JPS5926906A - Amorphous carbon material - Google Patents

Amorphous carbon material

Info

Publication number
JPS5926906A
JPS5926906A JP57136787A JP13678782A JPS5926906A JP S5926906 A JPS5926906 A JP S5926906A JP 57136787 A JP57136787 A JP 57136787A JP 13678782 A JP13678782 A JP 13678782A JP S5926906 A JPS5926906 A JP S5926906A
Authority
JP
Japan
Prior art keywords
amorphous carbon
carbon material
hardness
action
properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57136787A
Other languages
Japanese (ja)
Inventor
Yukio Ichinose
一ノ瀬 幸雄
Fusao Shimokawa
房男 下川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57136787A priority Critical patent/JPS5926906A/en
Publication of JPS5926906A publication Critical patent/JPS5926906A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1604Amorphous materials

Abstract

PURPOSE:To prepare an amorphous carbon material having light-emitting and semiconductive characteristics and high hardness, by decomposing a hydrocarbon material in a vacuum vessel with a plasma generated by the action of RF high frequency electrical field, thereby depositing the produced carbon. CONSTITUTION:A hydrocarbon material of methane-, ethylene- or acetylene- series is converted to plasma in a vacuum vessel by the action of RF high frequency electrical field, and is decomposed and deposited to a silicon substrate or a slide glass plate by the action of the plasma. The obtained thin-film is a light- yellow transparent substance composed of carbon material having amorphous structure to which hydrogen is firmly bonded, based on the X-ray diffraction and IR absorption spectrum. The carbon material has a light-emitting characteristic having a peak at about 2.6eV, a semiconductive characteristic having an optical gap of about 3.0eV, and a hardness harder than a carbide tool and comparable to diamond.

Description

【発明の詳細な説明】 本発明は、真空容器内において炭化水素糸物負(例えば
CH=、 C=)i・、C[有]Ho・・・・・などメ
タン系炭化水素あるいはC,H4,C,H=などエチレ
ン系炭化水累、アセチレン系炭化水素)をRF高周波電
界ラジオ周波数)の作用のもとにプラズマ分解析出は)
プラズマCVDという)して得られる発光特性ならびに
半導体特性を有しかつ高硬度なアモルファス炭3Fi:
月料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to the production of methane-based hydrocarbons such as hydrocarbon threads (for example, CH=, C=) , C, H = ethylenic hydrocarbons, acetylene hydrocarbons) under the action of RF high frequency electric field (radio frequency).
Amorphous carbon 3Fi with high hardness and luminescent properties and semiconducting properties obtained by plasma CVD:
It concerns monthly charges.

プラズマCVD法によって得られたアモルファス炭素材
料は、淡黄色の透明物質で、次の2つの大きな特徴ある
物理的性質を有することが見出された。
It has been discovered that the amorphous carbon material obtained by plasma CVD is a pale yellow transparent substance and has the following two major physical properties.

1つは、発光特性ならびに半導体特性を有することで、
水銀ランプの発する365/X7771−紫外線励起に
よって2.6eV  に発光ピークを持つ青白色の明る
いフォトルミネッセンスが観察され、かつ3. OeV
の光学ギャップを有する半導体特性を示した。
One is that it has light emitting properties and semiconductor properties,
3. Bright blue-white photoluminescence with an emission peak at 2.6 eV was observed by excitation of 365/X7771-ultraviolet light emitted by a mercury lamp, and 3. OeV
It exhibited semiconductor properties with an optical gap of .

この性質は、実用面からは、青白色の発光ダイオードあ
るいは半導体レーザダイオードとしての可能性を有する
From a practical standpoint, this property has the potential to be used as a blue-white light emitting diode or a semiconductor laser diode.

また青白色の螢光ランプへの応用も可能であり、青白色
の透明螢光ランプの実現の可能性もある。
It is also possible to apply it to a blue-white fluorescent lamp, and there is a possibility of realizing a blue-white transparent fluorescent lamp.

さらに大きな光学ギャップを有することから、高効率太
陽電池への可能性も考えられる。
Since it has an even larger optical gap, it is possible that it could be used as a high-efficiency solar cell.

他の価値ある特徴の1つは、ダイヤモンドに匹敵する極
めて高い硬度を有しているということである。
One of its other valuable features is that it has extremely high hardness, comparable to diamond.

アモルファス炭素材料は、物質の表面に容易に膜状とし
て析出形成できることから、この極めて硬いという性質
を一般の物質に賦与して劇摩耗性の優れたものに改善で
きるという極め″′C有用な応用が考えられる。
Since amorphous carbon materials can be easily formed as a film on the surface of materials, they have an extremely useful application in that they can impart this extremely hard property to ordinary materials and improve them to have excellent wear resistance. is possible.

例えばメガネレンズあるいは、腕時計のカバーガラスな
どはよく傷がつき見苦しくなる場合があるが、アモルフ
ァス炭素材料をこれらの上に析出被着させることによっ
て全く傷のつかないものに改善することは容易である。
For example, eyeglass lenses and watch cover glasses often get scratched and become unsightly, but it is easy to make them completely scratch-free by depositing amorphous carbon material on them. .

本発明は、このように特異なかつ有用な物理的、機械的
性質を有するアモルファス炭素材料特にアモルファス炭
素薄膜材料に関して基本的かつ実用的に価値ある技術を
提供しようとするものである。
The present invention aims to provide fundamental and practically valuable technology regarding amorphous carbon materials, particularly amorphous carbon thin film materials, which have such unique and useful physical and mechanical properties.

従来、アモルファス炭素材料は油煙(スス)として知ら
れているもので、その応用例は鉛筆の芯、墨汁などの他
、導電材料として摺動子接点制料など、また耐熱性を利
用した炉材などの炭素製品として実用に供されてきてい
る。
Traditionally, amorphous carbon materials have been known as soot, and their applications include pencil lead, India ink, etc., as well as conductive materials such as slider contact materials, and furnace materials that take advantage of their heat resistance. It has been put into practical use as carbon products such as carbon products.

しかし、本発明において提供されるアモルファス炭素材
料のように半導体的1機械的にその特異な機能を賦与し
たものでこれまでに実用化された例はまだない。
However, there has not yet been an example of an amorphous carbon material provided with a semiconductor-like or mechanically unique function that has been put into practical use like the amorphous carbon material provided in the present invention.

アモルファス炭素材料をアセチレンガスのグロー放電分
解゛法により初めて作成し、電気的、光学的性質を倹約
した例としてAnd6rson (英国)の報告がある
There is a report by And6rson (UK) as an example in which an amorphous carbon material was created for the first time by the glow discharge decomposition method of acetylene gas, and its electrical and optical properties were economized.

また、その後アセチレンガスにホスフィン、ジボランな
どのガスを混入してアモルファス炭素材料を作成し、主
にその電気的特性について報告したものにMeyerS
On (英国)がイル。
In addition, MeyerS.
On (UK) is IL.

さらに、■ora(英国)らが、メタンをグロー放電分
解して立方晶の結晶構造を持つ擬ダイヤモンド膜を形成
せしめたとの報告を行なっているのみで、膜の電気的、
光学的性質については述べられていない。
Furthermore, ORA (UK) et al. have only reported that a pseudodiamond film with a cubic crystal structure was formed by glow discharge decomposition of methane, but the electrical and
No mention is made of optical properties.

ごく最近、渡辺らは、エチレンガスのグロー放電分解に
より、析出形成したアモルファス炭素膜の発光特性を報
告したか光学ギャップ2.6eV、発光ピークエネルギ
ー2.OeV程度と小さいものであった。
Very recently, Watanabe et al. reported the luminescence properties of an amorphous carbon film precipitated by glow discharge decomposition of ethylene gas, with an optical gap of 2.6 eV and an emission peak energy of 2. It was as small as about OeV.

さらに、本発明にかかるアモルファス炭素材料と異なる
ものの、同様な発光特性、半導体特性を有するものとし
て大木らによりケイ累ターゲットを用いてプロパンガス
雰囲気で反応性スパッタリングすることによりアモルフ
ァス炭化ケイ素材料を。
Furthermore, although different from the amorphous carbon material according to the present invention, it has similar luminescent properties and semiconducting properties.Oki et al. produced an amorphous silicon carbide material by reactive sputtering in a propane gas atmosphere using a silicon target.

又あるいは、テトラメチルシラン(s t (CH,)
 4)をグロー放電分解することによりアモルファス炭
化ケイ素材料を膜状に析出形成した例が報告されている
Alternatively, tetramethylsilane (s t (CH,)
An example has been reported in which an amorphous silicon carbide material was deposited in a film form by glow discharge decomposition of 4).

しかし、発光特性はおよそ2.0〜2.3eV であり
光学ギャップは2.5〜2.6eV  とそれぞれ小さ
い値であることが報告されている程度に過ぎない。
However, it has only been reported that the emission characteristics are approximately 2.0 to 2.3 eV and the optical gap is 2.5 to 2.6 eV, which are small values.

これらの結゛果に対し、本発明にかかるアモルファス炭
素薄膜材料の特徴は、2.6 eV と比較的短波長側
に発光ピークを持ち、さらに3.OeVと極めて大きな
光学ギャップを有すると共に極めて硬いという機械的強
度を伽えた物質であることである。
In contrast to these results, the amorphous carbon thin film material according to the present invention is characterized by having an emission peak on the relatively short wavelength side of 2.6 eV, and 3. It is a material with outstanding mechanical strength, having an extremely large optical gap of OeV and being extremely hard.

以1に、本発明の効果を検証するため、後述の実施例1
に記載した条件でシリコン基板上ならびにスライドガラ
ス上にプロパンガスのプラズマCVDにより分解析出し
て得られたアモルファス炭素薄膜材料の物理的、光学的
2機械的性負について軸べた結果について述べる。
First, in order to verify the effects of the present invention, Example 1 described below will be described.
We will discuss the physical, optical, and mechanical properties of amorphous carbon thin film materials obtained by fractional deposition using propane gas plasma CVD on silicon substrates and glass slides under the conditions described in .

プロパンガスのプラズマCVDにより得られたアモルフ
ァス炭素薄膜は、淡黄色の透明材料である。
The amorphous carbon thin film obtained by propane gas plasma CVD is a pale yellow transparent material.

スライドガラス基板から剥離した膜の比重は浮遊法(薄
膜状物質の比重測定法の一つである)により測定したと
ころ1.15〜1.16 ycTL”  であった。
The specific gravity of the film peeled off from the slide glass substrate was 1.15 to 1.16 ycTL'' as measured by a floating method (one of the methods for measuring the specific gravity of thin film-like substances).

ダイヤモンドの比lはa、 51 t7crXであり、
これよりはるかに小さな値であった。
The ratio l of diamond is a, 51 t7crX,
The value was much smaller than this.

尚、上記浮遊法による比重の測定について述べれ測定に
用いた重液は臭化亜鉛(ZnBrx比k 4.219)
でこれに膜を浮べ希釈液のエタノール(C−)1=OH
比m0.793)を加えながら重液の比重を変えて膜か
丁度沈降開始したときの液比lをもって、その膜の比重
とする。
The measurement of specific gravity by the above-mentioned floating method is described. The heavy liquid used for the measurement was zinc bromide (ZnBrx ratio k 4.219).
Float the membrane on this and dilute the diluted ethanol (C-)1=OH
The specific gravity of the heavy liquid is changed while adding the ratio m0.793), and the liquid ratio 1 at which the membrane just starts to settle is taken as the specific gravity of the membrane.

作製した薄膜材料は、第1図のX線回折の結果よりアモ
ルファス構造であることを確認した。
The produced thin film material was confirmed to have an amorphous structure from the X-ray diffraction results shown in FIG.

また第2図は、この薄膜の赤外吸収スペクトルを示して
いる。
Moreover, FIG. 2 shows the infrared absorption spectrum of this thin film.

この図よりおよそ2900cm−’ 、  1460c
IrL−、’ 。
Approximately 2900cm-', 1460c from this figure
IrL-,'.

1380 cm−’にそれぞれC−H九の伸縮振動、C
−HjC−出の変角振動による強い吸収が観察され、こ
れよりアモルファス炭素薄膜材料には水素が強く結合し
ていることが知られた。
Stretching vibration of C-H9 at 1380 cm-', C
Strong absorption due to bending vibration of -HjC- was observed, and from this it was known that hydrogen was strongly bonded to the amorphous carbon thin film material.

その証拠として最高600℃まで加熱焼鈍したが、これ
らの特性には何らの変化が認められなかった。
As proof of this, the material was annealed at a maximum temperature of 600°C, but no change was observed in these properties.

これらの結果よりこのプロパンカスのプラズマCVDに
より形成された薄膜は、主にC,H原子より構成された
アモルファス炭素材料であることが判明した。
These results revealed that the thin film formed by plasma CVD of propane gas was an amorphous carbon material mainly composed of C and H atoms.

またこの膜の抵抗率yは、10”ΩcrIL程度であっ
た。
Further, the resistivity y of this film was approximately 10'' ΩcrIL.

以上のような本発明にかかる水素を含有するアモルファ
ス炭素薄膜材料の第1の効果である発光特性についてま
ず詳述する。
First, the light emitting property, which is the first effect of the hydrogen-containing amorphous carbon thin film material according to the present invention, will be described in detail.

水銀灯365?2mの紫外線励起による発光特性はスラ
イドガラス上に形成されたアモルファス炭素薄膜材料に
よって詭べられた。
The luminescence characteristics caused by ultraviolet excitation from a 365-2m mercury lamp were studied using an amorphous carbon thin film material formed on a slide glass.

この結果は、第3図に示されている。The results are shown in FIG.

この図で3つの曲線は、基板温度を室温、100℃。The three curves in this figure are for substrate temperatures of room temperature and 100°C.

150℃で作成された材料の発光特性を示している。It shows the luminescent properties of the material made at 150°C.

室温で作成した材料は発光ピークエネルギーが2.6 
eVで青白色の発光が観察された。
The material created at room temperature has an emission peak energy of 2.6
Blue-white light emission was observed at eV.

また100℃、150℃と作成温度の上昇とともに低エ
ネルギー側に発光ピークがシフトする傾向がみられた。
Furthermore, as the production temperature increased to 100°C and 150°C, there was a tendency for the emission peak to shift to the lower energy side.

また第4図は、可視吸収スペクトルを示す図で、室温で
作成した膜では吸収端が3.OeVにある。
Moreover, FIG. 4 is a diagram showing the visible absorption spectrum, and the absorption edge of the film prepared at room temperature is 3. It is in OeV.

これらの発光ピークエネルギー、光学ギャップは。What are their emission peak energies and optical gaps?

現在までに報告されているアモルファスケイ素。Amorphous silicon reported to date.

アモルファス炭化ケイ素材料を含めて最大の値であった
This was the highest value including the amorphous silicon carbide material.

この発光特性および可視吸収スペクトルは、ブラズマC
VDの分解析出の条件により多少変化し、例えは後述の
実施例2による場合には発光ピークが2・3 eV、可
視吸収スペクトルの光学ギャップが2.7eVであった
This emission characteristic and visible absorption spectrum are based on plasma C
It varies somewhat depending on the conditions of the VD separation, and for example, in the case of Example 2 described later, the emission peak was 2.3 eV and the optical gap of the visible absorption spectrum was 2.7 eV.

このことは、アモルファス炭素薄膜材料の製造条件によ
って光学的、半導体的性質の一部を適消変化させ、うる
ものであることを示唆している。
This suggests that some of the optical and semiconductor properties can be appropriately changed depending on the manufacturing conditions of the amorphous carbon thin film material.

さて本発明にかかる第2の効果は極めて特異な問題でア
モルファス炭素材料がダイヤモンドに匹敵しつる高硬度
を持っているという材料物性で革命的特性の結果を検証
することである・ 第5図は、各種の材料の硬さをそれぞれ大小関係で示し
た結果である。
Now, the second effect of the present invention is to verify the revolutionary property of an amorphous carbon material in terms of material physical properties, which is a very unique problem and has a high hardness comparable to that of diamond. , which shows the hardness of various materials in terms of magnitude.

すなわち本発明によって得られたアモルファス炭素材料
について寺沢式マイクロビッカース硬度計(本硬度u1
は、薄膜用硬度計として使用されているもので、敢低荷
i0,14n高荷重が2001まで測定が可能かもので
ある。)により硬さ測定を次の手順で行なった。
That is, the amorphous carbon material obtained by the present invention was measured using a Terasawa micro-Vickers hardness tester (actual hardness u1).
is used as a hardness tester for thin films, and can measure low loads i0,14n and high loads up to 2001. ), the hardness was measured using the following procedure.

まず、アモルファス炭素材料は薄膜材料であることから
初めに0.11の荷重の下で測定したところダイヤモン
ド圧子の圧痕は全く認められなかったO 次いで荷lを1ノ、5?、10?・・・・と引き続き増
大して硬度測定を行なったが先と同様全くダイヤモンド
圧子の圧痕はつかず1001に至って薄膜材料に十文字
状の亀裂が初めて確認できるにいたった。
First, since the amorphous carbon material is a thin film material, when it was first measured under a load of 0.11, no indentation by the diamond indenter was observed. , 10? The hardness continued to increase and the hardness was measured, but as before, there was no indentation of the diamond indenter at all, and when it reached 1001, a cross-shaped crack in the thin film material could be observed for the first time.

しかし、なおかつ十文字状亀裂の中心に硬度値を与える
ダイヤモンド圧子の圧痕は確認できなかった。
However, no indentation by the diamond indenter, which gives hardness values, could be observed at the center of the criss-cross crack.

この実験結果は、まさに本発明にかかるアモルファス炭
素材料がダイヤモンドに匹敵する尚い硬度値を有してい
ることの証明である。
This experimental result proves that the amorphous carbon material according to the present invention has a hardness value comparable to that of diamond.

さらにこれを実証するためにモース硬度と呼ばれる硬度
測定の方法に従って、他種材料とそれぞれ引っ掻き方法
によって硬さの順位を比較して並べた結果が第5図であ
る。
Furthermore, in order to prove this, according to a hardness measurement method called Mohs hardness, the hardness rankings of the materials are compared and arranged according to the scratching method with other materials, and the results are shown in FIG.

すなわちダイヤモンドとアモルファス炭素材料では互い
に傷をつけ合うことはできないが他の材料に対しては容
易に引っ掻き傷をつけうろことを確認した。
In other words, it was confirmed that diamond and amorphous carbon materials cannot scratch each other, but they easily scratch other materials.

以上に本発明にかかるアモルファス炭素材料の物理的、
光学的1機械的性質について概略を説明したが以下では
実施例をもって詳細に説明する。
As described above, the physical properties of the amorphous carbon material according to the present invention,
Although the optical and mechanical properties have been briefly explained, they will be explained in detail using examples below.

実施例1 銹導結合型のプラズマCVD装置(石英管50醜ψ )
においてまず真空容器を10〜10Torrに真空排気
した後市販のプロパン(純度983%)ガスを4 g 
mTorrになるように導入しRFi 3.56 ME
(z、 N力20Wを投入しプラズマCVDによってシ
リコン基板およびスライドガラス基板上にアモルファス
炭素材料を厚さ10.L4?lL程度の膜状に析出形成
させた。
Example 1 Plasma CVD device of galvanic coupling type (quartz tube 50 mm)
First, the vacuum container was evacuated to 10 to 10 Torr, and then 4 g of commercially available propane (983% purity) gas was added.
Introduced to become mTorr RFi 3.56 ME
(z, N power of 20 W was applied and an amorphous carbon material was deposited and formed into a film with a thickness of about 10.L4-1L on a silicon substrate and a slide glass substrate by plasma CVD.

基板温度は室温、100℃、150’Cの3種類で杓う
た。
Three types of substrate temperature were used: room temperature, 100°C, and 150'C.

また堆積速度は100〜zooi−であり堆積速度は基
板温度の上昇とともに若干減少する傾向があった。
Further, the deposition rate was 100 to zooi-, and the deposition rate tended to decrease slightly as the substrate temperature increased.

得られた膜の構造は第1図のX線回折の結果からもわか
るように炭素の回折線はみられずアモルファスであるこ
とが@誌された。
It was reported that the structure of the obtained film was amorphous, with no carbon diffraction lines seen, as can be seen from the X-ray diffraction results shown in Figure 1.

スライドガラス基板上に堆積した膜について水銀灯36
5vrL紫外線励起により発光特性を調べた結果は第3
図に示されている。
Mercury lamp 36 for films deposited on slide glass substrates
The results of investigating the luminescence characteristics by 5vrL ultraviolet excitation are as follows.
As shown in the figure.

また可視吸収スペクトルを調べた結果は第4図で示され
ている。
Further, the results of examining the visible absorption spectrum are shown in FIG.

すなわち塞流で形成されたアモルファス炭素材料は2,
6eVにピークを持つ発光特性を有し、かつ光学ギャッ
プ3.OeV の半導体性負な有する物質であることが
わかる。
In other words, the amorphous carbon material formed by blockage is 2,
It has light emission characteristics with a peak at 6 eV, and has an optical gap 3. It can be seen that the material has a negative semiconducting property of OeV.

さらに基板@度の上昇に伴い発光特性、ならびに光学ギ
ャップは低エネルギー側にそれぞれ移動した、 また、その発光強度は、この3つの間で同等であった。
Furthermore, as the substrate temperature increased, the emission characteristics and the optical gap shifted to the lower energy side, and the emission intensity was equivalent among the three.

なおこの物・債をマイクロビッカース硬度針によって硬
度測定を行なったところダイヤモンド圧子の庄成はみら
れず測定不可能であった。
When the hardness of this product/bond was measured using a micro Vickers hardness needle, no hardening of the diamond indenter was observed and measurement was impossible.

この膜で他物質に傷をつけたところ第5図に示すような
硬さの順位が得られた。
When this film was used to scratch other materials, the hardness rankings shown in Figure 5 were obtained.

すなわちこの膜物質はダイヤモンドと同程度の硬さを有
していることが知られた。
In other words, it is known that this film material has a hardness comparable to that of diamond.

これらの膜を200℃、400℃、600℃の各温度で
30分間真空焼鈍して物理的、光学的。
These films were vacuum annealed at 200°C, 400°C, and 600°C for 30 minutes to improve physical and optical properties.

機械的緒特性を同様な方法で測定したが焼鈍以前の膜と
比較して何らの変化もみられなかった。
Mechanical properties were measured using the same method, but no changes were observed compared to the film before annealing.

実施例2 上記の装置において市販のプロパンガスを5簿Torr
となしプラズマCVD法により先と同様分解析出して得
られた膜の発光特性は2.3eVにピークを持ち可視吸
収スペクトルの吸収端は2.7eVであった。
Example 2 In the above apparatus, commercially available propane gas was heated to 5 Torr.
The luminescent properties of the film obtained by fractional analysis using the Tonashi plasma CVD method in the same manner as before had a peak at 2.3 eV, and the absorption edge of the visible absorption spectrum was 2.7 eV.

一方マイクロビッカース硬度計による硬度測定は、先と
同様に不用能であった。
On the other hand, hardness measurement using a micro-Vickers hardness meter was, as before, useless.

また・、お互いの引っ掻き偽による相対的硬度比較は第
5図と同じ結果であった。
In addition, a comparison of the relative hardness between the scratches and the scratches yielded the same results as shown in FIG.

以上のように本発明にかかるアモルファス炭素材料は、
その発光特性、半導体特性および機械特性などにおいて
従来の物質とは、まったく比肩しえない稀なる特性を有
するものでその応用的価値は極めて犬であるといえる。
As described above, the amorphous carbon material according to the present invention is
It has rare properties that are completely incomparable to conventional materials in terms of luminescent properties, semiconductor properties, mechanical properties, etc., and it can be said that its application value is extremely unique.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、アモルファス炭素材料のX線回折を示す図、
第2図は、アモルファス炭素材料の赤外吸収スペクトル
を示す図、第3図は、アモルファス炭素材料の水銀灯励
起による発光特性を示す図、第4図は、アモルファス炭
素材料の可視吸収スペクトルを示す図、第5図は、アモ
ルファス炭素材料の硬さを相対的に比較した図である。 昭和57年8月 5 日 出願人   −ノ 瀬   幸  16雄発明者  下
  川  房  男 7/浦 2θ (龜8) 72弗 +vQV@1lullloar   1cln’1】Z
佃 手続補正書(加0 昭和57年124 p B 特許庁長官若杉和夫 殿 1、事件の表示 アモルファス炭素材料 3 補正をする者 事′件との関係 特許出願人 −)瀬 幸 雄 4、代理人 5、補正命令の日付   昭和57年11月12日特願
 昭57−136787号手続補正書本願(=関し明細
曹中下記の箇所を補正する。 記 1 第11頁第12行目から第13行目の「第5図は、
・・−・結果である。」とあるを削除する・ 2 第13頁第7行目から第8行目の「引っ掻き方法・
・・・第5図である。」とあるを次のよう菟二補正する
。 [引っ掻き方法(二よって硬さの順位を比較して並べる
と、 タイヤモンドゴアモ乞σメ炭素〉超硬工具〉石英〉ガラ
ス〉軟鋼〉銅となった。」 3 第17頁第6行目から第7行目の「お互いの・・Φ
・結果であった。」とあるを次のように補正する。 「お互いの引っ掻き傷による相対的硬度比較#ま前肝己
の、 タイヤセンド2ア七ηアス炭素〉超硬工具〉石英〉カス
〉軟鋼〉銅と同じ結果であった。」 4 第18頁第3行目から第5行目の「第4図は。 ・・φ・図である。」とあるを次のように補正する。 r*4図は、アモルファス炭素材料の同視吸収スペクト
ルを示す図である。」 5 第16頁第5行目から第6行目の「この膜で・・・
・得られた。」とあるを次のよう(=補正する。 「この膜で他物質4二傷をつけたところ、灯ヤモンド2
)ファス炭素〉超硬工具〉石英〉カス〉軟鋼〉銅のよう
な硬さの順位が得られた。」
FIG. 1 is a diagram showing X-ray diffraction of an amorphous carbon material,
Figure 2 shows the infrared absorption spectrum of the amorphous carbon material, Figure 3 shows the emission characteristics of the amorphous carbon material when excited by a mercury lamp, and Figure 4 shows the visible absorption spectrum of the amorphous carbon material. , FIG. 5 is a diagram showing a relative comparison of the hardness of amorphous carbon materials. August 5, 1981 Applicant - Nose Yuki 16 Male Inventor Fusa Shimokawa 7/Ura 2θ (8) 72 弗+vQV@1lulloar 1cln'1]Z
Tsukuda Procedural Amendment (K0 1981 124 p B Kazuo Wakasugi, Commissioner of the Japan Patent Office 1, Indication of the case Amorphous carbon material 3 Person making the amendment Relationship with the case Patent applicant -) Yukio Se 4, Agent 5. Date of amendment order: November 12, 1980 Patent application No. 136787/1987 Procedural amendment main application (=The following parts of the detailed description are amended. Note 1 Page 11, lines 12 to 13 The fifth figure of the eye is
...--This is the result. 2 Delete "Scratching method" from line 7 to line 8 on page 13.
...Figure 5. '' is amended by Soji as follows. [Scratching method (2) Comparing and arranging the hardness rankings, the results were: carbon, carbide tools, quartz, glass, mild steel, and copper.'' 3 Page 17, line 6 In line 7, “each other’s...Φ
・It was a result. ” should be corrected as follows. "A comparison of relative hardness based on mutual scratches. The results were the same as those of Tire Send 2A, Carbon, Carbide Tools, Quartz, Scum, Mild Steel, and Copper." 4 Page 18 In the third to fifth lines, the statement ``Figure 4 is . The r*4 diagram is a diagram showing an isotropic absorption spectrum of an amorphous carbon material. ” 5 Page 16, lines 5 to 6, “With this membrane...
・Obtained. ” is corrected as follows (=corrected. “When I made 42 scratches on other substances with this film, Toriyamond 2
) Hardness rankings were obtained such as Fas carbon, carbide tools, quartz, scum, mild steel, and copper. ”

Claims (1)

【特許請求の範囲】[Claims] 真空容器内において炭化水素系物賃をRF高周波電界の
作用によりプラズマ状となし、その作用によって分解、
析出形成せられた発光特性ならびに半導体特性を有し、
かつ高硬度なアモルファス炭素材料。
In a vacuum container, hydrocarbons are turned into a plasma by the action of an RF high-frequency electric field, and decomposed by that action.
It has precipitated luminescent properties and semiconducting properties,
Amorphous carbon material with high hardness.
JP57136787A 1982-08-05 1982-08-05 Amorphous carbon material Pending JPS5926906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57136787A JPS5926906A (en) 1982-08-05 1982-08-05 Amorphous carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57136787A JPS5926906A (en) 1982-08-05 1982-08-05 Amorphous carbon material

Publications (1)

Publication Number Publication Date
JPS5926906A true JPS5926906A (en) 1984-02-13

Family

ID=15183503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57136787A Pending JPS5926906A (en) 1982-08-05 1982-08-05 Amorphous carbon material

Country Status (1)

Country Link
JP (1) JPS5926906A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62265113A (en) * 1986-05-09 1987-11-18 Yasunobu Akimoto Production of hard carbon thin sheet
GR880100402A (en) * 1987-08-03 1989-05-25 Siemens Ag New basic material for semiconductors conrtuction
AU614090B2 (en) * 1987-08-03 1991-08-22 Siemens Aktiengesellschaft Semiconductor base material
US5135808A (en) * 1990-09-27 1992-08-04 Diamonex, Incorporated Abrasion wear resistant coated substrate product
US5527596A (en) * 1990-09-27 1996-06-18 Diamonex, Incorporated Abrasion wear resistant coated substrate product
US5637353A (en) * 1990-09-27 1997-06-10 Monsanto Company Abrasion wear resistant coated substrate product
US5643423A (en) * 1990-09-27 1997-07-01 Monsanto Company Method for producing an abrasion resistant coated substrate product
EP0787070A1 (en) * 1994-08-31 1997-08-06 Mobil Oil Corporation Protective coating for pressure-activated adhesives
US5827522A (en) * 1996-10-30 1998-10-27 Troy Corporation Microemulsion and method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62265113A (en) * 1986-05-09 1987-11-18 Yasunobu Akimoto Production of hard carbon thin sheet
GR880100402A (en) * 1987-08-03 1989-05-25 Siemens Ag New basic material for semiconductors conrtuction
AU614090B2 (en) * 1987-08-03 1991-08-22 Siemens Aktiengesellschaft Semiconductor base material
US5055421A (en) * 1987-08-03 1991-10-08 Siemens Aktiengesellschaft Method for the plasma deposition of hydrogenated, amorphous carbon using predetermined retention times of gaseous hydrocarbons
US5635245A (en) * 1990-09-27 1997-06-03 Monsanto Company Process of making abrasion wear resistant coated substrate product
US5527596A (en) * 1990-09-27 1996-06-18 Diamonex, Incorporated Abrasion wear resistant coated substrate product
US5135808A (en) * 1990-09-27 1992-08-04 Diamonex, Incorporated Abrasion wear resistant coated substrate product
US5637353A (en) * 1990-09-27 1997-06-10 Monsanto Company Abrasion wear resistant coated substrate product
US5643423A (en) * 1990-09-27 1997-07-01 Monsanto Company Method for producing an abrasion resistant coated substrate product
US5844225A (en) * 1990-09-27 1998-12-01 Monsanto Company Abrasion wear resistant coated substrate product
EP0787070A1 (en) * 1994-08-31 1997-08-06 Mobil Oil Corporation Protective coating for pressure-activated adhesives
EP0787070A4 (en) * 1994-08-31 1998-12-02 Mobil Oil Corp Protective coating for pressure-activated adhesives
US5827522A (en) * 1996-10-30 1998-10-27 Troy Corporation Microemulsion and method

Similar Documents

Publication Publication Date Title
CN101688286B (en) Thin film semiconductor material produced through reactive sputtering of zinc target using nitrogen gases
WO2005103326A1 (en) Carbon film
JPS5926906A (en) Amorphous carbon material
Khatami et al. Process-dependent mechanical and optical properties of nanostructured silicon carbonitride thin films
Wang et al. Characterization of AlN thin films prepared by unbalanced magnetron sputtering
Gupta et al. Synthesis of DLC films by electrodeposition technique using formic acid as electrolyte
Wang et al. Electrochemical corrosion behaviors of aC: H and aC: NX: H films
Cui et al. Effects of microwave power on the structural and emission properties of hydrogenated amorphous silicon carbide deposited by electron cyclotron resonance chemical vapor deposition
Ma et al. High-rate, room-temperature synthesis of amorphous silicon carbide films from organo-silicon in high-density helicon wave plasma
Smith et al. Nitrogen-doped plasma enhanced chemical vapor deposited (PECVD) amorphous carbon: processes and properties
Sathyamoorthy et al. Studies of the sputter deposition of carbon, silicon and SiC films
Das et al. Low temperature growth of diamond-like nanocomposite films prepared by PACVD from Ar diluted siloxane plasma
JPS61210179A (en) Coating blade for microtome and its production
CN113213774B (en) Graphene glass and preparation method thereof
JPH04118884A (en) Solid discharge element
JPS62180073A (en) Amorphous carbon film and its production
Flege et al. Tightly adhering diamond-like carbon films on copper substrates by oxygen pre-implantation
Cao Nanocrystalline silicon carbonitride thin films prepared by plasma beam-assisted deposition
Sharda et al. Highly stressed carbon film coatings on silicon: Potential applications
Lue et al. Field emission studies of diamond-like films grown by RFCVD
Nehate et al. Nanoindentation and photoluminescence studies of hydrogenated boron carbon nitride thin films
JP2011058085A (en) Ceramic stacked film and method for forming the same
Kumar et al. Unveiling the multifaceted impact of C2H2 flow on SiCN CVD coatings: Mechanical mastery and beyond
JP5525854B2 (en) Boron nitride coating
Chen et al. Silicon carbon nitride: a new wideband gap material