in this way is treated with a vinyl monomer (including a solution) from which oxygen has been removed.
to graft-copolymerize the vinyl monomer onto the base material. The method of bringing the vinyl monomer into contact with the substrate is usually by applying the vinyl monomer to the substrate or dipping it into the vinyl monomer. When the base material is brought into contact with the vinyl monomer and graft copolymerized in this manner, heating is usually performed. The heating temperature at that time varies depending on the base material and the type of nanatsuma, but is usually 40 to 150℃.
It is. However, if the base material has heat resistance such as a fluoropolymer, it can also be heated to 300°C or higher.

以上のように、本発明によれば、基材である高分子材料
に放射線を照射した後、基材の一面を加熱すると共に他
面を冷却して、基材内の有するパーオキサイド等のグラ
フト共重合の活性点に濃度勾配を与え、この後、かかる
基材にビニルモノマーを接触させて、ビニルモノマーを
グラフト共重合させるので、基材の厚さ方向に異なる量
にてビニルモノマーがグラフト共重合し、かくして、基
材の厚さ方向に機能性の異なる複合材料が得られる。従
って、本発明による複合高分子材料は、例えば、異方性
を有する選択性透過膜や電池用セパレータ、片面粘着テ
ープ等に応用することができると共に、グラフト共重合
させるビニルモノマーを選択することによって、表面活
性や耐候性その他、目的、用途に応じた好ましい特性若
しくは機能性を付加することができる。
As described above, according to the present invention, after irradiating a polymeric material as a base material with radiation, one side of the base material is heated and the other side is cooled to remove grafts such as peroxide contained in the base material. A concentration gradient is applied to the active sites for copolymerization, and then the vinyl monomer is brought into contact with the base material to graft copolymerize the vinyl monomer, so that the vinyl monomer is graft copolymerized in different amounts in the thickness direction of the base material. polymerization, thus obtaining a composite material with varying functionality across the thickness of the substrate. Therefore, the composite polymer material according to the present invention can be applied to, for example, anisotropic selectively permeable membranes, battery separators, single-sided adhesive tapes, etc., and can be applied by selecting the vinyl monomer to be graft copolymerized. , surface activity, weather resistance, and other desirable properties or functionality depending on the purpose and use can be added.

以下に本発明の実施例を挙げるが、本発明はこれら実施
例により何ら限定されるものではない。
Examples of the present invention are listed below, but the present invention is not limited to these Examples in any way.

尚、以下において、グラフト率は、式 %式%() によって定義され、ここにW。は基材高分子のグラフト
共重合前の重量、W6  はグラフト共重合体の重量で
ある。
In addition, in the following, the grafting rate is defined by the formula % formula % (), where W. is the weight of the base polymer before graft copolymerization, and W6 is the weight of the graft copolymer.

実施例1 厚さ100μの低密度ポリエチレンフィルムに空気中で
加速電圧200万V、ビーム電流5mAの電子線加速機
にて電子線を20メガラツド照射した。
Example 1 A low density polyethylene film having a thickness of 100 μm was irradiated with an electron beam of 20 megarads in air using an electron beam accelerator with an acceleration voltage of 2 million V and a beam current of 5 mA.

次に、このフィルムの裏面を20℃に保った鉄板に接触
させて冷却しつつ、表面を第1表に示す種々の温度を有
するホットプレートに1分間接触させて加熱した後、各
フィルムをミクロトームにて表裏面をそれぞれ20μ削
り壊り、これに含まれるパーオキサイド量を「実験化学
講座17、有機化合物の反応■ (上)」(日本化学全
編、丸善−発行)第620〜621頁に記載の過酸化物
分析法に従って定量した。結果を第1表に示すように、
フィルムの加熱された表面側のパーオキサイド量は冷却
された裏面側に比べて小さく、フィルム内テハーオキサ
イド量が濃度勾配を有することが確認された。
Next, the back side of this film was cooled by contacting it with an iron plate kept at 20°C, and the front side was heated by contacting it with a hot plate having various temperatures shown in Table 1 for 1 minute, and then each film was placed in a microtome. The front and back surfaces were scraped by 20 μm each, and the amount of peroxide contained in this was described in "Experimental Chemistry Course 17, Reactions of Organic Compounds (Part 1)" (Nippon Kagaku Complete Edition, published by Maruzen), pp. 620-621. quantified according to the peroxide analysis method of As the results are shown in Table 1,
It was confirmed that the amount of peroxide on the heated front side of the film was smaller than that on the cooled back side, and that the amount of theroxide in the film had a concentration gradient.

次に、アクリル酸−メタノール溶液(重量比1:1)に
窒素を吹き込んで溶存酸素を除去し、70℃に加熱し、
この中に上記と同じ処理をした各フィルムを15分間浸
漬した。この後、各フィルムを沸騰水に1時間浸漬して
、未反応のモノマーとホモ重合体を抽出除去し、80℃
で2時間乾燥した。
Next, nitrogen was blown into the acrylic acid-methanol solution (weight ratio 1:1) to remove dissolved oxygen, and the solution was heated to 70°C.
Each film treated in the same manner as above was immersed in this solution for 15 minutes. After that, each film was immersed in boiling water for 1 hour to extract and remove unreacted monomers and homopolymers, and then heated to 80°C.
It was dried for 2 hours.

このようにしてグラフト共重合させた各フィルムをミク
ロトームにより表面側及び裏面側を20μずつに削り取
り、各側について多重全反射式赤外分析法によるカルボ
ニル基の吸収から、グラフト共重合率を求めたとこ4ろ
、第2表に示す結果を得た。即ち、フィルムの厚さ方向
に異なる含有率にて、モノマーがグラフト共重合したこ
とが確かめられた。尚、表において、表面側の加熱源温
度は、第1表の実験番号と対応する。
Each film graft copolymerized in this way was scraped off to 20 μm on the front and back sides using a microtome, and the graft copolymerization rate was determined from the absorption of carbonyl groups on each side using multiple total internal reflection infrared analysis. However, the results shown in Table 2 were obtained. That is, it was confirmed that the monomers were graft copolymerized at different contents in the thickness direction of the film. In the table, the heating source temperature on the front side corresponds to the experiment number in Table 1.

実施例2 厚さ200μの低密度ポリエチレンフィルムに空気中で
加速電圧200万■、ビーム電流5mAの電子線加速機
にて電子線を40メガラツド照射した。次に、このフィ
ルムの裏面を15℃に保った冷却ロールに接触させ、表
面を100°Cの赤外線ヒーターで10分間加熱した。
Example 2 A low density polyethylene film having a thickness of 200 μm was irradiated with an electron beam of 40 megarads in air using an electron beam accelerator with an acceleration voltage of 2 million square meters and a beam current of 5 mA. Next, the back side of this film was brought into contact with a cooling roll kept at 15°C, and the front side was heated for 10 minutes with an infrared heater at 100°C.

次に、アクリル酸ブチル−メタノール溶液(重量比1:
1)に窒素を吹き込んで溶存酸素を除去し、88℃に加
熱し、この中に上記フィルムを12分間浸漬した後、フ
ィルムを60℃の熱メタノールに1時間浸漬して、未反
応のモノマーとホモ重合体を抽出除去し、70℃で30
分間乾燥したところ、10 g/rrrの重量増加が認
められた。
Next, butyl acrylate-methanol solution (weight ratio 1:
1) was blown with nitrogen to remove dissolved oxygen, heated to 88°C, and immersed the film in this for 12 minutes. The film was then immersed in hot methanol at 60°C for 1 hour to remove unreacted monomers. The homopolymer was extracted and incubated at 70°C for 30
After drying for a minute, a weight increase of 10 g/rrr was observed.

このフィルムを25m幅に切断し、表面側又は裏面側を
5US430ブライトアニール仕上げしたステンレス板
に貼り付け、2 kgのゴムローラで圧着した。20分
間放置した後、温度25°Cの雰囲気で引剥し速度30
0mm/分で180度引剥し剥離力を測定したところ、
裏面側は260g/25H幅、表面側は15 g / 
2 S in幅であって、冷却側の接着力が加熱側の接
着力に比べて著しく大きく、片面粘着テープとして利用
することができる。
This film was cut to a width of 25 m, the front side or the back side was attached to a 5US430 bright annealed stainless steel plate, and the film was pressed with a 2 kg rubber roller. After leaving it for 20 minutes, peel it off at a speed of 30 in an atmosphere at a temperature of 25°C.
When the peeling force was measured at 180 degrees at 0 mm/min,
The back side is 260g/25H width, the front side is 15g/
2 S in width, the adhesive strength on the cooling side is significantly larger than the adhesive strength on the heating side, and it can be used as a single-sided adhesive tape.

Claims (1)

【特許請求の範囲】[Claims] (1)高分子材料に放射線を照射してパーオキサイド、
ハイドロバーオキサイF又はポリマーラジカルを発生さ
せ、次に、この高分子材料の一面を加熱すると共に他面
を冷却した後、ビニルモノマーを接触させ、上記高分子
材料にその厚さ方向に異なる含有率にてビニルポリマー
を形成させることを特徴とする高分子複合材料の製造方
法。
(1) Peroxide is produced by irradiating a polymer material with radiation.
Hydroveroxy F or polymer radicals are generated, and then one side of this polymeric material is heated and the other side is cooled, and then a vinyl monomer is brought into contact with the polymeric material to contain different contents in the thickness direction. 1. A method for producing a polymer composite material, which comprises forming a vinyl polymer at a certain temperature.
JP14144482A 1982-08-13 1982-08-13 Preparation of high polymeric composite material Granted JPS5930812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14144482A JPS5930812A (en) 1982-08-13 1982-08-13 Preparation of high polymeric composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14144482A JPS5930812A (en) 1982-08-13 1982-08-13 Preparation of high polymeric composite material

Publications (2)

Publication Number Publication Date
JPS5930812A true JPS5930812A (en) 1984-02-18
JPS6234328B2 JPS6234328B2 (en) 1987-07-27

Family

ID=15292074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14144482A Granted JPS5930812A (en) 1982-08-13 1982-08-13 Preparation of high polymeric composite material

Country Status (1)

Country Link
JP (1) JPS5930812A (en)

Also Published As

Publication number Publication date
JPS6234328B2 (en) 1987-07-27

Similar Documents

Publication Publication Date Title
US4374232A (en) Graft copolymer membrane and processes of manufacturing and using the same
US9314746B2 (en) Hydrophilic porous substrates
JP3608406B2 (en)   Method for producing modified fluororesin molding
JP2002520450A (en) Low temperature electron beam polymerization
Ranby 'Surface photografting'onto polymers-a new method for adhesion control
JPS6145351B2 (en)
US20080248212A1 (en) Methods of making functionalized fluoropolymer films
JPS5930812A (en) Preparation of high polymeric composite material
US4865743A (en) Method for production of solution-diffusion membranes and their application for pervaporation
US4287275A (en) Alkaline cell with graft polymer separator
JPS5930811A (en) Preparation of high polymeric composite material
JPS6013823A (en) Continuous modification of surface of high polymer material
JPH04370123A (en) Production of modified fluororesin
JP3101085B2 (en) Manufacturing method of battery separator
JPS603334B2 (en) Polymer base material with fluorinated surface
US4379200A (en) Novel method of producing ion exchange membrane
JPS603093B2 (en) Fluorine resin base material with modified surface
JPH04309536A (en) Radiation grafting process and grafted product
JPH0142297B2 (en)
JPH066635B2 (en) Surface modification method for plastic film
JPH0261969B2 (en)
Thakur et al. Radiation-Induced Graft Copolymerization of Methacrylonitrile onto Poly (Tetrafluoroethylene-co-ethylene) Film by Discontinuous Method.
JPS63254140A (en) Method for modifying plastic film
JPS5959728A (en) Surface modification of plastic film or sheet
JPS63145311A (en) Modified polyvinylidene fluoride molding and its preparation